Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications
Abstract
:1. Introduction
2. Enzymes Involved in Organic Pollutant Degradation and Transformation
2.1. Oxygenases in Degradation of Aromatic Compounds
2.2. Laccases Involved in the Ring Cleavage of Aromatic Compounds
2.3. Hydrolytic Lipases/Esterases Involved in Bioremediation
2.4. Heavy Metal Transforming Enzymes
3. Expanded Application of the Pollutant-Degrading Enzymes in Industries
3.1. Application of the Pollutant-Degrading Enzymes in Biosensors
3.2. Application of Pollutant-Degrading Enzymes in the Syntheses of Pharmaceutical Precursors
3.3. Application of Pollutant-Degrading Enzymes in the Biocatalysts of Chemical Products
Microorganism | Enzyme Activity | Relevant Industrial Synthons | Reference |
---|---|---|---|
Sphingobium yanoikuyae B1 | Rieske oxygenase (RO) | cis-dihydrodiols | [83] |
Burkholderia cepacia G4 | Toluene ortho-monooxygenase (TOM) | isoindigo indigo, indirubin, and isatin | [84] |
Pseudomonas putida UV4 | Toluene dioxygenase (TDO) | 2,3-cis-dihydrodiol Toluene Chlorobenzene Bromobenzene Naphthalene | [85] |
Escherichia coli BW25113 | TDO | 1,2-cis-dihydrocatechol | [86] |
Sphingomonas sp. CHY-1 | Naphthalene dioxygenase (NDO) | Naphthalene | [87] |
Pseudomonas sp. NCIB 9816–4 | NDO | (R)-1,2-phenylethanediol | [88] |
Pseudomonas sp. species | Dihydrocatechol dehydrogenase (DHCD) | 2,3-Substituted catechols | [89] |
Pseudomonas mendocina KR1 | Toluene-4-monooxygenase (T4MO) | 4-Substituted Phenol 3,4-Substituted Catechol | [90] |
Pseudomonas putida S12 | TOM-Green | 1-Naphthol | [91] |
Escherichia coli TG1 | Toluene-4-monooxygenase (T4MO) | Phenol 2-Naphthol | [92] |
Pseudomonas putida S12 | Styrene monooxygenase (SMO) | Styrene oxide | [93] |
Pseudomonas putida KT2440 | SMO | Epoxide | [94] |
Rhodococcus sp. DK17 | o-xylene dioxygenase | 3-methylbenzylalcohol and 2,4-dimethylphenol | [95] |
Pseudomonas putida KT2440 | ω-transaminases | 2-hydroxy ketone | [96] |
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Nie, S.; Ding, H.; Hou, F.F. Environmental pollution and kidney diseases. Nat. Rev. Nephrol. 2018, 14, 313–324. [Google Scholar] [CrossRef]
- Claus, S.P.; Guillou, H.; Ellero-Simatos, S. The gut microbiota: A major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2016, 2, 16003. [Google Scholar] [CrossRef] [PubMed]
- Rhind, S.M. Anthropogenic pollutants—An insidious threat to animal health and productivity? Acta Vet. Scand. 2012, 54, S2. [Google Scholar] [CrossRef] [Green Version]
- Allchin, C.R.; Law, R.J.; Morris, S. Polybrominated diphenylethers in sediments and biota downstream of potential sources in the uk. Environ. Pollut. 1999, 105, 197–207. [Google Scholar] [CrossRef]
- Martin, M.; Lam, P.K.S.; Richardson, B.J. An asian quandary: Where have all of the pbdes gone? Mar. Pollut. Bull. 2004, 49, 375–382. [Google Scholar] [CrossRef]
- Scheringer, M.; Stroebe, M.; Wania, F.; Wegmann, F.; Hungerbühler, K. The effect of export to the deep sea on the long-range transport potential of persistent organic pollutants. Environ. Sci Pollut. R 2004, 11, 41. [Google Scholar] [CrossRef]
- Wu, M.; Li, W.; Dick, W.A.; Ye, X.; Chen, K.; Kost, D.; Chen, L. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere 2017, 169, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, P.; Nikel, P.I.; Damborsky, J.; de Lorenzo, V. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 2017, 35, 845–866. [Google Scholar] [CrossRef] [Green Version]
