Encapsulation of Fruit Flavor Compounds through Interaction with Polysaccharides
Abstract
:1. Introduction
2. Encapsulation and Selection of Flavor Compounds Carriers
2.1. Encapsulation
2.2. Flavor Carriers
2.3. Flavor Retention
- Flavor compound characteristics: the type of compounds (e.g., ketones, esters, acids), polarity, size, molecular weight, relative volatility, concentration;
- Carrier characteristics: the type of carrier (e.g., proteins, fats, polysaccharides), molecular weight, viscosity, solids content, glass transition temperature, solubility, emulsifying ability, film-forming capability, concentration, biocompatibility;
- The method of sample preparation: emulsification method, emulsion droplet size, emulsion viscosity, emulsion stability;
- Applied encapsulation methods (e.g., spray-drying, extrusion) and
- Operating parameters during encapsulation: feed flow rate, inlet and outlet air temperature, air flow rate, type of atomizer.
3. Polysaccharides–Flavor Interactions
3.1. Starch–Flavor Compounds Interactions
3.2. Maltodextrin–Flavor Compounds Interactions
3.3. Pectin-Flavor Compounds Interactions
3.4. Cyclodextrin-Flavor Compounds Interactions
3.5. Guar Gum-Flavor Compounds Interactions
3.6. Gum Arabic–Flavor Compounds Interactions
3.7. Xanthan–Flavor Compounds Interactions
3.8. Cellulose-Flavor Compounds Interactions
3.9. β-Glucan–Flavor Compounds Interactions
3.10. Glucomannan–Flavor Compounds Interactions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tromelin, A.; Merabtine, Y.; Andriot, I. Retention-release equilibrium of aroma compounds in polysaccharide gels: Study by quantitative structure-activity/property relationships approach. Flavour Fragr. J. 2010, 25, 431–442. [Google Scholar] [CrossRef]
- Landy, P.; Courthaudon, J.L.; Dubois, C.; Voilley, A. Effect of interface in model food emulsions on the volatility of aroma compounds. J. Agric. Food Chem. 1996, 44, 526–530. [Google Scholar] [CrossRef]
- Naknean, P.; Meenune, M. Factors affecting retention and release of flavour compounds in food carbohydrates. Int. Food Res. J. 2010, 17, 23–34. [Google Scholar]
- Zhang, Y.; Zhou, Y.; Cao, S.; Li, S.; Jin, S.; Zhang, S. Preparation, release and physicochemical characterisation of ethyl butyrate and hexanal inclusion complexes with β- and γ-cyclodextrin. J. Microencapsul. 2015, 32, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Paravisini, L.; Guichard, E. Interactions between aroma compounds and food matrix. In Flavour: From Food to Perception; Guichard, E., Salles, C., Morzel, M., Le Bon, A., Eds.; Whiley: Hoboken, NJ, USA, 2016; pp. 208–234. [Google Scholar]
- Lukić, I.; Radeka, S.; Grozaj, N.; Staver, M.; Peršurić, Đ. Changes in physico-chemical and volatile aroma compound composition of Gewürztraminer wine as a result of late and ice harvest. Food Chem. 2016, 196, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Zhou, X.; Xiao, Z.; Niu, Y. Characterization of the differences in the aroma of cherry wines from different price segments using gas chromatography–mass spectrometry, odor activity values, sensory analysis, and aroma reconstitution. Food Sci. Biotechnol. 2017, 26, 331–338. [Google Scholar] [CrossRef]
- Du, X.F.; Kurnianta, A.; McDaniel, M.; Finn, C.E.; Qian, M.C. Flavour profiling of “Marion” and thornless blackberries by instrumental and sensory analysis. Food Chem. 2010, 121, 1080–1088. [Google Scholar] [CrossRef]
- Qian, M.C.; Wang, Y. Seasonal variation of volatile composition and odor activity value of “Marion” (Rubus spp. hyb) and “Thornless Evergreen” (R. laciniatus L.) blackberries. J. Food Sci. 2005, 70, C13–C20. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, B.; Qiu, L.; Fu, X.; Huang, Q. Ordered structure of starch inclusion complex with C10 aroma molecules. Food Hydrocoll. 2020, 108, 105969. [Google Scholar] [CrossRef]
- Winska, K.; Maczka, W.; Lyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial Agents—Myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Cuccovia, I.M.; Schroeter, E.H.; Monteiro, P.M.; Chaimovich, H. Effect of hexadecyltrimethylammonium bromide on the thiolysis of p-nitrophenyl acetate. J. Org. Chem. 1978, 43, 2248–2252. [Google Scholar] [CrossRef]
- Arias, M.; García-Falcón, M.S.; García-Río, L.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. Binding constants of oxytetracycline to animal feed divalent cations. J. Food Eng. 2007, 78, 69–73. [Google Scholar] [CrossRef]
- Astray, G.; Mejuto, J.C.; Morales, J.; Rial-Otero, R.; Simal-Gándara, J. Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Res. Int. 2010, 43, 1212–1218. [Google Scholar] [CrossRef]
- Burgess, D.J.; Ponsart, S. β-Glucuronidase activity following complex coacervation and spray drying microencapsulation. J. Microencapsul. 1998, 15, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour encapsulation and controlled release—A review. Int. J. Food Sci. Technol. 2006, 41, 1–21. [Google Scholar] [CrossRef]
- Arvisenet, G.; Le Bail, P.; Voilley, A.; Cayot, N. Influence of physicochemical interactions between amylose and aroma compounds on the retention of aroma in food-like matrices. J. Agric. Food Chem. 2002, 50, 7088–7093. [Google Scholar] [CrossRef]
- Lafarge, C.; Cayot, N.; Hory, C.; Goncalves, L.; Chassemont, C.; Le Bail, P. Effect of konjac glucomannan addition on aroma release in gels containing potato starch. Food Res. Int. 2014, 64, 412–419. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Espino-Sevilla, M.T.; Martín del Campo, S.T.; Alonzo-Macías, M. Dietary fiber as food additive: Present and future. In Dietary Fiber Functionality in Food and Nutraceuticals: From Plant to Gut, 1st ed.; Hosseinian, F., Oomah, B.D., Campos-Vega, R., Eds.; Wiley: Chichester, UK, 2016; pp. 77–94. [Google Scholar]
- Li, Q.; Liu, R.; Wu, T.; Zhang, M. Aggregation and rheological behavior of soluble dietary fibers from wheat bran. Food Res. Int. 2017, 102, 291–302. [Google Scholar] [CrossRef]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber—Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 2018, 83, 235–247. [Google Scholar] [CrossRef]
- Quirόs-Sauceda, A.E.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Bello-Perez, L.A.; Álvarez-Parrilla, E.; de la Rosa, L.A.; Gonzáles-Cόrdova, A.F.; González-Aguilar, G.A. Dietary fiber and phenolic compunds as functional ingredients: Interaction and possible effect after ingestion. Food Funct. 2014, 5, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Fietz, V.R.; Salgado, J.M. Pectin and cellulose effects on cholesterol serum levels, and triglycerides in hiperlipidemic rats. Food Sci. Technol. 1999, 19, 318–321. [Google Scholar] [CrossRef]
