Pretreatment, Anaerobic Codigestion, or Both? Which Is More Suitable for the Enhancement of Methane Production from Agricultural Waste?
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Thermal and Thermochemical Pretreatment on Cumulative Methane Production (CMP) from AWs
2.2. Effect of AcoD with SS on CMP from AWs
2.3. Effect of Thermal and Thermochemical Pretreatment on AcoD of AWs with SS
2.4. Evaluation of Anaerobic Digestion Kinetics
2.5. Evaluation of AcoD Kinetics
3. Materials and Methods
3.1. Characterization of Agricultural Wastes and Sewage Sludge
3.2. Thermal and Thermochemical Pretreatment
3.3. Biochemical Methane Potential (BMP)
3.4. Digestion Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bolado-Rodriguez, S.; Toquero, C.; Martin-Juarez, J.; Travaini, R.; Garcia-Encina, P.A. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour. Technol. 2016, 201, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Gunerhan, U.; Us, E.; Dumlu, L.; Yılmaz, V.; Carrere, H.; Perendeci, A.N. Impacts of chemical-assisted thermal pretreatments on methane production from fruit and vegetable harvesting wastes: Process optimization. Molecules 2020, 25, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Us, E.; Perendeci, A. Improvement of methane production from greenhouse residues: Optimization of thermal and H2SO4 pretreatment process by experimental design. Chem. Eng. J. 2012, 181, 120–131. [Google Scholar] [CrossRef]
- Diaz, J.P.; Reyes, I.P.; Lundin, M.; Horvath, I.S. Co-digestion of different waste mixtures from agro-industrial activities: Kinetic evaluation and synergetic effects. Bioresour. Technol. 2011, 102, 10834–10840. [Google Scholar] [CrossRef]
- Sambusiti, C.; Ficara, E.; Rollini, M.; Manzoni, M.; Malpei, F. Sodium hydroxide pretreatment of ensiled sorghum forage and wheat straw to increase methane production. Water Sci. Technol. 2012, 201266, 2447–2452. [Google Scholar] [CrossRef] [PubMed]
- Zhurka, M.; Spyridonidis, A.; Vasiliadou, I.A.; Stamatelatou, K. Biogas production from sunflower head and stalk residues: Effect of alkaline pretreatment. Molecules 2020, 25, 164. [Google Scholar] [CrossRef] [Green Version]
- Monlau, F.; Barakat, A.; Trably, E.; Dumas, C.; Steyer, J.P.; Carrere, H. Lignocellulosic materials into biohydrogen and biomethane: Impact of structural features and pretreatment. Critic. Rev. Environ. Sci. Technol. 2013, 43, 260–322. [Google Scholar] [CrossRef]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef]
- Hendriks, A.T.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass: A review. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Sole-Bundo, M.; Salvado, H.; Passos, F.; Garfi, M.; Ferrer, I. Strategies to optimize microalgae conversion to biogas: Co-digestion, pretreatment and hydraulic retention time. Molecules 2018, 23, 2096. [Google Scholar] [CrossRef] [Green Version]
- Carrere, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenes, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Qian, Y.; Xi, Y.; Lu, X. Hydrothermal and alkaline thermal pretreatment at mild temperature in solid state for physicochemical properties and biogas production from anaerobic digestion of rice straw. Renew. Energy 2019, 139, 261–267. [Google Scholar] [CrossRef]
- Krishania, M.; Vijay, V.K.; Chandra, R. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 2013, 57, 359–367. [Google Scholar] [CrossRef]
- Sambusiti, C.; Monlau, F.; Ficara, E.; Carrere, H.; Malpei, F. Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 2013, 55, 449–456. [Google Scholar] [CrossRef]
