Chemical Variations among Shengmaisan-Based TCM Patent Drugs by Ultra-High Performance Liquid Chromatography Coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis of SMS-Based Patent Drugs
2.1.1. Identification of Lignans
2.1.2. Identification of Steroidal Saponins
2.1.3. Identification of Ginsenosides
2.2. Untargeted Metabolomics to Discover Potential Chemical Variations in SMS Samples
2.3. Quantitative Analysis of SMS-Based Patent Drugs
2.3.1. Method Validation
2.3.2. Sample Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Solution Preparation
3.2.1. Preparation of Reference Standard Solutions
3.2.2. Preparation of Sample Solutions
3.3. Liquid Chromatography
3.4. Mass Spectrometry
3.5. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chinese Pharmacopoeia Commission, Pharmacopoeia of the People’s Republic of China, 2020 ed.; Chinese Medical Science and Technology Press: Beijing, China, 2020.
- Shang, Z.P.; Xu, L.L.; Kuang, Y.; Lin, Y.; Liu, S.; Sun, L.; Bo, T.; Ye, M.; Qiao, X. Simultaneous determination of 35 constituents and elucidation of effective constituents in a multi-herb Chinese medicine formula Xiaoer-Feire-Kechuan. J. Pharm. Anal. 2021. [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Zhao, M.; Yu, G.; Du, S.; Lu, Y.; Bai, J.; Li, P.; Wu, Y.; Tian, Z.; et al. Pharmacokinetics of Panax notoginseng saponins in adhesive and normal preparation of Fufang Danshen. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 215–225. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Sun, J.; Zhou, G.; Jiang, X.; Wang, X. QuEChERS pretreatment combined with high-performance liquid chromatography-tandem mass spectrometry for determination of aristolochic acids I and II in Chinese herbal patent medicines. RSC Adv. 2020, 10, 25319. [Google Scholar] [CrossRef]
- Liang, J.; Wu, W.Y.; Sun, G.X.; Wang, D.D.; Hou, J.J.; Yang, W.Z.; Jiang, B.H.; Liu, X.; Guo, D.A. A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing Pill as an example. J. Chromatogr. A 2013, 1294, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Song, W.; Qiao, X.; Ji, S.; Kuang, Y.; Zhang, Z.X.; Bo, T.; Guo, D.A.; Ye, M. Simultaneous quantification of 50 bioactive compounds of the traditional Chinese medicine formula Gegen-Qinlian decoction using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2013, 1294, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tian, C.; Fan, C.; Xu, N.; Xiao, J.; Zhao, X.; Lu, Z.; Cao, H.; Liu, H.; Yu, L. Sheng-Mai-Yin exerts anti-inflammatory effects on RAW 264.7 cells and zebrafish. J. Ethnopharmacol. 2021, 267, 113497. [Google Scholar] [CrossRef]
- Pan, X.; Wang, M.; Gong, S.; Sun, M.; Wang, Y.; Zhang, Y.; Li, F.; Yu, B.; Kou, J. YiQiFuMai Lyophilized Injection ameliorates tPA-induced hemorrhagic transformation by inhibiting cytoskeletal rearrangement associated with ROCK1 and NF-κB signaling pathways. J. Ethnopharmacol. 2020, 262, 113161. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ma, S.; Yin, C.; Wu, H. Shengmai San-derived herbal prevents the development of a vulnerable substrate for atrial fibrillation in a rat model of ischemic heart failure. Biomed. Pharmacother. 2018, 100, 156–167. [Google Scholar] [CrossRef]
- Tian, J.; Tang, W.; Xu, M.; Zhang, C.; Zhao, P.; Cao, T.; Shan, X.; Lu, R.; Guo, W. Shengmai San alleviates diabetic cardiomyopathy through improvement of mitochondrial lipid metabolic disorder. Cell Physiol. Biochem. 2018, 50, 1726–1739. [Google Scholar] [CrossRef]
- Wang, R.L.; Wang, H.Q.; Fan, X.H.; Duan, M.X.; Li, H.Y.; Wang, S.F. Analysis of chemical constituents in Shenmai Injection by LCQ-TOF-MS and LC-IT-MS. China J. Chin. Mater. Med. 2020, 45, 555–564. [Google Scholar]
- Liu, C.H.; Ju, A.C.; Zhou, D.Z.; Li, D.K.; Kou, J.P.; Yu, B.Y.; Qi, J. Simultaneous qualitative and quantitative analysis of multiple chemical constituents in YiQiFuMai Injection by ultra-fast liquid chromatography coupled with ion trap time-of-flight mass spectrometry. Molecules 2016, 21, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Wu, F.F.; Zhang, A.H.; Sun, H.; Wei, W.F.; Wang, X.J. Characterization of multiple constituents in rat plasma after oral administration of Shengmai San using ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight high-definition mass spectrometry. Anal. Methods 2015, 7, 830–837. [Google Scholar] [CrossRef]
- Zheng, C.N.; Hao, H.P.; Wang, X.; Wu, X.L.; Wang, G.J.; Sang, G.W.; Liang, Y.; Xie, L.; Xia, C.H.; Yao, X.L. Diagnostic fragment-ion-based extension strategy for rapid screening and identification of serial components of homologous families contained in traditional Chinese medicine prescription using high-resolution LC-ESI-IT-TOF/MS: Shengmai Injection as an example. J. Mass Spectrom. 2009, 44, 230–244. [Google Scholar] [PubMed]
- Chinese Pharmacopoeia Commission. China Food and Drug Administration. Available online: www.nmpa.gov.cn (accessed on 25 May 2009).