- Bernaud, F.S.R.; Rodrigues, T.C. Fibra alimentar: Ingestão adequada e efeitos sobre a saúde do metabolismo. Arq. Bras. Endocrinol. Metab. 2013, 57, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Costa, T.; Rogez, H.; da Silva Pena, R. Adsorption capacity of phenolic compounds onto cellulose and xylan. Food Sci. Technol. 2015, 35, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Voilley, A.; Souchon, I. Flavour retention and release from the food matrix: An overview. In Flavour in Food, 1st ed.; Voilley, A., Etiévant, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 117–132. [Google Scholar]
- Guichard, E. Interactions between flavor compounds and food ingredients and their influence on flavor perception. Food Rev. Int. 2002, 18, 49–70. [Google Scholar] [CrossRef]
- Reineccius, G.A. Carbohydrates for flavor encapsulation. Food Technol. 1991, 45, 144–147. [Google Scholar]
- Tari, T.A.; Singhal, R.S. Starch based spherical aggregates: Reconfirmation of the role of amylose on the stability of a model flavouring compound, vanillin. Carbohydr. Polym. 2002, 50, 279–282. [Google Scholar] [CrossRef]
- Saifullah, M.; Islam Shishir, M.R.; Ferdowsi, R.; Tanver Rahman, M.R.; Van Vuong, Q. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci. Technol. 2019, 86, 230–251. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols—A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Goubet, I.; Dahout, C.; Sémon, E.; Guichard, E.; Le Quéré, J.L.; Voilley, A. Competitive binding of aroma compounds by β-cyclodextrin. J. Agric. Food Chem. 2001, 49, 5916–5922. [Google Scholar] [CrossRef]
- Vukoja, J.; Pichler, A.; Ivić, I.; Šimunović, J.; Kopjar, M. Cellulose as a delivery system of raspberry juice volatiles and their stability. Molecules 2020, 25, 2624. [Google Scholar] [CrossRef]
- Sillick, M.; Gregson, C.M. Spray chill encapsulation of flavors within anhydrous erythritol crystals. LWT Food Sci. Technol. 2012, 48, 107–113. [Google Scholar] [CrossRef]
- Sosa, N.; Schebor, C.; Pérez, O.E. Encapsulation of citral in formulations containing sucrose or trehalose: Emulsions properties and stability. Food Bioprod. Process. 2014, 92, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Tampau, A.; González-Martinez, C.; Chiralt, A. Carvacrol encapsulation in starch or PCL based matrices by electrospinning. J. Food Eng. 2017, 214, 245–256. [Google Scholar] [CrossRef]
- Koupantsis, T.; Pavlidou, E.; Paraskevopoulou, A. Glycerol and tannic acid as applied in the preparation of milk proteins—CMC complex coavervates for flavour encapsulation. Food Hydrocoll. 2016, 57, 62–71. [Google Scholar] [CrossRef]
- Laokuldilok, N.; Thakeow, P.; Kopermsub, P.; Utama-ang, N. Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chem. 2016, 194, 695–704. [Google Scholar] [CrossRef]
- Sanchez-Reinoso, Z.; Osorio, C.; Herrera, A. Effect of microencapsulation by spray drying on cocoa aroma compounds and physicochemical characterisation of microencapsulates. Powder Technol. 2017, 318, 110–119. [Google Scholar] [CrossRef]
- Sultana, A.; Miyamoto, A.; Lan Hy, Q.; Tanaka, Y.; Fushimi, Y.; Yoshii, H. Microencapsulation of flavors by spray drying using Saccharomyces cerevisiae. J. Food Eng. 2017, 199, 36–41. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Chen, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol. 2017, 65, 49–67. [Google Scholar] [CrossRef]
- Escher, F.E.; Nuessli, J.; Conde-Petit, B. Interactions of flavor compounds with starch in food processing. In Flavor Release, 1st ed.; Roberts, D., Taylor, A., Eds.; American Chemical Society: Washington, DC, USA, 2000; pp. 230–245. [Google Scholar]
- Vidrih, R.; Zlatić, E.; Hribar, J. Release of strawberry aroma compounds by different starch-aroma systems. Czech J. Food Sci. 2009, 27 (Suppl. S1), S58–S61. [Google Scholar] [CrossRef] [Green Version]
- Jouquand, C.; Ducruet, V.; Le Bail, P. Formation of amylose complexes with C6-aroma compounds in starch dispersions and its impact on retention. Food Chem. 2006, 96, 461–470. [Google Scholar] [CrossRef]
- Tapanapunnitkul, O.; Caiseri, S.; Peterson, D.G.; Thompson, D.B. Water solubility of flavor compounds influences formation of flavor inclusion complexes from dispersed high-amylose maize starch. J. Agric. Food Chem. 2008, 56, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Tietz, M.; Buettner, A.; Conde-Petit, B. Interaction between starch and aroma compounds as measured by proton transfer reaction mass spectrometry (PTR-MS). Food Chem. 2008, 108, 1192–1199. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; King, C. Effect of starch and amylopectin concentrations on volatile flavour release from aqueous model food systems. Flavour Fragr. J. 2003, 18, 407–416. [Google Scholar] [CrossRef]
- Eliasson, A.C. Interactions between starch and lipids studied by DSC. Thermochim. Acta 1994, 246, 343–356. [Google Scholar] [CrossRef]
- Obiro, W.C.; Ray, S.S.; Emmambux, M.N. V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev. Int. 2012, 28, 412–438. [Google Scholar] [CrossRef] [Green Version]
- Boutboul, A.; Giampaoli, P.; Feigenbaum, A.; Ducruet, V. Use of inverse gas chromatography with humidity control of the carrier gas to characterise aroma-starch interactions. Food Chem. 2000, 71, 387–392. [Google Scholar] [CrossRef]
- Boutboul, A.; Giampaoli, P.; Feigenbaum, A.; Ducruet, V. Influence of the nature and treatment of starch on aroma retention. Carbohydr. Polym. 2002, 47, 73–82. [Google Scholar] [CrossRef]
- Chattopadhyaya, S. Oxidised starch as gum arabic substitute for encapsulation of flavours. Carbohydr. Polym. 1998, 37, 143–144. [Google Scholar] [CrossRef]
- Qiu, C.; Chang, R.; Yang, J.; Ge, S.; Xiong, L.; Zhao, M.; Sun, Q. Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains. Food Chem. 2017, 221, 1426–1433. [Google Scholar] [CrossRef]
- Sun, P.; Zeng, M.; He, Z.; Qin, F.; Chen, J. Controlled release of fluidized bed-coated menthol powder with a gelatin coating. Dry. Technol. 2013, 31, 1619–1626. [Google Scholar] [CrossRef]
- Bortnowska, G.; Goluch, Z. Retention and release kinetics of aroma compounds from white sauces made with native waxy maize and potato starches: Effects of storage time and composition. Food Hydrocoll. 2018, 85, 51–60. [Google Scholar] [CrossRef]
- Ades, H.; Kesselman, E.; Ungar, Y.; Shimoni, E. Complexation with starch for encapsulation and controlled release of menthone and menthol. LWT Food Sci. Technol. 2012, 45, 277–288. [Google Scholar] [CrossRef]
- Shi, L.; Hopfer, H.; Ziegler, G.R.; Kong, L. Starch-menthol inclusion complex: Structure and release kinetics. Food Hydrocoll. 2019, 97, 105183–105190. [Google Scholar] [CrossRef]
- Savary, G.; Lafarge, C.; Doublier, J.L.; Cayot, N. Distribution of aroma in a starch–polysaccharide composite gel. Food Res. Int. 2007, 40, 709–716. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Jin, S.; Meng, X.; Yang, L.; Wang, H. Preparation and structural characterization of corn starch-aroma compound inclusion complexes. J. Sci. Food Agric. 2016, 97, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.V.D.B.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, V.; Baeza, R.; Galmarini, M.V.; Zamora, M.C.; Chirife, J. Freeze-drying encapsulation of red wine polyphenols in an amorphous matrix of maltodextrin. Food Bioproc. Technol. 2011, 6, 1350–1354. [Google Scholar] [CrossRef]