- Han, H.P.; Vila-Aiub, M.M.; Jalaludin, A.; Yu, Q.; Powles, S.B. A double epsps gene mutation endowing glyphosate resistance shows a remarkably high resistance cost. Plant Cell Environ. 2017, 40, 3031–3042. [Google Scholar] [CrossRef]
- Takano, H.K.; Fernandes, V.N.A.; Adegas, F.S.; Oliveira, R.S.; Westra, P.; Gaines, T.A.; Dayan, F.E. A novel tipt double mutation in epsps conferring glyphosate resistance in tetraploid bidens subalternans. Pest Manag. Sci. 2020, 76, 95–102. [Google Scholar] [CrossRef]
- Gibson, D.T.; Parales, R.E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 2000, 11, 236–243. [Google Scholar] [CrossRef]
- Nie, Y.; Chi, C.Q.; Fang, H.; Liang, J.L.; Lu, S.L.; Lai, G.L.; Tang, Y.Q.; Wu, X.L. Diverse alkane hydroxylase genes in microorganisms and environments. Sci. Rep. 2014, 4, 4968. [Google Scholar] [CrossRef] [Green Version]
- Wentzel, A.; Ellingsen, T.E.; Kotlar, H.K.; Zotchev, S.B.; Throne-Holst, M. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol. 2007, 76, 1209–1221. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Z. Diversity of flavin-binding monooxygenase genes (alma) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiol. Ecol. 2012, 80, 523–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Beilen, J.B.; Funhoff, E.G.; van Loon, A.; Just, A.; Kaysser, L.; Bouza, M.; Holtackers, R.; Rothlisberger, M.; Li, Z.; Witholt, B. Cytochrome p450 alkane hydroxylases of the cyp153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl. Environ. Microbiol. 2006, 72, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Fang, H.; Li, Y.; Chi, C.Q.; Tang, Y.Q.; Wu, X.L. The genome of the moderate halophile amycolicicoccus subflavus dqs3-9a1(t) reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment. PLoS ONE 2013, 8, e70986. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Wang, D.; Ding, Y.; Zheng, Y.; Wang, B.; Wei, Q.; Wang, S.; Yang, L.; Ma, L.Z. Integrated comparative genomic analysis and phenotypic profiling of pseudomonas aeruginosa isolates from crude oil. Front. Microbiol. 2020, 11, 519. [Google Scholar] [CrossRef]
- Loss, E.M.O.; Lee, M.K.; Wu, M.Y.; Martien, J.; Chen, W.P.; Amador-Noguez, D.; Jefcoate, C.; Remucal, C.; Jung, S.; Kim, S.C.; et al. Cytochrome p450 monooxygenase-mediated metabolic utilization of benzo[a]pyrene by aspergillus species. mBio 2019, 10, e00558-19. [Google Scholar]
- Zhang, J.J.; Liu, H.; Xiao, Y.; Zhang, X.E.; Zhou, N.Y. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. Strain wbc-3. J. Bacteriol. 2009, 191, 2703–2710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, J.; Liao, J.; Xie, S.; Huang, Y. Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. Microb. Ecol. 2014, 68, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Mangwani, N.; Das, S. Naphthalene catabolism by biofilm forming marine bacterium pseudomonas aeruginosa n6p6 and the role of quorum sensing in regulation of dioxygenase gene. J. Appl. Microbiol. 2021, 130, 1217–1231. [Google Scholar] [CrossRef]
- Parales, R.E.; Resnick, S.M.; Yu, C.L.; Boyd, D.R.; Sharma, N.D.; Gibson, D.T. Regioselectivity and enantioselectivity of naphthalene dioxygenase during arene cis-dihydroxylation: Control by phenylalanine 352 in the alpha subunit. J. Bacteriol. 2000, 182, 5495–5504. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, K.; Suenaga, H.; Goto, M. Biphenyl dioxygenases: Functional versatilities and directed evolution. J. Bacteriol. 2004, 186, 5189–5196. [Google Scholar] [CrossRef] [Green Version]
