Natural Product Rottlerin Derivatives Targeting Quorum Sensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analogue Synthesis
2.2. Mannich Reactions at the C6 Chromene Position
2.3. Synthesis of Pyranochromenes
2.4. Synthesis of Pyranochromene Chalcones 8a–d
2.5. QSI and Growth Inhibition Results
2.6. Pyocyanin and Biofilm Inhibition Results
3. Materials and Methods
3.1. Chemistry
3.2. General Synthetic Procedure A for (E)-Chalcone Chromene Derivatives (4a–e)
3.3. General Synthetic Procedure B for Mannich Reactions at C6 Chromene Position (5a–d, 6)
3.4. Synthetic Procedure for Pyranochromene (7)
3.5. General Synthetic Procedure C for Pyranochromene Chalcones (8a–d)
3.6. Experimental Characterisation Data
3.7. Biological Assays
3.7.1. LasR QS and Growth Inhibition Assay
3.7.2. Pyocyanin and Biofilm Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Galloway, W.; Hodgkinson, J.; Bowden, S.D.; Welch, M.; Spring, D. Quorum Sensing in Gram-Negative Bacteria: Small-Molecule Modulation of AHL and Al-2 Quorum Sensing Pathways. Chem. Rev. 2011, 111, 28–67. [Google Scholar] [CrossRef]
- Ng, W.; Bassler, B. Bacterial Quorum-Sensing Network Architectures. Annu. Rev. Genet. 2009, 43, 197–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.; Zimmer, K.; Macedo, A.; Trentin, D. Plant Natural Products Targeting Bacterial Virulence Factors. Chem. Rev. 2016, 116, 9162–9236. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Sun, F.; Feng, W.; Sun, Y.; Qiu, X.; Xiong, L.; Liu, Y.; Chen, Y. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J. Appl. Microbiol. 2016, 120, 966–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Song, M.; Pan, J.; Shen, X.; Liu, W.; Zhang, X.; Li, H.; Deng, X. Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J. Cell Mol. Med. 2018, 22, 6228–6237. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.-Y.; Yuan, M.; Cui, Z.-Q.; Wu, Z.-M.; Yu, Z.-J.; Song, K.; Tang, B.; Fu, B.-D. Rutin inhibits quorum sensing, biofilm formation and virulence genes in avian pathogenic Escherichia coli. Microb. Pathog. 2018, 119, 54–59. [Google Scholar] [CrossRef]
- Vandeputte, O.M.; Kiendrebeogo, M.; Rajaonson, S.; Diallo, B.; Mol, A.; El Jaziri, M.; Baucher, M. Identification of Catechin as One of the Flavonoids from Combretum albiflorum Bark Extract That Reduces the Production of Quorum-Sensing-Controlled Virulence Factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 2009, 76, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Wallock-Richards, D.J.; Marles-Wright, J.; Clarke, D.J.; Maitra, A.; Dodds, M.; Hanley, B.; Campopiano, D.J. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chem. Commun. 2015, 51, 10483–10485. [Google Scholar] [CrossRef] [Green Version]
- Somayyeh, H.; Habib Dastmalchi, S.; Malahat, A.; Taghi, Z.-S. Anti-quorum sensing effects of licochalcone A and epigallocatechin-3-gallate against Salmonella Typhimurium isolates from poultry sources. Vet. Res. Forum 2020, 11, 273–279. [Google Scholar] [CrossRef]
- Furusawa, M.; Ido, Y.; Tanaka, T.; Ito, T.; Nakaya, K.I.; Ibrahim, I.; Ohyama, M.; Iinuma, M.; Shirataka, Y.; Takahashi, Y. Novel, complex flavonoids from Mallotus philippensis (kamala tree). Helv. Chim. Acta 2005, 88, 1048–1058. [Google Scholar] [CrossRef]
- Hong, K.K.C.; Ho, K.K.K.; Bhadbhade, M.; Ball, G.E.; Black, D.S.; Kumar, N. The Mosaic of Rottlerin: The Sequel. J. Nat. Prod. 2019, 82, 1190–1199. [Google Scholar] [CrossRef]
- Fleitas Martínez, O.; Cardoso, M.H.; Ribeiro, S.M.; Franco, O.L. Recent Advances in Anti-virulence Therapeutic Strategies with a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front. Cell. Infect. Microbiol. 2019, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Sabir, S.; Yu, T.T.; Kuppusamy, R.; Almohaywi, B.; Iskander, G.; Das, T.; Willcox, M.D.P.; Black, D.S.; Kumar, N. Novel Seleno- and Thio-Urea Containing Dihydropyrrol-2-One Analogues as Antibacterial Agents. Antibiotics 2021, 10, 321. [Google Scholar] [CrossRef]