- Jouquand, C.; Ducruet, V.; Giampaoli, P. Partition coefficients of aroma compounds in polysaccharide solutions by the phase ratio variation method. Food Chem. 2004, 85, 467–474. [Google Scholar] [CrossRef]
- Mao, L.; Roos, Y.H.; Miao, S. Effect of maltodextrins on the stability and release of volatile compounds of oil-in-water emulsions subjected to freeze–thaw treatment. Food Hydrocoll. 2015, 50, 219–227. [Google Scholar] [CrossRef]
- Siccama, J.W.; Pegiou, E.; Zhang, L.; Mumm, R.; Hall, R.D.; Boom, R.M.; Schutyser, M.A.I. Maltodextrin improves physical properties and volatile compound retention of spray-dried asparagus concentrate. LWT Food Sci. Technol. 2021, 142, 111058–111069. [Google Scholar] [CrossRef]
- Faridi Esfanjani, A.; Jafari, S.M.; Assadpour, E. Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem. 2017, 221, 1962–1969. [Google Scholar] [CrossRef]
- Rajabi, H.; Ghorbani, M.; Jafari, S.M.; Sadeghi Mahoonak, A.; Rajabzadeh, G. Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocoll. 2015, 51, 327–337. [Google Scholar] [CrossRef]
- Tackenberg, M.W.; Krauss, R.; Schuchmann, H.P.; Kleinebudde, P. Encapsulation of orange terpenes investigating a plasticisation extrusion process. J. Microencapsul. 2015, 32, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Tackenberg, M.W.; Marmann, A.; Thommes, M.; Schuchmann, H.P.; Kleinebudde, P. Orange terpenes, carvacrol and α-tocopherol encapsulated in maltodextrin and sucrose matrices via batch mixing. J. Food Eng. 2014, 135, 44–52. [Google Scholar] [CrossRef]
- Farouk, A.; El-Kalyoubi, M.; Ali, H.; Mageed, M.A.E.; Khallaf, M.; Moawad, A. Effects of carriers on spray-dried flavors and their functional characteristics. Pak. J. Biol. Sci. 2020, 23, 257–263. [Google Scholar] [CrossRef]
- Galmarini, M.V.; Zamora, M.C.; Baby, R.; Chirife, J.; Mesina, V. Aromatic profiles of spray-dried encapsulated orange flavours: Influence of matrix composition on the aroma retention evaluated by sensory analysis and electronic nose techniques. Int. J. Food Sci. Technol. 2008, 43, 1569–1576. [Google Scholar] [CrossRef]
- Vincken, J.P.; Schols, H.A.; Visser, R.G. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol. 2003, 132, 1781–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobson, C.C.; Mottawea, W.; Rodrigue, A.; Buzati Pereira, L.B.; Hammami, R.; Power, A.K.; Bordenave, N. Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. In Advances in Food and Nutrition Research, 1st ed.; Ferreira, I.C.F.R., Barros, L., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 90, pp. 135–181. [Google Scholar]
- Mesbahi, G.; Jamalian, J.; Farahnaky, A. A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocoll. 2005, 19, 731–738. [Google Scholar] [CrossRef]
- Munarin, F.; Tanzi, M.C.; Petrini, P. Advances in biomedical applications of pectin gels. Int. J. Biol. Macromol. 2012, 51, 681–689. [Google Scholar] [CrossRef]
- Mamet, T.; Yao, F.; Li, K.; Li, C. Persimmon tannins enhance the gel properties of high and low methoxyl pectin. LWT Food Sci. Technol. 2017, 86, 594–602. [Google Scholar] [CrossRef]
- Preininger, M. Interactions of flavor components in Foods. In Ingredient Interactions: Effects on Food Quality, 2nd ed.; Gaonkar, A.G., McPherson, A., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 477–542. [Google Scholar]
- Guichard, E.; Issanchou, S.; Descourvieres, A.; Etievant, P. Pectin concentration, molecular weight and degree of esterification: Influence on volatile composition and sensory characteristics of strawberry Jam. J. Food Sci. 1991, 56, 1621–1627. [Google Scholar] [CrossRef]
- Braudo, E.E.; Plashchina, I.G.; Kobak, V.V.; Golovnya, R.V.; Zhuravleva, I.L.; Krikunova, N.I. Interactions of flavor compounds with pectic substances. Food/Nahrung 2000, 44, 173–177. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Connors, K.A. The stability of cyclodextrin complexes in solution. Chem. Rev. 1997, 97, 1325–1358. [Google Scholar] [CrossRef]
- Sanemasa, I.; Wu, Y.; Koide, Y.; Fujii, T.; Takahashi, H.; Deguchi, T. Stability on drying of cyclodextrin precipitates of volatile nonelectrolytes. Bull. Chem. Soc. Jpn. 1994, 67, 2744–2750. [Google Scholar] [CrossRef]
- Tobitsuka, K.; Miura, M.; Kobayashi, S. Interaction of cyclodextrins with aliphatic acetate esters and aroma components of La France pear. J. Agric. Food Chem. 2005, 53, 5402–5406. [Google Scholar] [CrossRef]
- Yang, X.; Yang, F.; Liu, Y.; Li, J.; Song, H. Off-flavor removal from thermal-treated watermelon juice by adsorbent treatment with β-cyclodextrin, xanthan gum, carboxymethyl cellulose sodium, and sugar/acid. LWT Food Sci. Technol. 2020, 131, 109775–409784. [Google Scholar] [CrossRef]
- Riviş, A.; Hădărugă, N.G.; Hadǎruga, D.I.; Trasca, T.; Druga, M.; Pinzaru, I. Bioactive nanoparticles: The complexation of odorant compounds with α-and β-cyclodextrin. Rev. Chim. 2008, 59, 149–153. [Google Scholar] [CrossRef]
- Ponce Cevallos, P.A.; Buera, M.P.; Elizalde, B.E. Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. J. Food Eng. 2010, 99, 70–75. [Google Scholar] [CrossRef]
- Tao, F.; Hill, L.E.; Peng, Y.; Gomes, C.L. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT Food Sci. Technol. 2014, 59, 247–255. [Google Scholar] [CrossRef]
- Dos Santos, C.; Buera, M.P.; Mazzobre, M.F. Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes. Food Chem. 2012, 132, 2030–2036. [Google Scholar] [CrossRef]
- Dos Santos, C.; del Pilar Buera, M.; Mazzobre, M.F. Phase solubility studies of terpineol with β-cyclodextrins and stability of the freeze-dried inclusion complex. Procedia Food Sci. 2011, 1, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Numanoğlu, U.; Şen, T.; Tarimci, N.; Kartal, M.; Koo, O.M.Y.; Önyüksel, H. Use of cyclodextrins as a cosmetic delivery system for fragrance materials: Linalool and benzyl acetate. AAPS PharmSciTech 2007, 8, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceborska, M.; Szwed, K.; Suwinska, K. β-Cyclodextrin as the suitable molecular container for isopulegol enantiomers. Carbohydr. Polym. 2013, 97, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Nuchuchua, O.; Saesoo, S.; Sramala, I.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res. Int. 2009, 42, 1178–1185. [Google Scholar] [CrossRef]
- Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci. Technol. 2013, 51, 86–93. [Google Scholar] [CrossRef]
- Yuan, C.; Lu, Z.; Jin, Z. Characterization of an inclusion complex of ethyl benzoate with hydroxypropyl-β-cyclodextrin. Food Chem. 2014, 152, 140–145. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr. Polym. 2015, 118, 156–164. [Google Scholar] [CrossRef]
