Aroma-Active Compounds in Robusta Coffee Pulp Puree—Evaluation of Physicochemical and Sensory Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Robusta Coffee Pulp Puree
2.1.1. Characterization of Native Coffee Pulp Puree
2.1.2. Comparison of Native and Processed Robust Coffee Pulp Puree
2.2. Sensory Evaluation
2.3. Identification of Aroma-Active Compounds in Unprocessed and Processed Coffee Pulp Puree
3. Materials and Methods
3.1. Preparation of Coffee Pulp Puree
3.2. Physicochemical Analyses
3.3. Sensory Evaluation
3.3.1. Panelists
3.3.2. Aroma Profile Analysis
3.4. Isolation of Volatiles
3.5. Aroma Extract Dilution Analyses
3.6. Gas Chromatography-Olfactometry
3.7. Gas Chromatography-Mass Spectrometry/Olfactometry
3.8. Two-Dimensional Gas Chromatography-Mass Spectrometry/Olfactometry
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Coffee Consumption. Available online: http://www.ico.org/prices/new-consumption-table.pdf (accessed on 4 August 2020).
- Alves, R.C.; Rodrigues, F.; Antónia Nunes, M.; Vinha, A.F.; Oliveira, M.B.P.P. Chapter 1—State of the art in coffee processing by-products. In Handbook of Coffee Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–26. [Google Scholar]
- Braham, J.E.; Bressani, R. Coffee Pulp: Composition, Technology, and Utilization; IDRC: Ottawa, ON, Canada, 1979; pp. 5–8. [Google Scholar]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recy. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recy. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Silva, M.d.O.; Honfoga, J.N.B.; Medeiros, L.L.d.; Madruga, M.S.; Bezerra, T.K.A. Obtaining bioactive compounds from the coffee husk (Coffea arabica L.) using different extraction methods. Molecules 2021, 26, 46. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Soccol, C.R.; Nigam, P.; Brand, D.; Mohan, R.; Roussos, S. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. 2000, 6, 153–162. [Google Scholar] [CrossRef]
- Boonphang, O.; Ontawong, A.; Pasachan, T.; Phatsara, M.; Duangjai, A.; Amornlerdpison, D.; Jinakote, M.; Srimaroeng, C. Antidiabetic and renoprotective effects of Coffea arabica pulp aqueous axtract through preserving organic cation transport system mediated oxidative stress pathway in experimental type 2 diabetic rats. Molecules 2021, 26, 1907. [Google Scholar] [CrossRef] [PubMed]
- Meyerding, S.G.; Kürzdörfer, A.; Gassler, B. Consumer preferences for superfood ingredients—The case of bread in Germany. Sustainability 2018, 10, 4667. [Google Scholar] [CrossRef] [Green Version]
- Graeff-Hönninger, S.; Khajehei, F. The demand for superfoods: Consumers’ desire, production viability and bio-intelligent transition. In Food Tech Transitions: Reconnecting Agri-Food, Technology and Society; Piatti, C., Graeff-Hönninger, S., Khajehei, F., Eds.; Springer International Publishing: Cham, Swizerland, 2019; pp. 81–94. [Google Scholar]
- Del Castillo, M.D.; Iriondo-DeHond, A.; Martinez-Saez, N.; Fernandez-Gomez, B.; Iriondo-DeHond, M.; Zhou, J.-R. Chapter 6—Applications of recovered compounds in food products. In Handbook of Coffee Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 171–194. [Google Scholar]
- Muzaifa, M.; Rahmi, F. Syarifudin, Utilization of coffee by-products as profitable foods—A mini review. IOP Conf. Ser. Earth Environ. Sci. 2021, 672, 012077. [Google Scholar] [CrossRef]
- Heeger, A.; Kosińska-Cagnazzo, A.; Cantergiani, E.; Andlauer, W. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 2017, 221, 969–975. [Google Scholar] [CrossRef]
- European Union. European Union Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Off. J. Eur. Union 2015, L327, 1–22. [Google Scholar]
- Summary of the Dossier: Coffee Husk (Cascara)—The Dried Husk of the Coffee Fruit or Coffee Cherry. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/novel-food_sum_ongoing-app_2018-0192.pdf (accessed on 27 November 2020).