- Suenaga, H.; Fujihara, H.; Kimura, N.; Hirose, J.; Watanabe, T.; Futagami, T.; Goto, M.; Shimodaira, J.; Furukawa, K. Insights into the genomic plasticity of pseudomonas putida kf715, a strain with unique biphenyl-utilizing activity and genome instability properties. Environ. Microbiol. Rep. 2017, 9, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Sanz, D.; Sansegundo-Lobato, P.; Redondo-Nieto, M.; Suman, J.; Cajthaml, T.; Blanco-Romero, E.; Martin, M.; Uhlik, O.; Rivilla, R. Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. Way2 revealed by its complete genome sequence. Microb. Genom. 2020, 6, mgen000363. [Google Scholar] [CrossRef] [PubMed]
- Shekher, R.; Sehgal, S.; Kamthania, M.; Kumar, A. Laccase: Microbial sources, production, purification, and potential biotechnological applications. Enzym. Res. 2011, 2011, 1–11. [Google Scholar]
- Zeng, J.; Zhu, Q.H.; Wu, Y.C.; Lin, X.G. Oxidation of polycyclic aromatic hydrocarbons using bacillus subtilis cota with high laccase activity and copper independence. Chemosphere 2016, 148, 1–7. [Google Scholar] [CrossRef]
- Hu, X.K.; Zhao, X.H.; Hwang, H.M. Comparative study of immobilized trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere 2007, 66, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Canas, A.I.; Alcalde, M.; Plou, F.; Martinez, M.J.; Martinez, A.T.; Camarero, S. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol. 2007, 41, 2964–2971. [Google Scholar] [CrossRef]
- Hou, Y.; Tao, J.; Shen, W.; Liu, J.; Li, J.; Li, Y.; Cao, H.; Cui, Z. Isolation of the fenoxaprop-ethyl (fe)-degrading bacterium Rhodococcus sp. T1, and cloning of fe hydrolase gene feh. FEMS Microbiol. Lett. 2011, 323, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.J.; Hang, B.J.; Cai, S.; Xie, X.T.; He, J.; Shunpeng, L. Degradation of cyhalofop-butyl (cyb) by pseudomonas azotoformans strain qdz-1, and cloning of a novel gene encoding cyb-hydrolyzing esterase. J. Agric. Food Chem. 2011, 59, 6040–6046. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, J.-G.; Hang, B.-J.; Cai, S.; He, J.; Zhou, S.-G.; Li, S.-P. Cloning of a novel arylamidase gene from Paracoccus sp. Strain fln-7 that hydrolyzes amide pesticides. Appl. Environ. Microbiol. 2012, 78, 4848–4855. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.Z.; Guo, P.; Hang, B.J.; Li, L.; He, J.; Li, S.P. Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. Strain jz-1 and characterization of the gene product. Appl. Environ. Microbiol. 2009, 75, 5496–5500. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, K.; Liu, Y.H. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the metagenome. Microb. Cell Factories 2008, 7, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Liu, X.; Huang, R.; Liu, Y. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb. Cell Factories 2012, 11, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.L.; Liang, M.J.; Liu, Y.H.; Fan, X.J. Directed evolution and secretory expression of a pyrethroid-hydrolyzing esterase with enhanced catalytic activity and thermostability. Microb. Cell Factories 2017, 16, 1–12. [Google Scholar] [CrossRef]
- Kawahara, K.; Tanaka, A.; Yoon, J.; Yokota, A. Reclassification of a parathione-degrading Flavobacterium sp. atcc 27551 as sphingobium fuliginis. J. Gen. Appl. Microbiol. 2010, 56, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Barkay, T.; Turner, R.R.; Vandenbrook, A.; Liebert, C. The relationships of hg(ii) volatilization from a fresh-water pond to the abundance of mer-genes in the gene pool of the indigenous microbial community. Microb. Ecol. 1991, 21, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Barkay, T.; Wagner-Dobler, I. Microbial transformations of mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 2005, 57, 1–52. [Google Scholar] [PubMed]