- Songkro, S.; Hayook, N.; Jaisawang, J.; Maneenuan, D.; Chuchome, T.; Kaewnopparat, N. Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 339–355. [Google Scholar] [CrossRef]
- Reineccius, T.A.; Reineccius, G.A.; Peppard, T.L. Flavor release from cyclodextrin complexes: Comparison of alpha, beta, and gamma types. J. Food Sci. 2003, 68, 1234–1239. [Google Scholar] [CrossRef]
- Kayaci, F.; Sen, H.S.; Durgun, E.; Uyar, T. Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res. Int. 2014, 62, 424–431. [Google Scholar] [CrossRef]
- Zhu, G.; Xiao, Z.; Zhou, R.; Zhu, Y. Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. Carbohydr. Polym. 2014, 105, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.D.; Elmore, J.S.; Langley, K.R.; Bakker, J. Effects of sucrose, guar gum, and carboxymethylcellulose on the release of volatile flavor compounds under dynamic conditions. J. Agric. Food Chem. 1996, 44, 1321–1326. [Google Scholar] [CrossRef]
- Jouquand, C.; Aguni, Y.; Malhiac, C.; Grisel, M. Influence of chemical composition of polysaccharides on aroma retention. Food Hydrocoll. 2008, 22, 1097–1104. [Google Scholar] [CrossRef]
- Kenyon, M.M. Modified starch, maltodextrin, and corn syrup solids as wall materials for food encapsulation. In Encapsulation and Controlled Release of Food Ingredients; Risch, S.J., Reineccius, G.A., Eds.; American Chemical Society: Washington, DC, USA, 1995; Volume 590, pp. 42–50. [Google Scholar]
- Shiga, H.; Yoshii, H.; Nishiyama, T.; Furuta, T.; Forssele, P.; Poutanen, K.; Linko, P. Flavor encapsulation and release characteristics of spray-dried powder by the blended encapsulant of cyclodextrin and gum arabic. Dry. Technol. 2001, 19, 1385–1395. [Google Scholar] [CrossRef]
- Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem. 2016, 194, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Apintanapong, M.; Noomhorm, A. The use of spray drying to microencapsulate 2-acetyl-1-pyrroline, a major flavour component of aromatic rice. Int. J. Food Sci. Technol. 2003, 38, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Terta, M.; Blekas, G.; Paraskevopoulou, A. Retention of selected aroma compounds by polysaccharide solutions: A thermodynamic and kinetic approach. Food Hydrocoll. 2006, 20, 863–871. [Google Scholar] [CrossRef]
- Savary, G.; Hucher, N.; Bernadi, E.; Grisel, M.; Malhiac, C. Relationship between the emulsifying properties of Acacia gums and the retention and diffusion of aroma compounds. Food Hydrocoll. 2010, 24, 178–183. [Google Scholar] [CrossRef]
- Savary, G.; Hucher, N.; Petibon, O.; Grisel, M. Study of interactions between aroma compounds and acacia gum using headspace measurements. Food Hydrocoll. 2014, 37, 1–6. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Fan, Y.G.; Xu, M.; Ren, J.N.; Liu, Y.L.; Zhang, L.L.; Fan, G. Effects of xanthan and sugar on the release of aroma compounds in model solution. Flavour Fragr. J. 2016, 32, 112–118. [Google Scholar] [CrossRef]
- Yven, C.; Guichard, E.; Giboreau, A.; Roberts, D.D. Assessment of interactions between hydrocolloids and flavor compounds by sensory, headspace, and binding methodologies. J. Agric. Food Chem. 1998, 46, 1510–1514. [Google Scholar] [CrossRef]
- Guichard, E.; Etiévant, P. Measurement of interactions between polysaccharides and flavor compounds by exclusion size chromatography: Advantages and limits. Food/Nahrung 1998, 42, 376–379. [Google Scholar] [CrossRef]
- Kopjar, M.; Ivić, I.; Vukoja, J.; Šimunović, J.; Pichler, A. Retention of linalool and eugenol in hydrogels. Int. J. Food Sci. Technol. 2019, 55, 1416–1425. [Google Scholar] [CrossRef]
- Bylaite, E.; Adler-Nissen, J.; Meyer, A.S. Effect of xanthan on flavor release from thickened viscous food model systems. J. Agric. Food Chem. 2005, 53, 3577–3583. [Google Scholar] [CrossRef] [PubMed]
- Gössinger, M.; Buchmayer, S.; Greil, A.; Griesbacher, S.; Kainz, E.; Ledinegg, M.; Leitner, M.; Mantler, A.C.; Hanz, K.; Bauer, R.; et al. Effect of xanthan gum on typicity and flavour intensity of cloudy apple juice. J. Food Process. Preserv. 2018, 42, 13737–13742. [Google Scholar] [CrossRef]
- Ma, M.; Tan, L.; Dai, Y.; Zhou, J. An investigation of flavor encapsulation comprising of regenerated cellulose as core and carboxymethyl cellulose as wall. Iran. Polym. J. 2013, 22, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Sansukcharearnpon, A.; Wanichwecharungruang, S.; Leepipatpaiboon, N.; Kerdcharoen, T.; Arayachukeat, S. High loading fragrance encapsulation based on a polymer-blend: Preparation and release behavior. Int. J. Pharm. 2010, 391, 267–273. [Google Scholar] [CrossRef]
- Kondo, T. Nematic ordered cellulose: Its structure and properties. In Cellulose: Molecular and Structural Biology; Brown, R.M., Saxena, I.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 285–305. [Google Scholar]
- Zhu, F.; Du, B.; Xu, B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288. [Google Scholar] [CrossRef]
- Christensen, N.J.; Trindade Leitão, S.M.; Petersen, M.A.; Jespersen, B.M.; Engelsen, S.B. A Quantitative structure−property relationship study of the release of some esters and alcohols from barley and oat β-glucan matrices. J. Agric. Food Chem. 2009, 57, 4924–4930. [Google Scholar] [CrossRef]
- Lafarge, C.; Cayot, N. Potential use of mixed gels from konjac glucomannan and native starch for encapsulation and delivery of aroma compounds: A review. Starch-Starke 2017, 70, 1700159. [Google Scholar] [CrossRef]
- Bylaite, E.; Ilgūnaitė, Ž.; Meyer, A.S.; Adler-Nissen, J. Influence of λ-carrageenan on the release of systematic series of volatile flavor compounds from viscous food model systems. J. Agric. Food Chem. 2004, 52, 3542–3549. [Google Scholar] [CrossRef]
- Le Thanh, M.; Thibeaudeau, P.; Thibaut, M.A.; Voilley, A. Interactions between volatile and non-volatile compounds in the presence of water. Food Chem. 1992, 43, 129–135. [Google Scholar] [CrossRef]
Flavor Compounds | Formula | MW (g/mol) | logP (o/w) | VP | Fruit Source | Flavor Descriptors |
---|---|---|---|---|---|---|
Acids | ||||||
Acetic acid | C2H4O2 | 60.05 | −0.170 | 15.700 | Grape, blueberry, pineapple | Vinegar, sour |
Butanoic acid | C4H8O2 | 88.11 | 0.790 | 1.650 | Strawberry, fruit of the deciduous palm Dalieb | Rancid, aged cheesy, butter |
2-Methylbutanoic acid | C5H10O2 | 102.13 | 1.180 | 0.554 | Bilberry, blueberry, cranberry, wild strawberry | Fruity, cheesy |
3-Methylbutanoic acid | C5H10O2 | 102.13 | 1.160 | 0.554 | Apple, banana, blackberry, sour cherry, citrus fruits, currant, grape, papaya, peach, pear, red raspberry | Cheesy |
trans-2-Hexenoic acid | C6H10O2 | 114.14 | 1.677 | 0.054 | Apple, banana, red raspberry, wild strawberry | Fatty, rancid |
