Effect of Oat β-Glucan on the Rheological Characteristics and Microstructure of Set-Type Yogurt
Abstract
:1. Introduction
2. Results
2.1. WHC
2.2. Sensory Evaluation
2.3. Rheological Characteristics
2.4. Acidity and pH
2.5. SEM
3. Discussion
3.1. WHC Analysis
3.2. Sensory Evaluation Analysis
3.3. Rheological Characteristics
3.4. Acidity and pH Analysis
3.5. SEM Analysis
4. Materials and Methods
4.1. Materials and Starters
4.2. Methods
4.2.1. Sample Preparation
4.2.2. Determination of WHC
4.2.3. Sensory Evaluation
4.2.4. Effect of OG on the Rheological Characteristics of Set-Type Yogurt
4.2.5. Determination of Acidity and pH
4.2.6. Determined the Microstructure
4.2.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lazaridou, A.; Vaikousi, H.; Biliaderis, C.G. Impact of mixed-linkage (1→ 3, 1→ 4) β-glucans on physical properties of acid-set skim milk gels. Int. Dairy J. 2008, 18, 312–322. [Google Scholar] [CrossRef]
- Samuel, P.P.; Ribayamercado, J.D.; Witchger, M.S.; Blumberg, E.J.; Geohas, J.; Galant, R.; Maki, K.C.; Tesser, J.R. Effects of consuming foods containing oat beta-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. Eur. J. Clin. Nutr. 2007, 61, 786. [Google Scholar]
- Lazaridou, A.; Biliaderis, C.G. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. J. Cereal Sci. 2007, 46, 101–118. [Google Scholar] [CrossRef]
- Shah, A.; Gani, A.; Masoodi, F.A.; Wani, S.M.; Ashwar, B.A. Structural, rheological and nutraceutical potential of β-glucan from barley and oat. Bioact. Carbohydr. Diet. Fibre 2017, 10, 10–16. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilisation of barley beta-glucan, guar gum and inulin. Int. J. Food Sci. Technol. 2010, 43, 824–833. [Google Scholar] [CrossRef]
- Gibson, G.R. Fibre and effects on probiotics (the prebiotic concept). Clin. Nutr. Suppl. 2004, 1, 25–31. [Google Scholar] [CrossRef]
- Lam, K.L.; Cheung, C.K. Non-digestible long chain beta-glucans as novel prebiotics. Bioact. Carbohydr. Diet. Fibre 2013, 2, 45–64. [Google Scholar] [CrossRef]
- Bigliardi, B.; Galati, F. Innovation trends in the food industry: The case of functional foods. Trends Food Sci. Technol. 2013, 31, 118–129. [Google Scholar] [CrossRef]
- Shen, R.L.; Dang, X.Y.; Dong, J.L.; Hu, X.Z. Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats. Agric. Food Chem. 2012, 60, 11301–11308. [Google Scholar] [CrossRef] [PubMed]
- Gee, V.L.; Vasanthan, T.; Temelli, F. Viscosity of model yogurt systems enriched with barley β-glucan as influenced by starter cultures. Int. Dairy J. 2007, 17, 1083–1088. [Google Scholar] [CrossRef]
- Ibrahim, M.; Barakova, N.; Jõudu, I. Enrichment of the low-fat yoghurt with oat β-glucan and EPS-producing Bifidobacterium bifidum improves its quality. Agron. Res. 2009, 18, 1689–1699. [Google Scholar]
- Valentini, V.; Allegra, A.; Adduci, F.; Labella, C.; Paolino, R.; Cosentino, C. Effect of cactus pear (Opuntia ficus-indica (L.) Miller) on the antioxidant capacity of donkey milk. Int. J. Dairy Technol. 2018, 71, 579–584. [Google Scholar] [CrossRef]
- Yang, N.; Lv, R.; Jia, J.; Nishinari, K.; Fang, Y. Application of microrheology in food science. Annu. Rev. Food Sci. Technol. 2017, 8, 493–521. [Google Scholar] [CrossRef]
- Zhu, Q.; Qiu, S.; Zhang, H.; Cheng, Y.; Yin, L. Physical stability, microstructure and micro-rheological properties of water-in-oil-in-water (w/o/w) emulsions stabilized by porcine gelatin. Food Chem. 2018, 253, 63–70. [Google Scholar] [CrossRef]
- Nikoofar, E.; Hojjatoleslamy, M.; Shakerian, A.; Molavi, H.; Shariaty, M.A. Surveying the Effect of Oat Beta Glucan As a Fat Replacer on Rheological and Physicochemical Characteristics of Non Fat Set Yoghurt. Intl. J. Farm. Alli. Sci. 2013, 2, 790–796. [Google Scholar]
- Hassan, A.N.; Ipsen, R.; Janzen, T.; Qvist, K.B. Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides. J. Dairy Sci. 2003, 86, 1632–1638. [Google Scholar] [CrossRef]
- Kermiche, F.; Boulekbache –Makhlouf, L.; Félix, M.; Harkat-Madouri, L.; Remini, H.; Madani, K. Romero. Effects of the incorporation of cantaloupe pulp in yogurt: Physicochemical, phytochemical and rheological properties. Food Sci. Technol. Int. 2018, 7, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Hemar, Y.; Singh, H.; Horne, D.S. Determination of early stages of rennet-induced aggregation of casein micelles by diffusing wave spectroscopy and rheological measurements. Curr. Appl. Phys. 2004, 4, 362–365. [Google Scholar] [CrossRef]