- Lu, X.; Liu, Y.R.; Johs, A.; Zhao, L.D.; Wang, T.S.; Yang, Z.M.; Lin, H.; Elias, D.A.; Pierce, E.M.; Liang, L.Y.; et al. Anaerobic mercury methylation and demethylation by geobacter bemidjiensis bem. Environ. Sci. Technol. 2016, 50, 4366–4373. [Google Scholar] [CrossRef]
- Lu, X.; Gu, W.Y.; Zhao, L.D.; Farhan Ul Haque, M.; DiSpirito, A.A.; Semrau, J.D.; Gu, B.H. Methylmercury uptake and degradation by methanotrophs. Sci. Adv. 2017, 3, e1700041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borremans, B.; Hobman, J.; Provoost, A.; Brown, N.; van Der Lelie, D. Cloning and functional analysis of thepbr lead resistance determinant of ralstonia metallidurans ch34. J. Bacteriol. 2001, 183, 5651–5658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobman, J.L.; Julian, D.J.; Brown, N.L.J.B.M. Cysteine coordination of pb (ii) is involved in the pbrr-dependent activation of the lead-resistance promoter, ppbra, from cupriavidus metallidurans ch34. BMC Microbiol. 2012, 12, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynninen, A.; Touzé, T.; Pitkänen, L.; Mengin-Lecreulx, D.; Virta, M. An efflux transporter pbra and a phosphatase pbrb cooperate in a lead-resistance mechanism in bacteria. Mol. Microbiol. 2009, 74, 384–394. [Google Scholar] [CrossRef]
- Naik, M.M.; Shamim, K.; Dubey, S.K. Biological characterization of lead-resistant bacteria to explore role of bacterial metallothionein in lead resistance. Curr. Sci. India 2012, 103, 426–429. [Google Scholar]
- Naik, M.M.; Pandey, A.; Dubey, S.K. Pseudomonas aeruginosa strain wi-1 from mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotox. Environ. Safe 2012, 79, 129–133. [Google Scholar] [CrossRef]
- Sharma, J.; Shamim, K.; Dubey, S.K.; Meena, R.M. Metallothionein assisted periplasmic lead sequestration as lead sulfite by providencia vermicola strain sj2a. Sci. Total Environ. 2017, 579, 359–365. [Google Scholar] [CrossRef]
- Deng, F.L.; Liu, X.; Chen, Y.S.; Rathinasabapathi, B.; Rensing, C.; Chen, J.; Bi, J.; Xian, P.; Ma, L.N.Q. Aquaporins mediated arsenite transport in plants: Molecular mechanisms and applications in crop improvement. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1613–1639. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Sun, H.J.; Juhasz, A.L.; Luo, J.; Li, H.B.; Ma, L.Q. Arsenic relative bioavailability in contaminated soils: Comparison of animal models, dosing schemes, and biological end points. Environ. Sci Technol. 2016, 50, 453–461. [Google Scholar] [CrossRef]
- Wang, X.; Rathinasabapathi, B.; de Oliveira, L.M.; Guilherme, L.R.G.; Ma, L.N.Q. Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator pteris vittata. Environ. Sci. Technol. 2012, 46, 11259–11266. [Google Scholar] [CrossRef]
- Andres, J.; Bertin, P.N. The microbial genomics of arsenic. FEMS Microbiol. Rev. 2016, 40, 299–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, P.; DeMel, S.; Shi, J.; Gladysheva, T.; Gatti, D.L.; Rosen, B.P.; Edwards, B.F.P. Insights into the structure, solvation, and mechanism of arsc arsenate reductase, a novel arsenic detoxification enzyme. Structure 2001, 9, 1071–1081. [Google Scholar] [CrossRef] [Green Version]
