Optimization of Extraction Process and the Antioxidant Activity of Phenolics from Sanghuangporus baumii
Abstract
:1. Introduction
2. Results
2.1. Effect of Different Eutectic Solvents on the Extraction of S. baumii Polyphenols
2.2. Results from Single-Factor Experiments
2.3. Optimization of Polyphenols Extraction Using Response Surface Methodology
2.4. Antioxidant Activity of S. baumii Polyphenols
3. Discussion
4. Materials and Methods
4.1. Materials, Reagents, and Instruments
4.2. Method
4.2.1. Preparation of DES
4.2.2. Construction of the Standard Curve
4.2.3. Determination of Polyphenols Yield
4.3. Single-Factor Experiment of Ultrasonic-Assisted Extraction of Polyphenols from S. baumii Using DES
4.3.1. Effect of Water Content on the Extraction Yield of Polyphenols from S. baumii Using DES
4.3.2. Effect of Extraction Time on Polyphenol Yield from S. baumii
4.3.3. Effect of Extraction Temperature on the Extraction Yield of Polyphenols from S. baumii
4.3.4. Effect of Solid-Liquid Ratio on the Extraction Yield of Polyphenols from S. baumii
4.4. Optimization of the Extraction Process of Polyphenols Using Response Surface Methodology
4.5. In Vitro Antioxidant Activity of S. baumii Polyphenols
4.5.1. •OH-Scavenging Activity of S. baumii Polyphenols
4.5.2. DPPH-Scavenging Activity of S. baumii Polyphenols
4.5.3. ABTS+-Scavenging Activity of S. baumii Polyphenols
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chengshan, C.; Jiexin, M.; Chunrui, H.; Yi, J.; Guozhu, Z.; Xiangwei, H. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci. Rep. 2019, 9, 1–10. [Google Scholar]
- Zhang, W.-B.; Wang, J.-G.; Li, Z.-K.; Yang, L.-Q.; Qin, J.; Xiang, Z.-H.; Ciu, H.J. Research Progress on Medicinal Fungus Sanghuang. China J. Chin. Mater. Med. 2014, 39, 2838–2845. [Google Scholar]
- Wu, S.-H. Name correction of precious medicinal fungus “sanghuang” species. Edible Med. Mushrooms 2012, 20, 177–179. [Google Scholar]
- Wu, S.-H.; Dai, Y.-C. Species clarification of the medicinal fungus Sanghuang. Mycosystema 2020, 39, 781–794. [Google Scholar]
- Bao, H.-Y.; Yang, S.; Li, Q.-J.; Bau, T.; Li, Y. Supplementary Textual Research on “Sanghuang”. J. Fungal Res. 2017, 15, 264–270. [Google Scholar]
- Cheng, J.; Song, J.; Wei, H.; Wang, Y.; Huang, X.; Liu, Y.; Lu, N.; He, L.; Lv, G.; Ding, H.; et al. Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia. Int. J. Biol. Macromol. 2020, 164, 3305–3314. [Google Scholar] [CrossRef]
- Song, T.; Zhang, Z.; Jin, Q.; Feng, W.; Shen, Y.; Fan, L.; Cai, W. Nutrient profiles, functional compositions, and antioxidant activities of seven types of grain fermented with Sanghuangporus sanghuang fungus. J. Food Sci. Technol. 2020, 1–11. [Google Scholar] [CrossRef]
- Zhu, Z.-P.; Li, N. Antioxidant Properties of Polysaccharides from Phellinus igniarius in vitro. Food Sci. 2011, 32, 92–95. [Google Scholar]
- Ye, Y.-J.; Shi, G.; Zhou, Z.-Y.; Wang, J.-Q.; An, L.-P.; Du, P.-G. Comparative Chemical Composition of Mycelium and Fruit Body of Phellinus igniarius. Food Sci. 2019, 40, 246–251. [Google Scholar]
- Liu, K.; Xiao, X.; Wang, J.; Chen Oliver, C.-Y.; Hu, H. Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang. LWT Food Sci. Technol. 2017, 82, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Zan, L.-F.; Bao, H.-Y.; Li, D.-H. Review on Polyphenol Components from Medicinal Fungi “Sanghuang” and Their Biological Activity. Nat. Prod. Res. Dev. 2016, 28, 147–155. [Google Scholar]
- Hwang, B.S.; Lee, I.-K.; Choi, H.J.; Yun, B.-S. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii. Bioorg. Med. Chem. Lett. 2015, 25, 3256–3260. [Google Scholar] [CrossRef] [PubMed]