- Loukri, A.; Tsitlakidou, P.; Goula, A.; Assimopoulou, A.N.; Kontogiannopoulos, K.N.; Mourtzinos, I. Green extracts from coffee pulp and their application in the development of innovative brews. Appl. Sci. 2020, 10, 6982. [Google Scholar] [CrossRef]
- Pua, A.; Choo, W.X.D.; Goh, R.M.V.; Liu, S.Q.; Cornuz, M.; Ee, K.-H.; Sun, J.; Lassabliere, B.; Yu, B. A systematic study of key odourants, non-volatile compounds, and antioxidant capacity of cascara (dried Coffea arabica pulp). LWT Food Sci. Technol. 2021, 138, 110630. [Google Scholar] [CrossRef]
- Velez, A.R.; Lopez, J.C.J. Process for obtaining honey and/or flour of coffee from the pulp or husk and the mucilage of the coffee bean. U.S. Patent No. US20150017270A1, 14 December 2015. [Google Scholar]
- Madahava Naidu, M.; Vijayanada, P.; Usha Devi, A.; Vijayalakshmi, M.; Ramalakshmi, K. Utilization of coffee by-products in food industry, preparation of jam using coffee pulp as raw material. In Plantation Crops Research and Development in the New Millennium: PLACROSYM XVI; Rethinam, P., Ed.; Indian Society for Plantation Crops: Kasaragod, India, 2004; pp. 201–203. [Google Scholar]
- KC, Y.; Subba, R.; Shiwakoti, L.D.; Dhungana, P.K.; Bajagain, R.; Chaudhary, D.K.; Pant, B.R.; Bajgai, T.R.; Lamichhane, J.; Timilsina, S.; et al. Utilizing coffee pulp and mucilage for producing alcohol-based beverage. Fermentation 2021, 7, 53. [Google Scholar] [CrossRef]
- Zuhra, N.H.; Hasni, D.; Muzaifa, M. Pengolahan pulp kopi menjadi minuman sari buah dengan penambahan buah terong belanda dan konsentrasi gula yang berbeda. J. Teknol. Pertanian Andalas 2018, 22, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Greger, V.; Schieberle, P. Characterization of the key aroma compounds in apricots (Prunus armeniaca) by application of the molecular sensory science concept. J. Agric. Food Chem. 2007, 55, 5221–5228. [Google Scholar] [CrossRef]
- Tairu, A.; Hofmann, T.; Schieberle, P. Identification of the key aroma compounds in dried fruit of Xylopia aethiopica. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999; pp. 474–478. [Google Scholar]
- Martín, D.A.; Osorio, C. Identification of aroma-active volatile compounds in Pouteria sapota fruit by aroma extraction dilution analyses (AEDA). Quim. Nova 2019, 42, 607–610. [Google Scholar] [CrossRef]
- Conde-Martínez, N.; Jiménez, A.; Steinhaus, M.; Schieberle, P.; Sinuco, D.; Osorio, C. Key aroma volatile compounds of gulupa (Passiflora edulis Sims fo edulis) fruit. Eur. Food Res. Technol. 2013, 236, 1085–1091. [Google Scholar] [CrossRef]
- Lasekan, O.; Yap, S.P. Characterization of the aroma compounds in fresh and dried sapodilla (Manikara zapota, L.) by the application of aroma extract dilution analysis. CYTA J. Food 2018, 16, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.M.K.; Kirkman, T.; Nguyen, M.; Van Vuong, Q. Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon 2020, 6, e04498. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.C.K.; Cunha, R.L. Effect of particle size on rheological properties of jaboticaba pulp. J. Food Eng. 2009, 91, 566–570. [Google Scholar] [CrossRef]