- Kruger, M.C.; Bertin, P.N.; Heipieper, H.J.; Arsene-Ploetze, F. Bacterial metabolism of environmental arsenic-mechanisms and biotechnological applications. Appl. Microbiol. Biotechnol. 2013, 97, 3827–3841. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.H.; Yin, D.X.; Jia, M.R.; Wang, S.S.; Chen, Y.S.; Rathinasabapathi, B.; Chen, D.L.; Ma, L.Q. Arsenic-resistance mechanisms in bacterium leclercia adecarboxylata strain as3-1: Biochemical and genomic analyses. Sci. Total Environ. 2019, 690, 1178–1189. [Google Scholar] [CrossRef]
- Stolz, J.E.; Basu, P.; Santini, J.M.; Oremland, R.S. Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol. 2006, 60, 107–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, S.; Phung, L.T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 2005, 71, 599–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lett, M.C.; Muller, D.; Lievremont, D.; Silver, S.; Santini, J. Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J. Bacteriol. 2012, 194, 207–208. [Google Scholar] [CrossRef] [Green Version]
- Neethirajan, S.; Ragavan, V.; Weng, X.; Chand, R. Biosensors for sustainable food engineering: Challenges and perspectives. Biosensors 2018, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lu, X.B.; Chen, J.P. Development of biosensor technologies for analysis of environmental contaminants. Trends Environ. Anal. 2014, 2, 25–32. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Stoytcheva, M.; Zlatev, R.; Velkova, Z.; Valdez, B. Organophosphorus Pesticides Determination by Electrochemical Biosensors; InTech: Rijeka, Croatia, 2011; pp. 359–372. [Google Scholar]
- Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Karami, R.; Mohsenifar, A.; Namini, S.M.M.; Kamelipour, N.; Rahmani-Cherati, T.; Shojaei, T.R.; Tabatabaei, M. A novel nanobiosensor for the detection of paraoxon using chitosan-embedded organophosphorus hydrolase immobilized on au nanoparticles. Prep. Biochem. Biotech. 2016, 46, 559–566. [Google Scholar] [CrossRef]
- Jain, M.; Yadav, P.; Joshi, B.; Joshi, A.; Kodgire, P. A novel biosensor for the detection of organophosphorus (op)-based pesticides using organophosphorus acid anhydrolase (opaa)-fl variant. Appl. Microbiol. Biotechnol. 2021, 105, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Jha, S.K.; D’Souza, S.F. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens. Bioelectron. 2006, 21, 2100–2105. [Google Scholar] [CrossRef] [PubMed]
- Gavlasova, P.; Kuncova, G.; Kochankova, L.; Mackova, M. Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int. Biodeterior. Biodegrad. 2008, 62, 304–312. [Google Scholar] [CrossRef]
- Sacks, V.; Eshkenazi, I.; Neufeld, T.; Dosoretz, C.; Rishpon, J. Immobilized parathion hydrolase: An amperometric sensor for parathion. Anal. Chem. 2000, 72, 2055–2058. [Google Scholar] [CrossRef]
- Arnold, F.H. Combinatorial and computational challenges for biocatalyst design. Nature 2001, 409, 253–257. [Google Scholar] [CrossRef]
- Lobastova, T.G.; Sukhodolskaya, G.V.; Nikolayeva, V.M.; Baskunov, B.P.; Turchin, K.F.; Donova, M.V. Hydroxylation of carbazoles by aspergillus flavus vkm f-1024. FEMS Microbiol. Lett. 2004, 235, 51–56. [Google Scholar] [CrossRef]
- Resnick, S.M.; Torok, D.S.; Gibson, D.T. Oxidation of carbazole to 3-hydroxycarbazole by naphthalene 1,2-dioxygenase and biphenyl 2,3-dioxygenase. FEMS Microbiol. Lett. 1993, 113, 297–302. [Google Scholar] [CrossRef]
- Schmid, A.; Dordick, J.S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258–268. [Google Scholar] [CrossRef]