- Chinese Pharmacopoeia Commission. Ministry of health of the People’s Republic of China. Available online: www.nhc.gov.cn (accessed on 8 June 1998).
- Li, F.; Cheng, T.F.; Dong, X.; Li, P.; Yang, H. Global analysis of chemical constituents in Shengmai Injection using high performance liquid chromatography coupled with tandem mass spectrometry. J. Pharmaceut. Biomed. Anal. 2016, 117, 61–72. [Google Scholar] [CrossRef]
- Sun, H.; Wu, F.F.; Zhang, A.H.; Wei, W.F.; Han, Y.; Wang, X.J. Profiling and identification of the absorbed constituents and metabolites of Schisandra lignans by ultra-performance liquid chromatography coupled to mass spectrometry. Biomed. Chromatogr. 2013, 27, 1511–1519. [Google Scholar] [CrossRef]
- Lee, D.K.; Yoon, M.H.; Kang, Y.P.; Yu, J.; Park, J.H.; Lee, J.; Kwon, S.W. Comparison of primary and secondary metabolites for suitability to discriminate the origins of Schisandra chinensis by GC/MS and LC/MS. Food Chem. 2013, 141, 3931–3937. [Google Scholar] [CrossRef]
- Xie, T.; Liang, Y.; Hao, H.P.; Jiye, A.; Xie, L.; Gong, P.; Dai, C.; Liu, L.; Kang, A.; Zheng, X.; et al. Rapid identification of ophiopogonins and ophiopogonones in Ophiopogon japonicus extract with a practical technique of mass defect filtering based on high resolution mass spectrometry. J. Chromatogr. A 2012, 1227, 234–244. [Google Scholar] [CrossRef]
- Yang, W.Z.; Ye, M.; Qiao, X.; Liu, C.F.; Miao, W.J.; Bo, T.; Tao, H.Y.; Guo, D.A. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal. Chim. Acta 2012, 739, 56–66. [Google Scholar]
- Yang, W.Z.; Bo, T.; Ji, S.; Qiao, X.; Guo, D.A.; Ye, M. Rapid chemical profiling of saponins in the flower buds of Panax notoginseng by integrating MCI gel column chromatography and liquid chromatography/mass spectrometry analysis. Food Chem. 2013, 139, 762–769. [Google Scholar] [CrossRef]
- Shin, B.K.; Kwon, S.W.; Park, J.H. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng. Res. 2015, 39, 287–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, I.; Jun, C. Performance of some variable selection methods when multicollinearity is present. Chemometr. Intell. Lab. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services Food and Drug Administration. Analytical Procedures and Methods Validation for Drugs and Biologics; Publisher: Silver Spring, MD, USA, 2015.
