Examining the Performance of Two Extraction Solvent Systems on Phenolic Constituents from U.S. Southeastern Blackberries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolics Content (TPC) and Antioxidant Capacities of the Phenolic Extracts Prepared from the Two Different Solvent Systems
2.2. Content of Major Phenolic Compounds from the Two Different Solvent Systems
2.3. Cellular Antioxidant Activity (CAA) Assay
3. Materials and Methods
3.1. Chemicals
3.2. Blackberry Sample Preparation
3.3. Extraction of Blackberry Phenolics
3.4. Sephadex LH-20 Column Chromatography
3.5. Total Phenolics Content (TPC) and Antioxidant Assays
3.6. Total Monomeric Anthocyanin Content (TMAC) Assay
3.7. HPLC–Electrospray Ionization–Mass Spectrometry (HPLC–ESI–MS) Characterization
3.8. Cellular Antioxidant Activity (CAA) Assay
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Subbiah, V.; Zhong, B.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Screening of phenolic compounds in Australian grown berries by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. Antioxidants 2021, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Hager, T.J.; Howard, L.R.; Liyanage, R.; Lay, J.O.; Prior, R.L. Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS. J. Agric. Food Chem. 2008, 56, 661–669. [Google Scholar] [CrossRef]
- Mertz, C.; Cheynier, V.; Günata, Z.; Brat, P. Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Agric. Food Chem. 2007, 55, 8616–8624. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.A.; Bierwirth, J.E.; Greenspan, P.; Pegg, R.B. Blackberry polyphenols: Review of composition, quantity, and health impacts from in vitro and in vivo studies. J. Food Bioact. 2020, 9, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Veberic, R.; Stampar, F.; Schmitzer, V.; Cunja, V.; Zupan, A.; Koron, D.; Mikulic-Petkovsek, M. Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage. J. Agric. Food Chem. 2014, 62, 6926–6935. [Google Scholar] [CrossRef] [PubMed]
- Kolniak-Ostek, J.; Kucharska, A.Z.; Sokół-Łętowska, A.; Fecka, I. Characterization of phenolic compounds of thorny and thornless blackberries. J. Agric. Food Chem. 2015, 63, 3012–3021. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Sarakatsianos, I.; Samanidou, V. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In Engineering Tools in the Beverage Industry; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Jindal, K.K.; Singh, R.N. Sex determination in vegetative seedlings of Carica papaya by phenolic tests. Sci. Hort. 1976, 4, 33–39. [Google Scholar] [CrossRef]
- Newby, V.K.; Sablon, R.-M.; Synge, R.L.M.; Casteele, K.V.; Van Sumere, C.F. Free and bound phenolic acids of lucerne (Medicago sativa cv Europe). Phytochemistry 1980, 19, 651–657. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Krygier, K.; Sosulski, F.; Hogge, L. Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedures. J. Agric. Food Chem. 1982, 30, 330–334. [Google Scholar] [CrossRef]
- Krygier, K.; Sosulski, F.; Hogge, L. Free, esterified, and insoluble-bound phenolic acids. 2. Composition of phenolic acids in rapeseed flour and hulls. J. Agric. Food Chem. 1982, 30, 334–336. [Google Scholar] [CrossRef]
- Sosulski, F.; Krygier, K.; Hogge, L. Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J. Agric. Food Chem. 1982, 30, 337–340. [Google Scholar] [CrossRef]
- Lou, X.; Xu, H.; Hanna, M.; Yuan, L. Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. LWT Food Sci. Technol. 2020, 130, 109643. [Google Scholar] [CrossRef]
- Durling, N.E.; Catchpole, O.J.; Grey, J.B.; Webby, R.F.; Mitchell, K.A.; Foo, L.Y.; Perry, N.B. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food Chem. 2007, 101, 1417–1424. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009, 115, 785–788. [Google Scholar] [CrossRef]
- Tsao, R.; Deng, Z. Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B 2004, 812, 85–99. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef]
- Wijekoon, M.M.J.O.; Bhat, R.; Karim, A.A. Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. J. Food Compos. Anal. 2011, 24, 615–619. [Google Scholar] [CrossRef]
- Bosso, A.; Guaita, M.; Petrozziello, M. Influence of solvents on the composition of condensed tannins in grape pomace seed extracts. Food Chem. 2016, 207, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Yu, L. Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT Food Sci. Technol. 2004, 37, 717–721. [Google Scholar] [CrossRef]