- Wang, S.N.; Xu, P.; Tang, H.Z.; Meng, J.; Liu, X.L.; Ma, C.Q. “Green” route to 6-hydroxy-3-succinoyl-pyridine from (s)-nicotine of tobacco waste by whole cells of a Pseudomonas sp. Environ. Sci. Technol. 2005, 39, 6877–6880. [Google Scholar] [CrossRef]
- Tang, H.Z.; Yao, Y.X.; Zhang, D.K.; Meng, X.Z.; Wang, L.J.; Yu, H.; Ma, L.Y.; Xu, P. A novel nadh-dependent and fad-containing hydroxylase is crucial for nicotine degradation by pseudomonas putida. J. Biol. Chem. 2011, 286, 39179–39187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Tang, H.Z.; Xu, P. Green strategy from waste to value-added-chemical production: Efficient biosynthesis of 6-hydroxy-3-succinoyl-pyridine by an engineered biocatalyst. Sci. Rep. 2014, 4, 5397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.Y.; Wang, L.J.; Wang, W.W.; Wu, G.; Tao, F.; Xu, P.; Deng, Z.X.; Tang, H.Z. Regulatory mechanism of nicotine degradation in pseudomonas putida. mBio 2019, 10, e00602-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballard, D.G.H.; Courtis, A.; Shirley, I.M.; Taylor, S.C. A biotech route to polyphenylene. J. Chem. Soc. Chem. Comm. 1983, 17, 954–955. [Google Scholar] [CrossRef]
- Rogers, M.S.; Lipscomb, J.D. Salicylate 5-hydroxylase: Intermediates in aromatic hydroxylation by a rieske monooxygenase. Biochemistry 2019, 58, 5305–5319. [Google Scholar] [CrossRef] [PubMed]
- Wackett, L.P. Mechanism and applications of rieske non-heme iron dioxygenases. Enzym. Microb. Tech. 2002, 31, 577–587. [Google Scholar] [CrossRef]
- Boyd, D.R.; Bugg, T.D.H. Arene cis-dihydrodiol formation: From biology to application. Org. Biomol. Chem. 2006, 4, 181–192. [Google Scholar] [CrossRef]
- Boyd, D.R.; Sharma, N.D.; Coen, G.P.; Gray, P.J.; Malone, J.F.; Gawronski, J. Enzyme-catalysed synthesis and absolute configuration assignments of cis-dihydrodiol metabolites from 1,4-disubstituted benzenes. Chem. Eur. J. 2007, 13, 5804–5811. [Google Scholar] [CrossRef]
- Zhang, X.W.; Qu, Y.Y.; Ma, Q.; Zhou, H.; Li, X.L.; Kong, C.L.; Zhou, J.T. Cloning and expression of naphthalene dioxygenase genes from Comamonas sp. mq for indigoids production. Process. Biochem. 2013, 48, 581–587. [Google Scholar] [CrossRef]
- Ferraro, D.J.; Brown, E.N.; Yu, C.L.; Parales, R.E.; Gibson, D.T.; Ramaswamy, S. Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from sphingobium yanoikuyae b1. BMC Struct. Biol. 2007, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rui, L.Y.; Reardon, K.F.; Wood, T.K. Protein engineering of toluene ortho-monooxygenase of burkholderia cepacia g4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl. Microbiol. Biotechnol. 2005, 66, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Boyd, D.R.; Sharma, N.D.; Bowers, N.I.; Dalton, H.; Garrett, M.D.; Harrison, J.S.; Sheldrake, G.N. Dioxygenase-catalysed oxidation of disubstituted benzene substrates: Benzylic monohydroxylation versus aryl cis-dihydroxylation and the meta effect. Org. Biomol. Chem. 2006, 4, 3343–3349. [Google Scholar] [CrossRef] [PubMed]
- Wissner, J.L.; Ludwig, J.; Escobedo-Hinojosa, W.; Hauer, B. An enhanced toluene dioxygenase platform for the production of cis-1,2-dihydrocatechol in escherichia coli bw25113 lacking glycerol dehydrogenase activity. J. Biotechnol. 2021, 325, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Jouanneau, Y.; Meyer, C.; Duraffourg, N. Dihydroxylation of four- and five-ring aromatic hydrocarbons by the naphthalene dioxygenase from sphingomonas chy-1. Appl. Microbiol. Biotechnol. 2016, 100, 1253–1263. [Google Scholar] [CrossRef]