- Suabjakyong, P.; Saiki, R.; Van Griensven, L.J.L.D.; Higashi, K.; Nishimura, K.; Igarashi, K.; Toida, T. Polyphenol Extract from Phellinus igniarius Protects against Acrolein Toxicity In Vitro and Provides Protection in a Mouse Stroke Model. PLoS ONE 2015, 10, e122733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-S.; Lin, Z.-M.; Wang, L.-N.; Guo, D.-X.; Wang, S.-Q.; Liu, Y.-Q.; Yuan, H.-Q.; Lou, H.-X. Phenolic compounds with NF-κB inhibitory effects from the fungus Phellinus baumii. Bioorg. Med. Chem. Lett. 2011, 21, 3261–3267. [Google Scholar] [CrossRef]
- Lin, W.-C.; Deng, J.-S.; Huang, S.-S.; Wu, S.-H.; Chen, C.-C.; Lin, W.-R.; Lin, H.-Y.; Huang, G.-J. Anti-Inflammatory Activity of Sanghuangporus sanghuang Mycelium. Int. J. Mol. Sci. 2017, 18, 347. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Li, J.; Hu, Y. Polysaccharides from Inonotus obliquus sclerotia and cultured mycelia stimulate cytokine production of human peripheral blood mononuclear cells in vitro and their chemical characterization. Int. Immunopharmacol. 2014, 21, 269–278. [Google Scholar] [CrossRef]
- Friedman, M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- Jung, G.H.; Kang, J.H. Efficacy of Phellinus linteus (sanghuang) extract for improving immune functions. Medicine 2020, 99, e18829. [Google Scholar] [CrossRef]
- Mané, C.; Souquet, J.M.; Ollé, D.; Verriés, C.; Véran, F.; Mazerolles, G.; Cheynier, V.; Fulcrand, H. Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: Application to the characterization of champagne grape varieties. J. Agric. Food Chem. 2007, 55, 7224–7233. [Google Scholar] [CrossRef]
- Cheng, C.; Hu, W.-Z.; Tian, P.-Y. Optimization of Ultrasound-Assisted Extraction of Polyphenols from Banana Peel and Their Antioxidant Capacity. Food Sci. 2014, 35, 12–17. [Google Scholar] [CrossRef]
- Hayat, Z.; Hussain, S.; Abbas, S.; Umar, F.; Ding, B.; Xia, S.; Jia, C.; Zhang, X.; Xia, W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep. Purif. Technol. 2009, 70, 63–70. [Google Scholar] [CrossRef]
- Zheng, H.-Z.; Hwang, I.-W.; Kim, S.-K.; Lee, S.-H.; Chung, S.-K. Optimization of carbohydrate-hydrolyzing enzyme aided polyphenol extraction from unripe apples. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 342–350. [Google Scholar] [CrossRef]
- Carla, D.P.; Andrea, N. Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): Study on process variables and kinetics. J. Supercrit. Fluids 2017, 130, 239–245. [Google Scholar]
- Luo, X.; Cui, J.; Zhang, H.; Duan, Y. Subcritical water extraction of polyphenolic compounds from sorghum (Sorghum bicolor L.) bran and their biological activities. Food Chem. 2018, 262, 14–20. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.-F.; Wang, X.-Q.; Peng, X.; Wang, W. Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Ind. Crops Prod. 2015, 63, 175–181. [Google Scholar] [CrossRef]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Wentao, B.; Minglei, T.; Kyung, H.R. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J. Chromatogr. A 2013, 1285, 22–30. [Google Scholar]
- Peng, X.; Duan, M.-H.; Yao, X.-H.; Zhao, C.-J.; Zu, Y.-G.; Fu, Y.-J. Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent. Sep. Purif. Technol. 2016, 157, 249–257. [Google Scholar] [CrossRef]
- Li, J.-X.; Zhang, X.-N.; Li, W.-W. Comparative Studies of Total Anthocyanins, Total Polyphenols and Antioxidant Activities of Different Pomegranate Varieties. Food Sci. 2011, 32, 143–146. [Google Scholar]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Pergamon 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Li, X. Comparative Study of 1,1-Diphenyl-2-picryl-hydrazyl Radical (DPPH•) Scavenging Capacity of the Antioxidant Xanthones Family. Chem. Sel. 2018, 3, 13081–13086. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number | Ratio of the Material Liquid(mg/mL)A | Extraction Time(min)B | Extraction Temperature (°C)C | The Water Content(%)D | Polyphenols Content(mg/g) |