Hexanoic acid | C6H12O2 | 116.16 | 1.920 | 0.158 | Overripe guava fruits, strawberry, noni fruit | Rancid, sour, cheesy |
Octanoic acid | C8H16O2 | 144.21 | 3.050 | 0.022 | Raw earth-almond, noni fruit | Sour, cheesy, rancid, fatty |
Decanoic acid | C10H20O2 | 172.27 | 4.090 | 15.000 | Apple, banana, cherry, grape, orange, papaya, peach, pear | Rancid, soapy |
Alcohols | ||||||
Ethanol | C6H6O | 46.07 | −0.190 | 44.600 | Orange, mandarin, tangerine | Alcoholic |
1-Propanol | C3H8O | 60.10 | 0.250 | 26.317 | Apple, babaco fruit | Alcoholic |
2-Butanol | C4H10O | 74.12 | 0.610 | 18.300 | Apple, pear | Alcoholic |
2-Methyl-1-propanol | C4H10O | 74.12 | 0.760 | 9.000 | Apple, currant, apricot, banana, sweet cherry | Alcoholic, nail polish |
1-Butanol | C4H10O | 74.12 | 0.880 | 6.700 | Apple, mulberry | Alcoholic |
2-Methyl-3-buten-2-ol | C5H10O | 86.13 | 0.892 | 22.939 | Bilberry, cherimoya, cranberry, black currant, mango | Herbaceous |
1-Penten-3-ol | C5H10O | 86.13 | 0.991 | 11.179 | Banana, blueberry, black currant | Green |
3-Methyl-3-buten-1-ol | C5H10O | 86.13 | 1.098 | 10.245 | Barbados cherry, apple, blackberry, boysenberry | Herbaceous |
2-Methyl-1-butanol | C5H12O | 88.15 | 1.290 | 4.760 | Bilberry, plum | Alcoholic, ripe fruit, burnt |
3-Methyl-1-butanol | C5H12O | 88.15 | 1.160 | 2.370 | Apple, banana, blackberry, | Whiskey, malt |
2-Pentanol | C5H12O | 88.15 | 1.190 | 8.047 | Apple, banana, black currant, grape, papaya | Green, fuel oil |
cis-3-Hexen-1-ol | C6H12O | 100.16 | 1.697 | 1.039 | Apple | Green, leafy |
trans-2-Hexen-1-ol | C6H12O | 100.16 | 1.655 | 0.873 | Black currant, apple, grapefruit, kiwi | Green, leafy |
cis-2-Hexen-1-ol | C6H12O | 100.16 | 1.755 | 0.873 | Sour cherry, black currant, blueberry, apple, kiwi, papaya, quince | Green |
1-Hexanol | C6H16O | 102.18 | 2.030 | 0.947 | Bilberry, apple, black currant, grapefruit, guava, orange, papaya, plum | Sweet, alcoholic, fresh-cut grass |
Benzyl alcohol | C7H8O | 108.14 | 1.100 | 0.094 | Apricot, apple, bilberry, blueberry, cranberry, fig, mandarin, papaya, plum, | Floral, sweet, cherry |
1-Heptanol | C7H16O | 116.20 | 2.367 | 0.325 | Strawberry, plum, apricot | Fatty, green, pungent |
2-Heptanol | C7H16O | 116.20 | 2.310 | 0.886 | Clove fruit, banana, coconut | Fruity, herbaceous, musty |
Phenylethyl alcohol | C8H10O | 122.17 | 1.360 | 0.087 | Black walnut, strawberry, red raspberry, plum, pear, orange, lemon, blueberry, banana, apricot | Floral, rose-like, honey |
6-Methyl-5-hepten-2-ol | C8H16O | 128.21 | 2.570 | 0.362 | Citrus fruits | Green |
1-Octen-3-ol | C8H16O | 128.21 | 2.519 | 0.531 | Banana, black currant, strawberry, | Mushroom |
1-Octanol | C8H18O | 130.23 | 3.0 | 0.079 | Grapefruit, guava, lime, mandarin, orange, plum | Sweet, rose-like |
Cinnamyl alcohol | C9H10O | 134.18 | 1.950 | 0.012 | Fig, red raspberry | Floral |
1-Nonanol | C9H20O | 144.26 | 3.770 | 0.041 | Cantaloupe, grapefruit, lime, mandarin, orange, plum, watermelon | Floral |
2-Nonanol | C9H20O | 144.26 | 3.230 | 0.108 | Apple, citrus fruits, strawberry, banana | Fruity, green |
4-Phenyl-2-butanol | C10H14O | 150.22 | 2.131 | 0.015 | Blackberry | Floral |
1-Decanol | C10H22O | 158.28 | 4.570 | 0.009 | Apple, lime, mandarin, pear | Fruity, floral, fatty |
2-Undecanol | C11H24O | 172.31 | 4.249 | 0.015 | Banana, apple, papaya, strawberry | Fruity |
Aldehydes | ||||||
Acetaldehyde | C2H4O | 44.05 | −0.340 | 902.000 | Apple, date palm, fig, guava, mandarin, olive, plum, red raspberry, strawberry | Pungent, overripe, apple |
2-Methylbutanal | C5H10O | 86.13 | 1.267 | 49.317 | Cayenne, grapefruit, apple, papaya, plum | Green, malty |
3-Methylbutanal | C5H10O | 86.13 | 1.267 | 49.317 | Plum, banana, apple | Fresh grass, cocoa |
Furfural | C5H4O2 | 96.09 | 0.410 | 2.234 | Red raspberry, plum, orange, lime, guava, grapefruit, cranberry, apricot, apple | Almond, bread |
2-Hexenal | C6H10O | 98.14 | 1.790 | 4.624 | Avocado, banana, apricot, apple, bilberry, blueberry, currant, peach, plum | Green, leaf |
Hexanal | C6H12O | 100.16 | 1.780 | 10.888 | Cranberry, guava, orange, papaya, apple, banana, plum, watermelon | Green, unripe fruit, grassy |
Benzaldehyde | C7H6O | 106.12 | 1.480 | 1.270 | Bitter almond, apple, sour cherry, fig, guava, lemon, lime, mandarin, orange, peach, plum, red raspberry | Almond, burnt sugar |
5-Methyl-2-furfural | C6H6O2 | 110.11 | 0.670 | 0.644 | Blackberry, cloudberry, cranberry, mango, red raspberry | Almond, caramel |
trans, trans-2,4-Heptadienal | C7H10O | 110.16 | 1.891 | 1.044 | Cranberry, bilberry, plum | Fatty, green |
Heptanal | C7H14O | 114.19 | 2.442 | 3.854 | Orange, strawberry, plum, papaya, guava | Fatty, pungent |
5-(Hydroxymethyl)furfural | C6H6O3 | 126.11 | −0.778 | 0.001 | Pineapple, cloudberry, roasted almond | Floral |
Octanal | C8H16O | 128.21 | 2.951 | 2.068 | Guava, lime, mandarin, orange, papaya, plum, tangerine, lemon | Lemon, soap |
trans-2-Nonenal | C6H16O | 140.23 | 3.319 | 0.256 | Grapefruit, peach, strawberry | Fatty |
Ketones | ||||||
2-Butanone | C4H8O | 72.11 | 0.290 | 90.600 | Black currant, plum, apple, guava | Floral, vegetable |
2-Pentanone | C5H10O | 86.13 | 0.910 | 38.577 | Banana, apple, pineapple | Fruity |
Acetoin | C4H8O2 | 88.11 | −0.360 | 2.690 | Currant, fig, apple, plum, red raspberry | Buttery |
2-Heptanone | C7H14O | 114.19 | 1.980 | 4.732 | Sour cherry, papaya, pear, berries | Fruity |
Furaneol | C6H8O3 | 128.13 | −0.076 | 0.032 | Strawberry, roasted almond, guava, grapefruit, mango, pineapple, red raspberry | Strawberry, sweet, caramel |
2-Octanone | C8H16O | 128.21 | 2.370 | 1.725 | Clove fruit, banana | Soap, gasoline, cheesy, fatty, green |
2-Nonanone | C9H18O | 142.24 | 3.140 | 0.645 | Clove fruit, strawberry | Fruity, green |
2-Undecanone | C11H22O | 170.30 | 4.090 | 0.098 | Banana, guava, strawberry | Fruity |
β-Damascenone | C13H18O | 190.29 | 4.042 | 0.020 | Strawberry, red raspberry, black currant, apricot | Sweet, fruity, apple |
α-Ionone | C13H20O | 192.30 | 3.995 | 0.014 | Blackberry, roasted almond, black currant, plum, red raspberry | Berry, woody |
β-Ionone | C13H20O | 192.30 | 3.995 | 0.017 | Roasted almond, grape, guava, papaya, peach, red raspberry, watermelon | Fruity, woody |
Terpenes and terpenoids | ||||||
α-Pinene | C10H16 | 136.24 | 4.830 | 4.750 | Apple, blackberry, blueberry, guava, lemon, lime, mandarin, orange, plum, | Woody, resinous |
β-Pinene | C10H16 | 136.24 | 4.160 | 2.930 | Black currant, guava, lime, mandarin, orange, plum | Woody, resinous |
Camphene | C10H16 | 136.24 | 4.350 | 3.000 | Black currant, lime, mandarin, orange | Woody |
α-Phellandrene | C10H16 | 136.24 | 4.408 | 1.856 | Lime, mandarin, orange, papaya | Sweet |
Limonene | C10H16 | 136.24 | 4.570 | 1.550 | Blueberry, coconut, guava, lemon, lime, mandarin, orange, plum | Citrus, minty |
Sabinene | C10H16 | 136.24 | 3.940 | 2.633 | Red raspberry, orange, mandarin, lime, lemon, grapefruit | Woody |