- McKenna, R.; Pugh, S.; Thompson, B.; Nielsen, D.R. Microbial production of the aromatic building-blocks (s)-styrene oxide and (r)-1,2-phenylethanediol from renewable resources. Biotechnol. J. 2013, 8, 1465–1475. [Google Scholar] [CrossRef]
- Vasudevan, S.; Bhat, S.V. Biotransformation of isoeugenol catalyzed by growing cells of pseudomonas putida. Biocatal. Biotransfor. 2011, 29, 147–150. [Google Scholar] [CrossRef]
- Gullotto, A.; Branciamore, S.; Duchi, I.; Cano, M.F.P.; Randazzo, D.; Tilli, S.; Giardina, P.; Sannia, G.; Scozzafava, A.; Briganti, F. Combined action of a bacterial monooxygenase and a fungal laccase for the biodegradation of mono- and poly-aromatic hydrocarbons. Bioresour. Technol. 2008, 99, 8353–8359. [Google Scholar] [CrossRef] [PubMed]
- Garikipati, S.V.B.J.; Peeples, T.L. Solvent resistance pumps of pseudomonas putida s12: Applications in 1-naphthol production and biocatalyst engineering. J. Biotechnol. 2015, 210, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Bentley, W.E.; Wood, T.K. Phenol and 2-naphthol production by toluene 4-monooxygenases using an aqueous/dioctyl phthalate system. Appl. Microbiol. Biotechnol. 2005, 68, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Panke, S.; Held, M.; Wubbolts, M.G.; Witholt, B.; Schmid, A. Pilot-scale production of (s)-styrene oxide from styrene by recombinant escherichia coli synthesizing styrene monooxygenase. Biotechnol. Bioeng. 2002, 80, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.L.; Zhang, X.; Zhu, Z.J.; Xu, M.J.; Yang, T.W.; Osire, T.; Yang, S.T.; Rao, Z.M. Asp305gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in pseudomonas putida kt2440. Microb. Cell Factories 2019, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Choi, K.Y.; Yoo, M.; Choi, J.N.; Lee, C.H.; Zylstra, G.J.; Kang, B.S.; Kim, E. Benzylic and aryl hydroxylations of m-xylene by o-xylene dioxygenase from Rhodococcus sp. strain dk17. Appl. Microbiol. Biotechnol. 2010, 86, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Sehl, T.; Simon, R.C.; Hailes, H.C.; Ward, J.M.; Schell, U.; Pohl, M.; Rother, D. Ttc-based screening assay for ω-transaminases: A rapid method to detect reduction of 2-hydroxy ketones. J. Biotechnol. 2012, 159, 188–194. [Google Scholar] [CrossRef]
- Lovley, D.R. Cleaning up with genomics: Applying molecular biology to bioremediation. Nat. Rev. Microbiol. 2003, 1, 35–44. [Google Scholar] [CrossRef]
- Planas-Iglesias, J.; Marques, S.M.; Pinto, G.P.; Musil, M.; Stourac, J.; Damborsky, J.; Bednar, D. Computational design of enzymes for biotechnological applications. Biotechnol. Adv. 2021, 47, 107696. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, A.; Zhang, X.; Wu, S.; Xu, N.; Huang, Y.; Yan, X.; Zhou, J.; Cui, Z.; Dong, W. Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications. Molecules 2021, 26, 4751. https://doi.org/10.3390/molecules26164751
Xu A, Zhang X, Wu S, Xu N, Huang Y, Yan X, Zhou J, Cui Z, Dong W. Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications. Molecules. 2021; 26(16):4751. https://doi.org/10.3390/molecules26164751
Chicago/Turabian StyleXu, Anming, Xiaoxiao Zhang, Shilei Wu, Ning Xu, Yan Huang, Xin Yan, Jie Zhou, Zhongli Cui, and Weiliang Dong. 2021. "Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications" Molecules 26, no. 16: 4751. https://doi.org/10.3390/molecules26164751
APA StyleXu, A., Zhang, X., Wu, S., Xu, N., Huang, Y., Yan, X., Zhou, J., Cui, Z., & Dong, W. (2021). Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications. Molecules, 26(16), 4751. https://doi.org/10.3390/molecules26164751