- Naima, R.; Oumam, M.; Hannache, H.; Sesbou, A.; Charrier, B.; Pizzi, A.; Charrier-El Bouhtoury, F. Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima barks. Ind. Crop Prod. 2015, 70, 245–252. [Google Scholar] [CrossRef]
- Kajdžanoska, M.; Petreska, J.; Stefova, M. Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. J. Agric. Food Chem. 2011, 59, 5272–5278. [Google Scholar] [CrossRef]
- Seeram, N.P.; Lee, R.; Scheuller, H.S.; Heber, D. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem. 2006, 97, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chirinos, R.; Rogez, H.; Campos, D.; Pedreschi, R.; Larondelle, Y. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep. Purif. Technol. 2007, 55, 217–225. [Google Scholar]
- Garcia-Viguera, C.; Zafrilla, P.; Tomás-Barberán, F.A. The use of acetone as an extraction solvent for anthocyanins from strawberry fruit. Phytochem. Anal. 1998, 9, 274–277. [Google Scholar] [CrossRef]
- Liu, R.H.; Finley, J. Potential cell culture models for antioxidant research. J. Agric. Food Chem. 2005, 53, 4311–4314. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef]
- Kellett, M.E.; Greenspan, P.; Gong, Y.; Pegg, R.B. Cellular evaluation of the antioxidant activity of U.S. pecans [Carya illinoinensis (Wangenh.) K. Koch]. Food Chem. 2019, 293, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Clark, J.R. Flavonol glycosides and antioxidant capacity of various blackberry and blueberry genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2005, 85, 2149–2158. [Google Scholar] [CrossRef]
- Toshima, S.; Hirano, T.; Kunitake, H. Comparison of anthocyanins, polyphenols, and antioxidant capacities amgong reaspberry, blackberry, and Japanese wild Rubus species. Sci. Hortic. 2021, 285, 110204. [Google Scholar] [CrossRef]
- Boeing, J.S.; Barizão, É.O.; Costa e Silva, B.; Montanher, P.F.; de Cinque Almeida, V.; Visentainer, J.V. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chem. Cent. J. 2014, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.P.J.; Chintagunta, A.D.; Reddy, Y.M.; Kumar, A.; Agarwal, D.K.; Pal, G.; Simal-Gandara, J. Application of phenolic extraction strategies and evaluation of the antioxidant activity of peanut skins as an agricultural by-product for food industry. Food Anal. Methods 2021. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Fan-Chiang, H.-J.; Wrolstad, R.E. Anthocyanin pigment composition of blackberries. J. Food Sci. 2005, 70, C198–C202. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Goulas, B.; Tsakona, S.; Manganaris, G.A.; Gekas, V. A knowledge base for the recovery of natural phenols with different solvents. Int. J. Food Prop. 2013, 16, 382–396. [Google Scholar] [CrossRef] [Green Version]
- Rupasinghe, H.P.V.; Kathirvel, P.; Huber, G.M. Ultrasonication-assisted solvent extraction of quercetin glycosides from “Idared” apple peels. Molecules 2011, 16, 9783. [Google Scholar] [CrossRef] [Green Version]
- Chavan, U.D.; Shahidi, F.; Naczk, M. Extraction of condensed tannins from beach pea (Lathyrus maritimus L.) as affected by different solvents. Food Chem. 2001, 75, 509–512. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Drilleau, J.-F. Thiolysis–HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 2001, 49, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Structure–activity relationships of flavonoids in the cellular antioxidant activity assay. J. Agric. Food Chem. 2008, 56, 8404–8411. [Google Scholar] [CrossRef] [PubMed]
- McDougall, G.J.; Ross, H.A.; Ikeji, M.; Stewart, D. Berry extracts exert different antiproliferative effects against cervical and colon cancer cells grown in vitro. J. Agric. Food Chem. 2008, 56, 3016–3023. [Google Scholar] [CrossRef]
- Reddy, M.K.; Gupta, S.K.; Jacob, M.R.; Khan, S.I.; Ferreira, D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007, 73, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Liu, D.; Yu, X.; Sun, H.; Li, Y. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants. Food Chem. 2015, 175, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Deprez, S.; Mila, I.; Huneau, J.-F.; Tome, D.; Scalbert, A. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid. Redox Signal. 2001, 3, 957–967. [Google Scholar] [CrossRef]