- Sabir, S.; Suresh, D.; Subramoni, S.; Das, T.; Bhadbhade, M.; Black, D.S.; Rice, S.A.; Kumar, N. Thioether-linked dihydropyrrol-2-one analogues as PqsR antagonists against antibiotic resistant Pseudomonas aeruginosa. Bioorg. Med. Chem. 2021, 31, 115967. [Google Scholar] [CrossRef]
- Sabir, S.; Subramoni, S.; Das, T.; Black, D.S.; Rice, S.A.; Kumar, N. Design, Synthesis and Biological Evaluation of Novel Anthraniloyl-AMP Mimics as PQS Biosynthesis Inhibitors against Pseudomonas aeruginosa Resistance. Molecules 2020, 25, 3103. [Google Scholar] [CrossRef]
- Hong, K.K.C.; Ball, G.E.; Black, D.S.; Kumar, N. The Mosaic of Rottlerin. J. Org. Chem. 2015, 80, 10668. [Google Scholar] [CrossRef]
- Manefield, M.; Rasmussen, T.; Henzter, M.; Andersen, J.; Steinberg, P.; Kjelleberg, S.; Givskov, M. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 2002, 148, 1119–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Wang, Q.; Hu, Y.; Liang, J.; Jiang, Y.; Ma, R.; Tang, Z.; Huang, Z. Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int. J. Antimicrob. Agents 2012, 40, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, O.M.; Kiendrebeogo, M.; Rasamiravaka, T.; Stévigny, C.; Duez, P.; Rajaonson, S.; Diallo, B.; Mol, A.; Baucher, M.; el Jaziri, M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 2011, 157, 2120–2132. [Google Scholar] [CrossRef] [Green Version]
- Cady, N.C.; McKean, K.A.; Behnke, J.; Kubec, R.; Mosier, A.P.; Kasper, S.H.; Burz, D.S.; Musah, R.A. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS ONE 2012, 7, e38492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.-X.; Xu, Z.-H.; Zhang, Y.-Q.; Tian, J.; Weng, L.-X.; Wang, L.-H. A New Quorum-Sensing Inhibitor Attenuates Virulence and Decreases Antibiotic Resistance in Pseudomonas aeruginosa. J. Microbiol. 2012, 50, 987–993. [Google Scholar] [CrossRef]
- Hentzer, M.; Riedel, K.; Rasmussen, T.B.; Heydorn, A.; Andersen, J.B.; Parsek, M.R.; Rice, S.A.; Eberl, L.; Molin, S.; Høiby, N.; et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 2002, 148, 87–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essar, D.W.; Eberly, L.; Hadero, A.; Crawford, I.P. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 1990, 172, 884–900. [Google Scholar] [CrossRef] [Green Version]
Compound | 125 µM | 63 µM | 31 µM |
---|---|---|---|
Mean Percentage Inhibition | |||
5a | 28.0 ± 4.5 b | 26.8 ± 6.7 a | 30.0 ± 2.7 a |
5b | 40.3 ± 3.8 a | 27.4 ± 10.2 a | 13.8 ± 10.0 a |
5c | 29.1 ± 16.7 b | 48.8 ± 13.3 b | 57.9 ± 3.6 b |
5d | 64.0 ± 3.4 c | 47.9 ± 5.1 b | 42.6 ± 0.9 c |
6 | 40.8 ± 4.2 b | 24.3 ± 3.2 a | 24.6 ± 1.1 b |
8a | 66.3 ± 6.9 a | 52.7 ± 5.8 a | 39.4 ± 3.3 a |
8b | 65.7 ± 3.7 a | 58.1 ± 9.4 a | 49.4 ± 1.5 a |
8c | 59.5 ± 0.6 a | 46.5 ± 6.1 a | 35.7 ± 3.3 a |
8d | 69.3 ± 10.5 a | 58.4 ± 7.3 a | 40.6 ± 4.0 a |
Fu30 | 95.5 ± 1.7 c | 90.7 ± 3.4 c | 93.1 ± 1.9 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suresh, D.; Sabir, S.; Yu, T.T.; Wenholz, D.; Das, T.; Black, D.S.; Kumar, N. Natural Product Rottlerin Derivatives Targeting Quorum Sensing. Molecules 2021, 26, 3745. https://doi.org/10.3390/molecules26123745
Suresh D, Sabir S, Yu TT, Wenholz D, Das T, Black DS, Kumar N. Natural Product Rottlerin Derivatives Targeting Quorum Sensing. Molecules. 2021; 26(12):3745. https://doi.org/10.3390/molecules26123745
Chicago/Turabian StyleSuresh, Dittu, Shekh Sabir, Tsz Tin Yu, Daniel Wenholz, Theerthankar Das, David StC. Black, and Naresh Kumar. 2021. "Natural Product Rottlerin Derivatives Targeting Quorum Sensing" Molecules 26, no. 12: 3745. https://doi.org/10.3390/molecules26123745
APA StyleSuresh, D., Sabir, S., Yu, T. T., Wenholz, D., Das, T., Black, D. S., & Kumar, N. (2021). Natural Product Rottlerin Derivatives Targeting Quorum Sensing. Molecules, 26(12), 3745. https://doi.org/10.3390/molecules26123745