- Espinosa, L.; To, N.; Symoneaux, R.; Renard, C.M.; Biau, N.; Cuvelier, G. Effect of processing on rheological, structural and sensory properties of apple puree. Procedia Food Sci. 2011, 1, 513–520. [Google Scholar] [CrossRef]
- Lukhmana, N.; Kong, F.; Kerr, W.; Singh, R. Rheological and structural properties of tart cherry puree as affected by particle size reduction. LWT Food Sci. Technol. 2018, 90, 650–657. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, W.; Stockmann, R.; Terefe, N.S. Effect of citric acid and high pressure thermal processing on enzyme activity and related quality attributes of pear puree. Innov. Food Sci. Emerg. Technol. 2018, 45, 196–207. [Google Scholar] [CrossRef]
- Martins Moreira, A.; Osen, R.; Wohlt, D. ByProFood—Innovative Food Ingredients and Food Product Development from By-Products of Fruit Processing and Coffee Production; Abschlussbericht: Berichtszeitraum: 11 January 2016–30 April 2020; Fraunhofer IVV: Freising, Germany, 2020. [Google Scholar]
- Prata, E.R.; Oliveira, L.S. Fresh coffee husks as potential sources of anthocyanins. LWT Food Sci. Technol. 2007, 40, 1555–1560. [Google Scholar] [CrossRef]
- Brambilla, A.; Maffi, D.; Rizzolo, A. Study of the influence of berry-blanching on syneresis in blueberry purées. Procedia Food Sci. 2011, 1, 1502–1508. [Google Scholar] [CrossRef] [Green Version]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Aroma compounds. In Food Chemistry; Belitz, H.D., Grosch, W., Schieberle, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 342–408. [Google Scholar]
- Berger, R.G. Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; pp. 46–47. [Google Scholar]
- Plotto, A.; Bai, J.; Baldwin, E. Fruits. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 27–28. [Google Scholar]
- Mathieu, F.; Malosse, C.; Frérot, B. Identification of the volatile components released by fresh coffee berries at different stages of ripeness. J. Agric. Food Chem. 1998, 46, 1106–1110. [Google Scholar] [CrossRef]
- Mathieu, F.; Malosse, C.; Cain, A.H.; Frérot, B. Comparative headspace analysis of fresh red coffee berries from different cultivated varieties of coffee trees. J. High Resolut. Chromatogr. 1996, 19, 298–300. [Google Scholar] [CrossRef]
- Brattoli, M.; Cisternino, E.; Dambruoso, P.R.; De Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef] [Green Version]
- Buettner, A.; Schieberle, P. Influence of mastication on the concentrations of aroma volatiles—Some aspects of flavour release and flavour perception. Food Chem. 2000, 71, 347–354. [Google Scholar] [CrossRef]
- Tatum, J.H.; Shaw, P.E.; Berry, R.E. Degradation products from ascorbic acid. J. Agric. Food Chem. 1969, 17, 38–40. [Google Scholar] [CrossRef]
- Barren, D.; Etiévant, P.X. The volatile constituents of strawberry jam. Z. Lebensm. Unters. Forsch. 1990, 191, 279–285. [Google Scholar] [CrossRef]
- Pino, J.A.; Marbot, R. Volatile flavor constituents of acerola (Malpighia emarginata DC.) fruit. J. Agric. Food Chem. 2001, 49, 5880–5882. [Google Scholar] [CrossRef]