- Lodish, H.; Berk, A.; Matsudaira, P.; Kaiser, C.A.; Krieger, M.; Scott, M.P.; Zipursky, L.; Darnell, J. Chapter 7. Transport of ions and small molecules across cell membranes. In Molecular Cell Biology, 5th ed.; W.H. Freeman: New York, NY, USA, 2003; pp. 245–300. [Google Scholar]
- Kellett, M.E.; Greenspan, P.; Pegg, R.B. Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food Chem. 2018, 244, 359–363. [Google Scholar] [CrossRef]
- Srivastava, A.; Greenspan, P.; Hartle, D.K.; Hargrove, J.L.; Amarowicz, R.; Pegg, R.B. Antioxidant and anti-inflammatory activities of polyphenolics from southeastern U.S. range blackberry cultivars. J. Agric. Food Chem. 2010, 58, 6102–6109. [Google Scholar] [CrossRef]
- Robbins, K.S.; Gong, Y.; Wells, M.L.; Greenspan, P.; Pegg, R.B. Investigation of the antioxidant capacity and phenolic constituents of U.S. pecans. J. Funct. Foods 2015, 15, 11–22. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Gong, Y.; Pegg, R.B. Separation of ellagitannins-rich phenolics from U.S. pecans and Chinese hickory nuts using fused-core HPLC columns and their characterization. J. Agric. Food Chem. 2017, 65, 5810–5820. [Google Scholar] [CrossRef] [PubMed]
Samples 2 | TPC (mg GAE/100 g f.w.) 3 | H-ORACFL (μmol Trolox eq./100 g f.w.) 4 | FRAP (μmol Fe2+ eq./100 g f.w.) 5 | TMAC (mg C3G eq./100 g f.w.) 6 |
---|---|---|---|---|
methanol:water:hydrochloric acid (70.0/29.0/1.0, v/v/v) extraction | ||||
MCE | 371.1 ± 19.0 b | 4458 ± 508 b | 2538 ± 150 b | 145 ± 4.7 b |
MLF | 239.9 ± 4.8 b | 3498 ± 415 a | 1875 ± 101 a | – |
MHF | 60.9 ± 0.9 b | 477 ± 47 b | 562 ± 36 b | – |
acetone:water:acetic acid (70.0/29.5/0.5, v/v/v) extraction | ||||
ACE | 433.8 ± 15.5 a | 6529 ± 560 a | 3403 ± 372 a | 134 ± 3.1 a |
ALF | 171.6 ± 4.5 a | 3645 ± 299 a | 1886 ± 17 a | – |
AHF | 121.0 ± 1.5 a | 1450 ± 70 a | 1113 ± 110 a | – |
Phenolic Compounds Identified by HPLC–ESI–MS 2 | Extraction Solvent System | |
---|---|---|
Methanolic | Acetonic | |
Phenolic acids in MLF/ALF | ||
protocatechuic acid hexoside | 0.57 ± 0.06 | 0.55 ± 0.03 |
p-coumaric acid derivative | 0.60 ± 0.06 | 0.55 ± 0.10 |
hydroxybenzoic acid hexoside | 0.39 ± 0.02 | 0.35 ± 0.03 |
ellagic acid derivative | 1.41 ± 0.40 | 1.25 ± 0.16 |
Total | 2.97 ± 0.54 | 2.71 ± 0.32 |
Flavan-3-ols in MLF/ALF | ||
(epi)catechin-4,8′-(epi)catechin hexoside | 15.26 ± 0.88 | 19.64 ± 0.82 |
propelargonidin B-type dimer | 27.11 ± 1.56 | 31.80 ± 2.33 |
Total | 42.37 ± 2.44 | 51.44 ± 3.15 |
Anthocyanins in MLF/ALF | ||
cyanidin-3-O-glucoside | 122.1 ± 7.4 | 99.88 ± 2.24 |
cyanidin-3-O-arabinoside | 7.31 ± 1.20 | 6.83 ± 0.41 |
cyanidin derivative | 5.69 ± 0.70 | 4.43 ± 0.45 |
cyanidin-3-O-(6″-dioxalylglucoside) | 3.57 ± 0.49 | 3.22 ± 0.31 |
Total | 138.7 ± 9.8 | 114.4 ± 3.4 |
Flavonols in MLF/ALF | ||
isorhamnetin derivative | 5.58 ± 0.32 | 4.62 ± 0.37 |
quercetin-3-O-rutinoside | 4.62 ± 0.65 | 4.39 ± 0.52 |
quercetin-3-O-galactoside | 7.68 ± 0.73 | 7.06 ± 0.14 |
quercetin-3-O-glucoside | 4.25 ± 0.20 | 4.02 ± 0.02 |
quercetin derivative | 5.10 ± 0.48 | 4.98 ± 0.39 |
quercetin derivative | 5.16 ± 0.35 | 2.39 ± 0.22 |
quercetin-3-O-acetylglucoside | 3.44 ± 0.20 | 1.64 ± 0.17 |
Total | 35.83 ± 2.93 | 29.10 ± 1.83 |
Ellagitannins in MHF/AHF | ||
castalagin | 0.60 ± 0.10 | 1.47 ± 0.09 |
lambertianin C isomer | 2.90 ± 0.50 | 5.47 ± 0.41 |
sanguiin H-6 | 1.65 ± 0.18 | 2.37 ± 0.13 |
Total | 5.15 ± 0.78 | 9.31 ± 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, X.; Greenspan, P.; Pegg, R.B. Examining the Performance of Two Extraction Solvent Systems on Phenolic Constituents from U.S. Southeastern Blackberries. Molecules 2021, 26, 4001. https://doi.org/10.3390/molecules26134001
Liao X, Greenspan P, Pegg RB. Examining the Performance of Two Extraction Solvent Systems on Phenolic Constituents from U.S. Southeastern Blackberries. Molecules. 2021; 26(13):4001. https://doi.org/10.3390/molecules26134001
Chicago/Turabian StyleLiao, Xiaoxi, Phillip Greenspan, and Ronald B. Pegg. 2021. "Examining the Performance of Two Extraction Solvent Systems on Phenolic Constituents from U.S. Southeastern Blackberries" Molecules 26, no. 13: 4001. https://doi.org/10.3390/molecules26134001
APA StyleLiao, X., Greenspan, P., & Pegg, R. B. (2021). Examining the Performance of Two Extraction Solvent Systems on Phenolic Constituents from U.S. Southeastern Blackberries. Molecules, 26(13), 4001. https://doi.org/10.3390/molecules26134001