- Reilly, M.; Dinsdale, R.; Guwy, A. Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment. Bioresour. Technol. 2015, 189, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, W.; Sun, M.; Xu, X.; Zhang, B.; Sun, Y. Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic Digestion of Vegetable Crop Residues. Energies 2019, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.A.; Otero, L.; Lema, J.M. A methodology for optimising feed composition for anaerobic co-digestion of agro industrial wastes. Bioresour. Technol. 2010, 101, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Lawlor, P.G.; Frost, J.P.; Hu, Z.; Zhan, X. Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of pig manure and grass silage. Bioresour. Technol. 2011, 102, 5728–5733. [Google Scholar] [CrossRef] [PubMed]
- Seruga, P.; Krzywonos, M.; Wilk, M. Thermophilic co-digestion of the organic fraction of municipal solid wastes—the influence of food industry wastes addition on biogas production in full-scale operation. Molecules 2018, 23, 3146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abudi, Z.N.; Hu, Z.; Xiao, B.; Abood, A.R.; Rajaa, N.; Laghari, M. Effects of pretreatments on thickened waste activated sludge and rice straw co-digestion: Experimental and modeling study. J. Environ. Manag. 2016, 177, 213–222. [Google Scholar] [CrossRef]
- Elsayed, M.; Diab, A.; Soliman, M. Methane production from anaerobic co-digestion of sludge with fruit and vegetable wastes: Effect of mixing ratio and inoculum type. Biomass Convers. Biorefin. 2020. [Google Scholar] [CrossRef]
- Hamrouni, Y.M.B.; Cheikh, R.B. Enhancing the energetic potential of Mediterranean food waste by anaerobic co-digestion with sewage sludge. Environ. Prog. Sustain. Energy 2021, 40, 13512. [Google Scholar] [CrossRef]
- Li, P.; He, C.; Yu, R.; Shen, D.; Jiao, Y. Anaerobic co-digestion of urban sewage sludge with agricultural biomass. Waste Biomass Valoriz. 2020, 11, 6199–6209. [Google Scholar] [CrossRef]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.V.; Jenicek, P.; Van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmowski, L.M.; Müller, J.A. Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci. Technol. 2000, 41, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Kafle, G.K.; Kim, S.H.; Sung, K.I. Ensiling of fish industry waste for biogas production: A lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour. Technol. 2013, 127, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Ghaleb, A.A.S.; Kutty, S.R.M.; Ho, Y.-C.; Jagaba, A.H.; Noor, A.; Al-Sabaeei, A.M.; Almahbashi, N.M.Y. Response surface methodology to optimize methane production from mesophilic anaerobic co-digestion of oily-biological sludge and sugarcane bagasse. Sustainability 2020, 12, 2116. [Google Scholar] [CrossRef] [Green Version]
- Naran, E.; Toor, U.A.; Kim, D.J. Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production. Int. Biodeterior. Biodegrad. 2016, 113, 17–21. [Google Scholar] [CrossRef]
- Antonopoulou, G.; Vayenas, D.; Lyberatos, G. Biogas production from physicochemically pretreated grass lawn waste: Comparison of different process schemes. Molecules 2020, 25, 296. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. J. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Mirmasoumi, S.; Ebrahimi, S.; Saray, R.K. Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions. Energy 2018, 157, 707–717. [Google Scholar] [CrossRef]
- Lahoz, C.G.; Gimenez, B.F.; Herruzo, F.G.; Marato, J.M.R.; Alonso, C.V. Biomethanization of mixture of fruits and vegetables solid wastes and sludge from a municipal wastewater treatment plant. J. Environ. Sci. Health A 2007, 42, 481–487. [Google Scholar] [CrossRef]
- Arhoun, B.; Villen-Guzman, M.; Gomez-Lahoz, C.; Rodriguez-Maroto, J.M.; Garcia-Herruzo, F.; Vereda-Alonso, C. Anaerobic co-digestion of mixed sewage sludge and fruits and vegetable wholesale market waste: Composition and seasonality effect. J. Water Process Eng. 2019, 31, 100848. [Google Scholar] [CrossRef]