γ-Terpinene | C10H16 | 136.24 | 4.500 | 1.075 | Grapefruit, lemon, lime, mandarin, orange, papaya | Fruity, lemon-like |
p-Cymene | C10H14 | 134.22 | 4.100 | 1.460 | Apricot, blackberry, black currant, guava, mandarin, pineapple | Carrot-like |
α-Terpinolene | C10H16 | 136.24 | 4.470 | 1.126 | Apricot, blueberry, cherry, coconut, black currant, lemon, lime, mandarin, orange, peach, pineapple, red raspberry | Sweet, piney |
Myrcene | C10H16 | 136.24 | 4.170 | 2.290 | Blueberry, black currant, guava, lime, mandarin, orange, papaya | Balsamic |
p-Cymen-8-ol | C10H14O | 150.22 | 2.251 | 0.020 | Bilberry, currant | Musty |
Carvone | C10H14O | 150.22 | 3.070 | 0.160 | Mandarin, orange, plum | Minty |
Myrtenal | C10H14O | 150.22 | 2.980 | 0.145 | Black pepper fruit | Spicy, cinnamon |
Myrtenol | C10H16O | 152.24 | 3.220 | 0.018 | Bilberry, cranberry, red raspberry, wild strawberry | Flowery, minty, medicinal, woody |
Camphor | C10H16O | 152.24 | 2.380 | 0.650 | Coriander fruit | Medicinal, woody |
1-Terpineol | C10H18O | 154.25 | 2.538 | 0.032 | Apple, blueberry, cherry, coconut, cranberry, black currant, guava, lime, mandarin, orange, papaya, peach, pineapple, plum | Woody, musty |
cis-Rose oxide | C10H18O | 154.25 | 3.126 | 0.551 | Lychee | Floral, green |
4-Terpineol | C10H18O | 154.25 | 3.260 | 0.048 | Apple, sour cherry, black currant, lime, mandarin, orange, papaya, pineapple, plum | Spicy |
Linalool | C10H18O | 154.25 | 2.970 | 0.016 | Apricot, blueberry, sour cherry, cranberry, fig, grape, lime, nectarine, orange, papaya, pineapple, plum | Floral, rosy, green, fruity, citrus |
α-Terpineol | C10H18O | 154.25 | 2.670 | 0.028 | Apple, apricot, blueberry, cherry, coconut, black currant, guava, lemon, lime, mandarin, orange, papaya, peach, pineapple, plum, red raspberry | Floral, green, fruity |
Nerol | C10H18O | 154.25 | 3.470 | 0.013 | Blueberry, currant, lemon, lime, mandarin, orange, plum | Orange flowers, rose |
Geraniol | C10H18O | 154.25 | 3.560 | 0.021 | Apricot, blackberry, blueberry, boysenberry, grape, lemon, mandarin, orange, plum, red raspberry | Roses, geranium |
Citronellol | C10H20O | 156.27 | 3.300 | 0.020 | Apricot, apple, blueberry, lychee, mandarin, mango, orange | Sweet, floral, rose, citrus |
Linalool oxide | C10H18O2 | 170.25 | 1.375 | 0.002 | Currant, grape, apple, apricot, blackberry, cloudberry, lychee, papaya, pineapple, red raspberry | Woody, floral |
Theaspirane | C13H22O | 194.32 | 4.204 | 0.028 | Blackberry, grape, guava | Fruity |
trans, trans-α-Farnesene | C15H24 | 204.36 | 6.139 | 0.010 | Apple, grape, guava, lime, mandarin, orange, pear | Sweet, flowery |
Esters | ||||||
Ethyl acetate | C4H8O2 | 88.11 | 0.730 | 111.716 | Pineapple, apple, fig, guava, black currant, papaya, peach, red raspberry | Fruity, floral, pineapple |
Ethyl butyrate | C6H12O2 | 116.16 | 1.804 | 12.800 | Grapefruit, guava, fig, kiwi, mango, papaya, pineapple, plum, wild strawberry, banana, apple | Fruity, sweet, pineapple, apple |
Butyl acetate | C6H12O2 | 116.16 | 1.780 | 11.500 | Apple, banana, cherry, black currant, grape, guava, pear, plum, peach, red raspberry, wild strawberry | Fruity, apple, pineapple |
Ethyl lactate | C5H10O3 | 118.13 | −0.039 | 1.163 | Apple, grape, apricot, pineapple, plum, red raspberry | Green, fruity |
Isoamyl acetate | C7H14O2 | 130.19 | 2.260 | 5.600 | Banana, apple, fig, guava, papaya, plum, wild strawberry | Fruity |
Ethyl 2-methylbutanoate | C7H14O2 | 130.19 | 2.158 | 7.853 | Bilberry, apple, fig, orange, pineapple, plum | Fruity, pineapple |
Ethyl 3-methylbutanoate | C7H14O2 | 130.19 | 2.158 | 7.853 | Bilberry, plum, pineapple, wild strawberry, apple | Berry |
Ethyl 3-hydroxybutanoate | C6H12O3 | 132.16 | 0.098 | 0.362 | Grape, blackberry, guava, mango | Fruity, green |
Methyl benzoate | C8H8O2 | 136.15 | 2.120 | 0.380 | Bilberry, apple, black currant, kiwi | Flowery, honey |
trans-2-Hexenyl acetate | C8H14O2 | 142.20 | 2.580 | 1.868 | Cranberry, guava, mango, apple, banana, peach, pear, plum, wild strawberry | Fruity, green |
Hexyl acetate | C8H16O2 | 144.21 | 2.870 | 1.391 | Apple, banana, guava, mango, papaya, peach, pear, plum, wild strawberry | Fruity, apple, cherry, pear |
Ethyl hexanoate | C8H16O2 | 144.21 | 2.823 | 1.665 | Kiwi, guava, apple, banana, black currant, pineapple, plum, wild strawberry | Fruity, pineapple, banana, apple |
Ethyl benzoate | C9H10O2 | 150.18 | 2.640 | 0.267 | Apple, banana, sweet cherry, cranberry, black currant, grape, kiwi, papaya, peach, red raspberry | Flowery, honey |
Methyl salicylate | C8H8O3 | 152.15 | 2.550 | 0.034 | Bilberry, black currant, red currant, mandarin, orange, papaya, peach, plum, red raspberry | Green, peppermint |
Ethyl heptanoate | C9H18O2 | 158.24 | 3.333 | 0.680 | Plum | Fruity, apple |
Methyl octanoate | C9H18O2 | 158.24 | 3.333 | 0.523 | Wild strawberry, plum, pineapple, papaya | Green, waxy |
Phenethyl acetate | C10H12O2 | 164.20 | 2.300 | 0.056 | Grape, apple, guava, plum, pineapple | Fruity, rose, floral, honey |
Ethyl decanoate | C12H24O2 | 200.32 | 4.861 | 0.034 | Banana, cherry, citrus fruits, grape, guava, pear, pineapple, plum, plumcot, wild strawberry | Fruity, grape |
Ethyl octanoate | C10H20O2 | 172.27 | 3.842 | 0.224 | Plum, plumcot, guava | Fruity, sweet, banana, pineapple |
Diethyl succinate | C8H14O4 | 174.20 | 1.260 | 0.439 | Grape, apple, cocoa | Wine, overripe merlon, lavander, fruity |
Ethyl cinnamate | C11H12O2 | 176.22 | 2.990 | 0.003 | Currant, guava, peach, wild strawberry | Fruity, honey, cinnamon |
Ethyl 3-phenylpropanoate | C11H14O2 | 178.23 | 2.730 | 0.028 | Muskmelon | Floral |
Ethyl laurate | C14H28O2 | 228.38 | 5.710 | 0.007 | Grape, guava, pear, wild strawberry | Waxy, fruity, floral, leaf |
Ethyl hexadecanoate | C18H36O2 | 284.48 | 7.918 | 0.000 | Apricot, guava, | Waxy |
Phenols | ||||||
Phenol | C6H6O | 94.11 | 1.460 | 0.614 | Blueberry, cranberry, guava | Medicinal |
4-Ethylphenol | C8H10O | 122.17 | 2.580 | 0.083 | Cranberry | Smoky |
4-Methylguaiacol | C8H10O2 | 138.17 | 1.925 | 0.078 | Cocoa | Spicy, smoky |
4-Vinylguaiacol | C9H10O2 | 150.18 | 2.573 | 0.019 | Apple, wild strawberry | Woody, smoky |
Vanillin | C8H8O3 | 152.15 | 1.210 | 0.002 | Blueberry, clove fruit, grape, pineapple, wild strawberry | Sweet, creamy, vanilla |
Eugenol | C10H12O2 | 164.20 | 2.270 | 0.010 | Blueberry, clove fruit, cranberry, black currant, fig, guava, peach, plum, red raspberry | Clove, spicy, pungent |
Methyl eugenol | C11H14O2 | 178.23 | 2.973 | 0.027 | Apricot, banana, clove fruit, nutmeg, passion, papaya, peach, red raspberry | Spicy, clove |
Elemicin | C12H16O3 | 208.26 | 2.298 | 0.007 | Nutmeg | Woody, floral |
Lactones | ||||||
γ-Butyrolactone | C4H6O2 | 86.09 | −0.640 | 0.450 | Mango, pineapple | Creamy, caramel, sweet |