Analyte | Compound Name | Formula | Retention Time (min) | Type | PRM Transition Precursor Ion → Product Ion (m/z) | Ion Mode | NCE |
---|---|---|---|---|---|---|---|
R1 | Notoginsenoside N | C48H82O19 | 6.03 | + HCOO | 1007.5432 → 475.38 | Negative | 31 |
R2 | Notoginsenoside R1 | C47H80O18 | 6.64 | + Na | 955.5237 → 775.46 | Positive | 40 |
R3 | Ginsenoside Re | C48H82O18 | 7.10 | + Na | 969.5393 → 789.48 | Positive | 29 |
R4 | Ginsenoside Rg1 | C42H72O14 | 7.14 | + Na | 823.4814 → 643.42 | Positive | 27 |
R5 | Ginsenoside Rf | C42H72O14 | 9.99 | + Na | 823.4814 → 365.11 | Positive | 37 |
R6 | Pseudoginsenoside F11 | C42H72O14 | 10.15 | + Na | 823.4814 → 497.36 | Positive | 37 |
R7 | Notoginsenoside R2 | C41H70O13 | 10.55 | + Na | 793.4709 → 335.10 | Positive | 35 |
R8 | Ginsenoside Ra2 | C58H98O26 | 10.66 | + Na | 1233.6239 → 467.14 | Positive | 32 |
R9 | Ginsenoside Rb1 | C54H92O23 | 10.89 | + Na | 1131.5922 → 365.11 | Positive | 31 |
R10 | Ginsenoside Rg2(S) | C42H72O13 | 11.13 | + Na | 807.4865 → 349.11 | Positive | 33 |
R11 | Ginsenoside Rh1(S) | C36H62O9 | 11.37 | + Na | 661.4286 → 481.37 | Positive | 35 |
R12 | Ginsenoside Ra1 | C58H98O26 | 11.36 | + Na | 1233.0000 → 467.14 | Positive | 32 |
R13 | Ginsenoside Rc | C53H90O22 | 11.46 | + Na | 1101.5816 → 335.25 | Positive | 33 |
R14 | Ginsenoside Ro | C48H76O19 | 11.54 | + Na | 979.4873 → 361.07 | Positive | 29 |
R15 | Ginsenoside Rb2 | C53H90O22 | 12.01 | + Na | 1101.5816 → 335.09 | Positive | 33 |
R16 | Ginsenoside Rb3 | C53H90O22 | 12.17 | + Na | 1101.5816 → 335.09 | Positive | 33 |
R17 | Ginsenoside f1 | C36H62O9 | 13.05 | + Na | 661.4286 → 481.36 | Positive | 29 |
R18 | Ginsenoside Rd | C48H82O18 | 13.43 | + Na | 969.5393 → 789.47 | Positive | 30 |
R19 | Ophiopogonin C | C44H70O18 | 13.70 | + HCOO | 931.4544 → 753.41 | Negative | 25 |
R20 | Opennogenin-3-O-α-l-Rhamnopyranosyl-(1-2)-β-d-Glucopyranoside | C39H62O14 | 14.15 | + HCOO | 799.4122 → 753.41 | Negative | 25 |
R21 | Schisandrin | C24H32O7 | 16.80 | + H | 433.2221 → 384.19 | Positive | 23 |
R22 | Gomisin D | C28H34O10 | 18.07 | + Na | 553.2044 → 507.20 | Positive | 28 |
R23 | Schisandrol B | C23H28O7 | 18.63 | -H | 399.1802 → 369.17 | Negative | 30 |
R24 | Ginsenoside Rg3 | C42H72O13 | 19.02 | + Na | 807.4865 → 365.10 | Positive | 38 |
R25 | Ophiopogonin D | C44H70O16 | 19.62 | + HCOO | 899.4646 → 721.42 | Negative | 25 |
IS | Astragaloside IV | C41H68O14 | 12.72 | + Na | 807.4501 → 627.39 | Positive | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Shang, Z.; Tian, Y.; Xiong, M.; Nijat, D.; Wang, Y.; Qiao, X.; Ye, M. Chemical Variations among Shengmaisan-Based TCM Patent Drugs by Ultra-High Performance Liquid Chromatography Coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry. Molecules 2021, 26, 4000. https://doi.org/10.3390/molecules26134000
Xu L, Shang Z, Tian Y, Xiong M, Nijat D, Wang Y, Qiao X, Ye M. Chemical Variations among Shengmaisan-Based TCM Patent Drugs by Ultra-High Performance Liquid Chromatography Coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry. Molecules. 2021; 26(13):4000. https://doi.org/10.3390/molecules26134000
Chicago/Turabian StyleXu, Lulu, Zhanpeng Shang, Yungang Tian, Ming Xiong, Dilaram Nijat, Yuan Wang, Xue Qiao, and Min Ye. 2021. "Chemical Variations among Shengmaisan-Based TCM Patent Drugs by Ultra-High Performance Liquid Chromatography Coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry" Molecules 26, no. 13: 4000. https://doi.org/10.3390/molecules26134000
APA StyleXu, L., Shang, Z., Tian, Y., Xiong, M., Nijat, D., Wang, Y., Qiao, X., & Ye, M. (2021). Chemical Variations among Shengmaisan-Based TCM Patent Drugs by Ultra-High Performance Liquid Chromatography Coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry. Molecules, 26(13), 4000. https://doi.org/10.3390/molecules26134000