- Pyysalo, T.; Honkanen, E. The influence of heat on the aroma of cloudberries (Rubus Chamaemorus L.). Z. Lebensm. Unters. Forsch. 1977, 163, 25–30. [Google Scholar] [CrossRef]
- Yuan, J.-P.; Chen, F. Degradation of ascorbic acid in aqueous solution. J. Agric. Food Chem. 1998, 46, 5078–5082. [Google Scholar] [CrossRef]
- Kimoto, E.; Tanaka, H.; Ohmoto, T.; Choami, M. Analysis of the transformation products of dehydro-L-ascorbic acid by ion-pairing high-performance liquid chromatography. Anal. Biochem. 1993, 214, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Hermosa, V.A.; Duarte, W.F.; Schwan, R.F. Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresour. Technol. 2014, 166, 142–150. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation: A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Bemelmans, J.M.H. Review of isolation and concentration techniques. In Progress in Flavour Research; Land, D.G., Nursten, H.E., Eds.; Applied Science Publishers Ltd.: London, UK, 1978; pp. 79–98. [Google Scholar]
- Grosch, W. Detection of potent odorants in foods by aroma extract dilution analysis. Trends Food Sci. Technol. 1993, 4, 68–73. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
Physiochemical Properties | Native | Processed |
---|---|---|
pH (−) | 4.95 ± 0.01 A | 3.57 ± 0.05 B |
Dry matter content (%) | 6.27 ± 0.44 A | 5.50 ± 0.60 A |
Total soluble solids (°Brix) | 0.48 ± 0.18 A | 0.88 ± 0.29 A |
L* (−) | 32.63 ± 0.16 B | 36.03 ± 0.38 A |
a* (−) | 15.03 ± 0.12 B | 16.92 ± 0.20 A |
b* (−) | 17.53 ± 0.22 A | 21.64 ± 0.63 B |
Antioxidant capacity (µmolTE/gDM) | 77.26 ± 0.36 B | 87.93 ± 3.95 A |
d(v, 0.5) (µm) | 167.76 ± 1.67 A | 164.94 ± 2.50 A |
RI a | Compound b | Odor Quality c | FD d Factor | ||
---|---|---|---|---|---|
DB-FFAP | DB-5 | Puree | Unprocessed Pulp | ||
1809 | 1387 | (E)-β-damascenone | apple juice-like, grape juice-like | 1024 | 1024 |
1833 | 1255 | geraniol | flowery | 1024 | 16 |
2078 | 1086 | 4-methylphenol | horse stable-like, fecal | 1024 | 256 |
2185 | 1102 | 3-hydroxy-4,5-dimethylfuran-2(5H)-one f | lovage-like, celery-like | 1024 | 512 |
2563 | 1400 | 4-hydroxy-3-methoxybenzaldehyde | vanilla-like | 1024 | ≥2048 |
1720 | 1030 | unknown | flowery, hay-like | 512 | 256 |
1966 | 992 | 3-hydroxy-2-pyrone | lovage-like, seasoning-like | 512 | <1 |
2340 | n.d. e | unknown | broth-like | 512 | 512 |
2541 | 1254 | phenylacetic acid | beeswax-like, honey-like | 512 | 256 |
1534 | 1104 | linalool | flowery | 256 | 256 |
1802 | 1317 | (E,E)-2,4-decadienal | fatty | 256 | 512 |
2041 | 1175 | octanoic acid | musty, coriander-like, fatty | 256 | 256 |
1301 | 955 | 2-heptanol | coconut-like, citrus-like | 128 | 16 |
1507 | 1178 | 2-isobutyl-3-methoxypyrazine | bell pepper-like, pea-like | 128 | 256 |
1650 | 859 | 2/3-methylbutanoic acid | cheesy, sweaty, banana-like | 128 | 256 |
1759 | 1196 | methyl salicylate | eucalyptus-like, solvent-like | 128 | 512 |
1930 | 1488 | β-ionone | violet-like, flowery | 128 | 256 |
1853 | 1087 | 2-methoxyphenol | smoky, smoked ham-like | 64 | 8 |
1292 | 979 | 1-octen-3-one | mushroom-like | 64 | 128 |
1445 | 905 | 3-(methylthio)propanal | cooked potato-like | 64 | 16 |