γ-Nonalactone | C9H16O2 | 156.22 | 1.942 | 0.009 | Apricot, coconut, black currant, papaya, pineapple, plum | Coconut |
FC | LD50 (mg/kg) | FC | LD50 (mg/kg) | FC | LD50 (mg/kg) |
---|---|---|---|---|---|
Acetic acid | 3310 1,a | 2-Hexenal | 290 2,b, 780 1,a | cis-Rose oxide | 4300 1,a |
Butanoic acid | 3180 2,b | Hexanal | 4890 1,a, 8292 2,a | 4-Terpineol | 1300 1,a, 10162,a |
2-Methylbutanoic acid | 4100 1,a | Benzaldehyde | 1300 1,a, 28 2,a | Linalool | 2200 2,a, 8000 2,b |
3-Methylbutanoic acid | 1120 2,c | 5-Methyl-2-furfural | 2200 1,a | α-Terpineol | 4300 1,a |
Hexanoic acid | 3180 2,b, 1725 2,c | trans, trans-2,4-Heptadienal | 1150 1,a | Nerol | 4500 1,a |
Octanoic acid | 10080 1,a, 600 2,c | Heptanal | 3200 1,a | Geraniol | 3600 1,a |
Decanoic acid | 500 1,b, 129 2,c | 5-(Hydroxymethyl)furfural | 2500 1,a | Citronellol | 3450 1,a |
Ethanol | 7060 1,a, 1440 1,c | Octanal | 5630 1,a | Linalool oxide | 1150 1,a |
1-Propanol | 1870 1,a, 483 3,c | trans-2-Nonenal | 3700 3,d | Ethyl acetate | 5620 1,a, 4935 3,a |
2-Butanol | 2193 1,a | 2-Butanone | 2737 1,a, 4050 2,a | Ethyl butyrate | 13,000 1,a, 5228 3,a |
2-Methyl-1-propanol | 2460 1,a, 340 1,c | 2-Pentanone | 1600 1,a, 1600 2,a | Butyl acetate | 10,768 1,a, 3200 3,a |
1-Butanol | 790 1,a, 310 1,c | Acetoin | >5000 1,a | Ethyl lactate | 8200 1,a, 2500 2,a |
2-Methyl-3-buten-2-ol | 1315 1,b, 800 2,b | 2-Heptanone | 1670 1,a | Isoamyl acetate | 16,600 1,a, 7422 3,a |
3-Methyl-3-buten-1-ol | 3652 1,a | Furaneol | 1608 2,a | Ethyl 3-methylbutanoate | >5000 1,a |
3-Methyl-1-butanol | 1300 1,a | 2-Octanone | 3089 1,a, 800 1,b | Methyl benzoate | 2170 1,a, 2170 3,a |
2-Pentanol | 2821 3,a | 2-Nonanone | 3200 1,a, 7994 2,a | trans-2-Hexenyl acetate | > 5000 1,a |
cis-3-Hexen-1-ol | 4700 1,a | 2-Undecanone | 3880 2,a | Hexyl acetate | > 5000 3,a |
trans-2-Hexen-1-ol | 3500 1,a | α-Ionone | 2277 2,b | Ethyl benzoate | 2100 1,a |
1-Hexanol | 720 1,a | β-Ionone | 4590 1,a | Methyl salicylate | 1220 1,a |
Benzyl alcohol | 1230 1,a | α-Pinene | 3700 1,a | Ethyl heptanoate | >34,640 1,a |
1-Heptanol | 500 1,a, 1500 2,a | β-Pinene | 4700 1,a | Phenethyl acetate | 5200 1,a |
2-Heptanol | 2580 1,a | Camphene | >5000 1,a | Ethyl octanoate | 25,960 1,a |
Phenylethyl alcohol | 1790 1,a, 2540 2,a | α-Phellandrene | 5700 1,a | Diethyl succinate | 8530 1,a |
1-Octen-3-ol | 340 1,a, 56 2,c | Limonene | 5300 1,a | Ethyl cinnamate | 4000 2,a, 4000 1,a |
1-Octanol | 1790 2,a, 69 2,c | γ-Terpinene | 3650 1,a | Phenol | 317 1,a, 270 2,a, 127 1,b |
Cinnamyl alcohol | 2675 2,a | p-Cymene | 4750 1,a | 4-Ethylphenol | >5000 1,a, 138 2,b |
1-Nonanol | 3560 1,a, 6400 2,a | α-Terpinolene | 5170 1,a, 2830 2,a | 4-Methylguaiacol | 740 1,a, 76 2,c |
1-Decanol | 4720 1,a, 6500 3 | Myrcene | >5000 1,a | Vanillin | 4752,b, 43701,a |
Acetaldehyde | 661 1,a | Carvone | 1640 1,a | Eugenol | 1930 1,a, 500 2,b, 72 2,c |
2-Methylbutanal | 6400 1,a | Myrtenal | 2300 1,a, 170 2,c | Methyl eugenol | 810 1,a, 540 2,b, 112 2,c |
3-Methylbutanal | 5600 1,a, 4750 2,a | Camphor | 1310 2,a, 3000 2,b | γ-Butyrolactone | 1540 1,a, 1000 1,b |
Furfural | 65 1,a,20 1,b | 1-Terpineol | 4300 1,a | γ-Nonalactone | 6600 1,a |
Flavor Compounds | Type of Starch | Applied Technique | Applied Methods of Analysis | Reference |
---|---|---|---|---|
D-limonene, ethyl hexanoate, octanal and 1-hexanol | Seven different starch materials | Extrusion | Inverse gas chromatography | [51] |
1-Hexanol, 2-hexanol, D-limonene, ethyl hexanoate and octanal | Native corn starch | Not specified | Inverse gas chromatography | [50] |
Vanillin | Oxidized starch from corn and waxy amaranth starch | Spray-drying | Spectrophotometric analysis | [52] |
Hexanal and menthone | Non-modified and modified tapioca starch | Not specified | Proton transfer reaction mass spectrometry | [46] |
Methyl phenylacetate, 3-hexanol, ethyl 2-methylbutanoate, ethyl pentanoate, methyl hexanoate, ethyl hexanoate, hexyl acetate, isopropyl propionate, ethyl butanoate and ethyl 3-methylbutanoate | Different commercially available starches | Not specified | Gas chromatography-mass spectrometry analysis with solid-phase micro-extraction | [43] |
Menthone | Starch | Freeze-drying | Transmission electron microscopy, dynamic light scattering, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, high-performance size exclusion chromatography | [53] |
Menthol | Modified starch, gelatin, oil–gelatin emulsion and aquacoat | Spray-drying | Headspace gas chromatography, encapsulation efficiency, dynamic viscosity, density, tension | [54] |
Ethyl acetate, R-(+)-limonene and hexanal | Waxy maize starch and potato starch | Not specified | Headspace gas chromatography-mass spectrometry | [55] |
1-Decanol, 1-decanal, 1-naphthol, decanoic acid, δ-decalactone, L-menthone, L-menthol, Γ-decalactone and thymol | High-amylose maize starch | Freeze-drying | X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, solid-state 13C nuclear magnetic resonance spectroscopy and molecular dynamics simulation | [10] |
1-Hexanol, hexanal, trans-2-hexanal and 2-hexanone | Potato starch and corn starch | Not specified | Differential scanning calorimetry and X-ray diffraction | [44] |
Limonene, menthol and menthone | Waxy starch, corn starch, high amylose corn starch and amylose (type III from potato) | Freeze-drying | X-ray diffraction, differential scanning calorimetry, dynamic light scattering and atomic force microscopy | [56] |
Menthol | High amylose maize starch (six different V-type crystalline structures) | Molecular inclusion | X-ray diffraction, gas chromatography-mass spectrometry and differential scanning calorimetry | [57] |
Ethyl butyrate, ethyl hexanoate, methyl cinnamate, (Z)-hex-3-en-1-ol, linalool, vanillin and δ -decalactone | Cross-linked waxy corn starch, carrageenan and sucrose | Not specified | Gas chromatography | [58] |
Diacetyl, 2-butanone, hexanal, 2-pentanol, ethyl acetate, ethyl butyrate, 1-hexanol, heptanal, 2-heptanone, 2-octanone, octanal, dimethyl sulphide, α-pinene, propyl acetate, 1-propanol, 1-butanol, 3-methyl-1-butanol, butyl acetate, 2-nonanol and 2-decanone | Potato starch and potato amylopectin | Not specified | Gas chromatography-mass spectrometry | [47] |
Heptanolide, menthone, linalool, menthol, heptanol and carvone | Corn starch | Freeze-drying | Scanning electron microscopy, differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy | [59] |
Isoamyl acetate, ethyl hexanoate and linalool | Four corn starches and potato amylose | Not specified | Headspace gas chromatography, X-ray diffractometry, differential scanning calorimetry, rheology measurement | [17] |
Flavor Compounds | Used Material | Applied Technique | Applied Methods of Analysis | Reference |
---|---|---|---|---|