- Rohart, A.; Michon, C.; Confiac, J.; Bosc, V. Evaluation of ready-to-use smls and dws devices to study acid-induced milk gel changes and syneresis. Dairy Sci. Technol. 2016, 96, 459–475. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Deng, C.J.; Xu, L.S.; Jin, W.P.; Zeng, J.; Li, B.; Gao, Y.X. Protein-neutral polysaccharide nano-and micro-biopolymer complexes fabricated by lactoferrin and oat β-glucan: Structural characteristics and molecular interaction mechanisms. Food Res. Int. 2020, 132, 109111. [Google Scholar] [CrossRef]
- Rosburg, V.; Boylston, T.; White, P. Viability of bifidobacteria strains in yogurt with added oat beta-glucan and corn starch during cold storage. J. Food Sci. 2010, 75, C439–C444. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Han, Y.; Liu, M.; Wang, Y.; Yang, Y.; Yang, X. Effect of 2 types of resistant starches on the quality of yogurt. J. Dairy Sci. 2019, 5, 3956–3964. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.L.; Liu, X.Y.; Dong, J.L.; Si, J.L.; Li, H. The gel properties and microstructure of the mixture of oat β-glucan/soy protein isolates. Food Hydrocoll. 2015, 47, 108–114. [Google Scholar] [CrossRef]
- Zielke, C.; Lu, Y.; Poinsot, R.; Nilsson, L. Interaction between cereal β-glucan and proteins in solution and at interfaces. Colloids Surf. B Biointerfaces 2018, 162, 256–264. [Google Scholar] [CrossRef]
- Titapiccolo, G.I.; Corredig, M.; Alexander, M. Acid coagulation behavior of homogenized milk: Effect of interacting and non-interacting droplets observed by rheology and diffusing wave spectroscopy. Dairy Sci. Technol. 2011, 91, 185–201. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.; Lu, Y.; Tan, C.; Wang, G.; Li, G.H. Effect of cross-linked acetylated starch content on the structure and stability of set yoghurt–science direct. Food Hydrocoll. 2014, 35, 576–582. [Google Scholar] [CrossRef]
OG Addition (%) | Characteristic Index | ||||
---|---|---|---|---|---|
Color | Structural State | Texture | Flavor | Score | |
0 | 8.12 ± 0.24 | 26.05 ± 0.47 | 24.28 ± 0.39 | 23.7 ± 0.90 | 82.15 ± 0.81 |
0.1 | 8.6 ± 0.37 ** | 25.6 ± 0.83 | 24.35 ± 0.45 | 24.7 ± 0.64 * | 83.25 ± 0.90 * |
0.2 | 8.65 ± 0.45 ** | 25.4 ± 0.92 * | 24.6 ± 0.66 | 24.6 ± 0.49 * | 83.25 ± 0.81 * |
0.3 | 8.71 ± 0.46 * | 26.78 ± 0.63 * | 24.97 ± 0.79 | 24.67 ± 0.47 ** | 85.12 ± 0.89 ** |
0.4 | 8.33 ± 0.37 * | 25.56 ± 0.49 * | 24.67 ± 0.80 | 24.67 ± 0.46 ** | 83.22 ± 0.84 * |
0.5 | 8.15 ± 0.32 | 25.2 ± 0.98 | 24.8 ± 0.60 * | 24.5 ± 0.67 * | 82.65 ± 0.95 |
Item | Scoring Criteria | Score |
---|---|---|
Color | Uniform color, milky white or milky yellow (7–10) | 10 |
Different colors (4–6) | ||
Structural state | Good coagulation, fine and uniform structure, no whey precipitation (25–30) | 30 |
Good coagulation, fine and uniform structure, a small amount of whey precipitation (15–24) | ||
Poor coagulation, different structure, and serious whey precipitation (0–14) | ||
Texture | The taste is smooth and delicate, with thickness and viscosity (25–30) | 30 |
The taste is smooth and delicate, with thickness and viscosity (15–24) | ||
The taste is not smooth, delicate, and astringent (0–14) | ||
Flavor | The unique fermented and milk flavor of yogurt, with a strong flavor (25–30%) | 30 |
The fermented and milk flavor of yogurt is light, and the flavor is general (15–24) | ||
Loss of flavor of fermented milk and abnormal odor (0–14) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, X.; Nazarenko, Y.; Yang, W.; Nie, Y.; Zhang, Y.; Li, B. Effect of Oat β-Glucan on the Rheological Characteristics and Microstructure of Set-Type Yogurt. Molecules 2021, 26, 4752. https://doi.org/10.3390/molecules26164752
Qu X, Nazarenko Y, Yang W, Nie Y, Zhang Y, Li B. Effect of Oat β-Glucan on the Rheological Characteristics and Microstructure of Set-Type Yogurt. Molecules. 2021; 26(16):4752. https://doi.org/10.3390/molecules26164752
Chicago/Turabian StyleQu, Xiaoqing, Yuliya Nazarenko, Wei Yang, Yuanyang Nie, Yongsheng Zhang, and Bo Li. 2021. "Effect of Oat β-Glucan on the Rheological Characteristics and Microstructure of Set-Type Yogurt" Molecules 26, no. 16: 4752. https://doi.org/10.3390/molecules26164752
APA StyleQu, X., Nazarenko, Y., Yang, W., Nie, Y., Zhang, Y., & Li, B. (2021). Effect of Oat β-Glucan on the Rheological Characteristics and Microstructure of Set-Type Yogurt. Molecules, 26(16), 4752. https://doi.org/10.3390/molecules26164752