1523 | 1160 | (E)-2-nonenal | fatty, cardboard-like, green | 64 | 64 |
1579 | 1106 | (E,E)-2,4-octadienal | fatty, green, citrus-like | 64 | 1024 |
1638 | 1050 | phenylacetaldehyde | beeswax-like, rapeseed-like, flowery | 64 | 256 |
1690 | 1212 | (E,E)-2,4-nonadienal | fatty, nutty | 64 | 4 |
2019 | 1360 | γ-nonalactone | coconut-like | 64 | 128 |
2156 | 1363 | eugenol | clove-like | 64 | 256 |
2250 | n.d. e | unknown | phenolic, gas-like | 64 | 64 |
2447 | 1303 | indole | faecal | 64 | <1 |
2411 | 1705 | δ-dodecalactone | peach-like | 32 | 16 |
1231 | 896 | (Z)-4-heptenal f | fishy, fatty | 32 | <1 |
1413 | n.d. e | unknown | licorice-like, aniseed-like, fatty | 32 | <1 |
1280 | 1002 | octanal | citrus-like, soapy | 16 | 16 |
1327 | 928 | 2-acetyl-1-pyrroline f | popcorn-like, roasty | 16 | 8 |
1373 | 861 | (Z)-3-hexenol | green, grassy, metallic | 16 | 16 |
1383 | 1103 | nonanal | soapy, citrus-like | 16 | 8 |
1753 | 1290 | (E,Z)-2,4-decadienal | fatty, green | 16 | 512 |
1911 | 1142 | γ-octalactone | coconut-like | 16 | 16 |
1986 | 1376 | trans-4,5-epoxy-(E)-2-decenal | metallic | 16 | 512 |
2100 | n.d. e | unknown | faecal, ink-like | 16 | <1 |
1618 | 808 | butanoic acid | sweaty, cheesy | 8 | 16 |
2129 | 1471 | γ-decalactone | peach-like, fruity | 8 | 128 |
984 | 720 | 2,3-butanedione f | butter-like | 4 | 16 |
1418 | 1057 | (E)-2-octenal | fatty, soapy, grassy | 4 | 64 |
1445 | 619 | acetic acid | vinegar-like | 4 | 8 |
1733 | n.d. e | unknown | fruity, apple juice-like | 4 | ≥2048 |
2172 | 1179 | 3-ethylphenol | leather-like, ink-like, phenolic | 4 | 8 |
1015 | n.d. e | unknown | pungent, musty | 2 | 2 |
1062 | n.d. e | unknown | citrus-like, fruity | 2 | 64 |
1080 | 801 | hexanal | grassy | 2 | <1 |
1140 | n.d. e | unknown | green, grassy | 2 | 8 |
1494 | 1016 | (E,E)-2,4-heptadienal | fatty, green | 2 | <1 |
1489 | 1178 | 2-sec-butyl-3-methoxypyrazine | pea-like | 2 | 16 |
1552 | 854 | 2-methylpropanoic acid | cheesy, sweaty | 2 | 8 |
1904 | 1115 | phenylethanol | rosy, flowery | 2 | <1 |
1990 | n.d. e | unknown | fruity, caramel-like | 2 | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buck, N.; Wohlt, D.; Winter, A.R.; Ortner, E. Aroma-Active Compounds in Robusta Coffee Pulp Puree—Evaluation of Physicochemical and Sensory Properties. Molecules 2021, 26, 3925. https://doi.org/10.3390/molecules26133925
Buck N, Wohlt D, Winter AR, Ortner E. Aroma-Active Compounds in Robusta Coffee Pulp Puree—Evaluation of Physicochemical and Sensory Properties. Molecules. 2021; 26(13):3925. https://doi.org/10.3390/molecules26133925
Chicago/Turabian StyleBuck, Nina, Daria Wohlt, Anne Ruth Winter, and Eva Ortner. 2021. "Aroma-Active Compounds in Robusta Coffee Pulp Puree—Evaluation of Physicochemical and Sensory Properties" Molecules 26, no. 13: 3925. https://doi.org/10.3390/molecules26133925
APA StyleBuck, N., Wohlt, D., Winter, A. R., & Ortner, E. (2021). Aroma-Active Compounds in Robusta Coffee Pulp Puree—Evaluation of Physicochemical and Sensory Properties. Molecules, 26(13), 3925. https://doi.org/10.3390/molecules26133925