---|---|---|---|---|---|
1 | 40 | 40 | 70 | 30 | 8.39 |
2 | 40 | 30 | 60 | 50 | 10.39 |
3 | 40 | 40 | 60 | 40 | 12.37 |
4 | 40 | 30 | 50 | 40 | 10.27 |
5 | 30 | 40 | 60 | 50 | 11.43 |
6 | 40 | 40 | 50 | 30 | 11.97 |
7 | 40 | 50 | 60 | 30 | 12.09 |
8 | 30 | 40 | 60 | 30 | 10.96 |
9 | 50 | 40 | 60 | 30 | 10.77 |
10 | 30 | 50 | 60 | 40 | 12.17 |
11 | 40 | 30 | 70 | 40 | 8.27 |
12 | 40 | 40 | 60 | 40 | 12.33 |
13 | 30 | 40 | 70 | 40 | 10.74 |
14 | 50 | 40 | 70 | 40 | 7.32 |
15 | 40 | 40 | 60 | 40 | 11.92 |
16 | 30 | 30 | 60 | 40 | 11.93 |
17 | 40 | 40 | 50 | 50 | 11.12 |
18 | 40 | 50 | 50 | 40 | 10.68 |
19 | 40 | 50 | 60 | 50 | 10.51 |
20 | 50 | 40 | 60 | 50 | 9.53 |
21 | 40 | 40 | 60 | 40 | 11.73 |
22 | 40 | 30 | 60 | 30 | 10.09 |
23 | 50 | 50 | 60 | 40 | 10.96 |
24 | 40 | 40 | 60 | 40 | 12.03 |
25 | 50 | 30 | 60 | 40 | 10.14 |
26 | 30 | 40 | 50 | 40 | 10.98 |
27 | 40 | 50 | 70 | 40 | 8.45 |
28 | 40 | 40 | 70 | 50 | 8.44 |
29 | 50 | 40 | 50 | 40 | 10.22 |
Sources Model | Sum of Squares | DF | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
49.320 | 14 | 3.520 | 12.720 | <0.0001 | Significant | |
A-A | 7.160 | 1 | 7.160 | 25.860 | 0.0002 | |
B-B | 1.180 | 1 | 1.180 | 4.280 | 0.0576 | |
C-C | 15.480 | 1 | 15.480 | 55.900 | <0.0001 | |
D-D | 0.687 | 1 | 0.677 | 2.440 | 0.1403 | |
AB | 0.084 | 1 | 0.084 | 0.304 | 0.5903 | |
AC | 1.770 | 1 | 1.770 | 6.390 | 0.0242 | |
AD | 0.731 | 1 | 0.731 | 2.640 | 0.1265 | |
BC | 0.013 | 1 | 0.013 | 0.048 | 0.8302 | |
BD | 0.884 | 1 | 0.884 | 3.190 | 0.0957 | |
CD | 0.202 | 1 | 0.203 | 0.731 | 0.4069 | |
A2 | 1.430 | 1 | 1.430 | 5.180 | 0.0392 | |
B2 | 2.490 | 1 | 2.490 | 9.010 | 0.0095 | |
C2 | 20.040 | 1 | 20.040 | 72.350 | < 0.0001 | |
D2 | 2.760 | 1 | 2.760 | 9.970 | 0.0070 | |
Residual | 3.880 | 14 | 0.277 | |||
Lack of fit | 3.580 | 10 | 0.358 | 4.820 | 0.0716 | Not Significant |
Pure Error | 0.297 | 4 | 0.074 | |||
R2 | 0.927 |
Number | Composition | Molar Ratio |
---|---|---|
DES-1 | Choline chloride: Malic acid | 1:1 |
DES-2 | Choline chloride: Lactic acid | 1:1 |
DES-3 | Choline chloride: Glycerol | 1:2 |
DES-4 | Choline chloride: Malonic acid | 1:1 |
DES-5 | Choline chloride: Urea | 1:2 |
DES-6 | Choline chloride: Oxalic acid | 1:1 |
DES-7 | Choline chloride: 1,4-Butanediol | 1:5 |
DES-8 | Choline chloride: Urea: Glycerol | 1:1:1 |
Factors | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
A ratio of the material liquid (mg/mL) | 30 | 40 | 50 |
B Extraction time (min) | 30 | 40 | 50 |
C Extraction temperature (℃) | 50 | 60 | 70 |
D The water content (%) | 30 | 40 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, N.; Ming, Y.; Chu, J.; Yang, S.; Wu, G.; Li, W.; Zhang, R.; Cheng, X. Optimization of Extraction Process and the Antioxidant Activity of Phenolics from Sanghuangporus baumii. Molecules 2021, 26, 3850. https://doi.org/10.3390/molecules26133850
Zheng N, Ming Y, Chu J, Yang S, Wu G, Li W, Zhang R, Cheng X. Optimization of Extraction Process and the Antioxidant Activity of Phenolics from Sanghuangporus baumii. Molecules. 2021; 26(13):3850. https://doi.org/10.3390/molecules26133850
Chicago/Turabian StyleZheng, Na, Yongfei Ming, Jianzhi Chu, Shude Yang, Guochao Wu, Weihuan Li, Rui Zhang, and Xianhao Cheng. 2021. "Optimization of Extraction Process and the Antioxidant Activity of Phenolics from Sanghuangporus baumii" Molecules 26, no. 13: 3850. https://doi.org/10.3390/molecules26133850
APA StyleZheng, N., Ming, Y., Chu, J., Yang, S., Wu, G., Li, W., Zhang, R., & Cheng, X. (2021). Optimization of Extraction Process and the Antioxidant Activity of Phenolics from Sanghuangporus baumii. Molecules, 26(13), 3850. https://doi.org/10.3390/molecules26133850