1-Propanol, diacetyl, 2-pentanone, hexanal and 2-heptanone | Maltodextrin | Freeze–thawing | Differential scanning calorimetry, gas chromatography headspace analysis, creaming stability, Microstructural observation, oiling off, emulsion flavoring and particle size analysis | [63] |
Asparagus juice flavor | Maltodextrin | Spray-drying | Gas chromatography-mass spectrometry, moisture content, glass transition temperature, particle size distribution, morphology | [64] |
Citral | Maltodextrin, sucrose and trehalose | Spray-drying | Droplet size, viscosity, molecular mobility, microstructure | [35] |
Picrocrocin, safranal and crocin | Maltodextrin, pectin and whey protein concentrate | Multiple emulsification | Emulsion droplet size analysis, stability measurement, encapsulation efficiency and release characteristics | [65] |
Picrocrocin, safranal and crocin | Maltodextrin, gum arabic and gelatine | Spray-drying | Encapsulation efficiency, powder yield determination, moisture content, scanning electron microscopy | [66] |
Orange terpenes | Maltodextrin and sucrose | Hot melt counter-rotating extrusion | Differential scanning calorimetry, X-ray diffractometry, gas chromatography, incident light and polarization microscopy | [67] |
Orange terpenes and carvacrol | Maltodextrin and sucrose | Batch mixing | Water content, differential scanning calorimetry, X-ray diffractometry and gas chromatography | [68] |
Isoamyl acetate, allyl caproate, linalool, orange oil and citral | Gum arabic, maltodextrin and sodium caseinate | Spray-drying | Gas chromatography-mass spectrometry, scanning electron microscopy, physical properties (encapsulation efficiency, viscosity, moisture, emulsion stability), nonenzymatic browning | [69] |
1,8-Cineole, camphor and α-pinene | Maltodextrin, gum arabic, modified starch, inulin | Spray-drying | Gas chromatography-mass spectrometry, differential scanning calorimetry, scanning electron microscopy, characterization of the microcapsules (wettability and solubility, moisture content, bulk density, oil retention) | [60] |
Cocoa flavor | Maltodextrin and Hi-Cap 100 | Spray-drying | Gas chromatography-olfactometry, gas chromatography-mass spectrometry, Fourier transform infrared spectroscopy, process yield, moisture and water activity, tapped density, hygroscopicity, water solubility index and water absorption index, color parameters, morphology and size particle, sensory evaluation | [39] |
Orange oil flavor compounds | Maltodextrin, sucrose, trehalose, lactose, modified starch and gum arabic | Spray-drying | Electronic nose and sensory analysis | [70] |
Flavor Compounds | Type of Cyclodextrin | Applied Technique | Applied Method of Analysis | Reference |
---|---|---|---|---|
Menthol, D-limonene, (+)-limonene, (-)-limonene, hydroxycitronellal, (+/-)-linalyl acetate, α-ionone, vanillin and γ-decalactone | β-cyclodextrin | Crystallization from the ethanol–water solution | Gas chromatography and thermal gravimetric analysis | [85] |
Thymol and cinnamaldehyde | β-cyclodextrin | Freeze-drying | Differential scanning calorimetry, release studies, moisture sorption properties | [86] |
Thymol and thyme essential oil | β-cyclodextrin | Freeze-drying and kneading | Entrapment efficiency, differential scanning calorimetry, phase solubility, particle size and morphology | [87] |
α-Terpineol | β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin | Freeze-drying | Differential scanning calorimetry, scanning electron microscopy, water sorption isotherms and water content analysis, storage study | [88,89] |
Linalool | 2-hydroxypropyl-β-cyclodextrin | Freeze-drying | High-performance liquid chromatography, 1H NMR spectroscopy, circular dichroism spectroscopy, solubility, stability and release profiles studies | [90] |
(+)-Linalool and (-)-linalool | α- and β-cyclodextrin | Crystallization from the ethanol–water solution | Gas chromatography and thermal gravimetric analysis | [85] |
(+)-Isopulegole and (-)-isopulegole | β-cyclodextrin | Molecular inclusion | High-performance liquid chromatography, X-ray crystallography | [91] |
Eugenol | α-, β-, γ- and 2-hydroxypropyl-β-cyclodextrin | Freeze-drying | Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis | [92] |
Eugenol | β-cyclodextrin | Freeze-drying | Oxidative differential scanning calorimetry, particle size analysis and morphology, entrapment efficiency, phase solubility studies | [93] |
Ethyl benzoate | 2-hydroxypropyl- β-cyclodextrin | Freeze-drying | UV/Vis spectroscopy, Fourier transform infrared spectroscopy, phase solubility, molecular modeling and controlled release studies | [94] |
Estragole | α-, β-, γ-, 2-hydroxypropyl-β-, low methylated-β and randomly methylated-β-cyclodextrin | Freeze-drying | Static headspace gas chromatography, UV/Vis spectroscopy, 1H NMR spectroscopy, encapsulation efficiency, differential scanning calorimetry, Fourier transform infrared spectroscopy | [95] |
Citronellal and citronellol | β-cyclodextrin | Kneading | Gas chromatography-mass spectrometry, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry | [96] |
L-Menthol, ethyl butyrate, ethyl hexanoate, citral, benzaldehyde and methyl anthranilate | α-, β- and γ-cyclodextrin | Molecular inclusion | Headspace gas chromatography and sensory evaluation | [97] |
Turmeric extract (Curcuminoids) | β-cyclodextrin and brown rice flour | Spray-drying | Gas chromatography-mass spectrometry, high-performance liquid chromatography, product recovery, moisture content, hygroscopicity, encapsulation efficiency, scanning electron microscopy, sensory analysis | [38] |
Geraniol | γ –cyclodextrin and polyvinyl alcohol | Electro-spinning | X-ray diffraction, thermal gravimetric analysis, 1H NMR spectroscopy, scanning electron microscopy | [98] |
Sweet orange flavor (sweet orange oil, ethyl maltol, decanal, linalool, lemon oil, carvone, ethyl butyrate and benzyl alcohol) | β-cyclodextrin | Molecular inclusion | Thermal gravimetric analysis and optical microscopy analysis | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buljeta, I.; Pichler, A.; Ivić, I.; Šimunović, J.; Kopjar, M. Encapsulation of Fruit Flavor Compounds through Interaction with Polysaccharides. Molecules 2021, 26, 4207. https://doi.org/10.3390/molecules26144207
Buljeta I, Pichler A, Ivić I, Šimunović J, Kopjar M. Encapsulation of Fruit Flavor Compounds through Interaction with Polysaccharides. Molecules. 2021; 26(14):4207. https://doi.org/10.3390/molecules26144207
Chicago/Turabian StyleBuljeta, Ivana, Anita Pichler, Ivana Ivić, Josip Šimunović, and Mirela Kopjar. 2021. "Encapsulation of Fruit Flavor Compounds through Interaction with Polysaccharides" Molecules 26, no. 14: 4207. https://doi.org/10.3390/molecules26144207
APA StyleBuljeta, I., Pichler, A., Ivić, I., Šimunović, J., & Kopjar, M. (2021). Encapsulation of Fruit Flavor Compounds through Interaction with Polysaccharides. Molecules, 26(14), 4207. https://doi.org/10.3390/molecules26144207