- Ambrose, H.W.; Philip, L.; Suraishkumar, G.K.; Karthikaichamy, A.; Sen, T.K. Anaerobic co-digestion of activated sludge and fruit and vegetable waste: Evaluation of mixing ratio and impact of hybrid (microwave and hydrogen peroxide) sludge pre- treatment on two-stage digester stability and biogas yield. J. Water Process Eng. 2020, 37, 101498. [Google Scholar] [CrossRef]
- Ndubuisi-Nnaji, U.U.; Ofon, U.A.; Ekponne, N.I.; Offiong, N.-A.O. Improved Biofertilizer Properties of Digestate from Codigestion of Brewer’s Spent Grain and Palm Oil Mill Effluent by Manure Supplementation. Sustain. Environ. Res. 2020, 30, 14. [Google Scholar] [CrossRef]
- Ndubuisi-Nnaji, U.U.; Ofon, U.A.; Offiong, N.-A.O. Anaerobic Co-Digestion of Spent Coconut Copra with Cow Urine for Enhanced Biogas Production. Waste Manag. Res. 2021, 39, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, F.; Kökdemir Ünşar, E.; Perendeci, N.A.; Şahinkaya, E. Energy generation from multifarious wastes of alcohol distillery raki production process: Kinetic modeling of methane production. J. Environ. Chem. Eng. 2021, 9, 104838. [Google Scholar] [CrossRef]
- Risberg, K.; Sun, L.; Leven, L.; Horn, S.J.; Schnurer, A. Biogas production from wheat straw and manure – Impact of pretreatment and process operating parameters. Bioresour. Technol. 2013, 149, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, H.; Zou, H.; Sun, T.; Li, M.; Zhai, J.; He, Q.; Gu, L.; Tang, W.Z. Effects of acid/alkali pretreatments on lignocellulosic biomass monodigestion and its co-digestion with waste activated sludge. J. Clean. Prod. 2020, 277, 123998. [Google Scholar] [CrossRef]
- Di Girolamo, G.; Bertin, L.; Capecchi, L.; Ciavatta, C.; Barbanti, L. Mild alkaline pre-treatments loosen fibre structure enhancing methane production from biomass crops and residues. Biomass Bioenergy 2014, 71, 318–329. [Google Scholar] [CrossRef]
- Kafle, G.K.; Chen, L. Comparison on Batch Anaerobic Digestion of Five Different Livestock Manures and Prediction of Biochemical Methane Potential (BMP) Using Different Statistical Models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, H.L.; Seira, J.; Escudié, R.; Carrère, H. Lime pretreatment of miscanthus: Impact on bmp and batch dry co-digestion with cattle manure. Molecules 2018, 23, 1608. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Xie, S.; Sivakumar, M.; Nghiem, L.D. Relationship between the synergistic/antagonistic effect of anaerobic co-digestion and organic loading. Int. Biodeterior. Biodegrad. 2017, 124, 155–161. [Google Scholar] [CrossRef]
- TUIK. Turkish Statistics Institute, Plant Production Statistics. 2010. Available online: http://tuikapp.tuik.gov.tr/bitkiselapp/bitkisel (accessed on 11 August 2010).
- Perendeci, N.A.; Ciggin, A.S.; Unsar, E.K.; Orhon, D. Optimization of alkaline hydrothermal pretreatment of biological sludge for enhanced methane generation under anaerobic conditions. Waste Manag. 2020, 107, 9–19. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Van Soest, P.J. Use of detergent in the analysis of fibrous feeds. A rapid method for the determination of fibre and lignin. J. Assoc. Off. Anal. Chem. 1963, 46, 829–835. [Google Scholar]
- Dreywood, R. Qualitative test for carbohydrate material. Ind. Eng. Chem. Res. 1946, 18, 199. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Fau, A.L.; Randall, R.J. Protein measurement with the Folin reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Bridoux, G.; Dhulster, P.; Manem, J. Grease analysis on municipal wastewater treatment. Plants Tech. Sci. Methods 1994, 5, 257–262. [Google Scholar]
- Dumlu, L. Co-Digestion of Sewage Sludge with Thermochemically Pretreated Greenhouse Residues. Master’s Thesis, Akdeniz University, Antalya, Turkey, 2011. [Google Scholar]
- Dumlu, L.; Gunerhan, U.; Kokdemir, E.; Yılmaz, V.; Carrere, H.; Perendeci, A. Optimization of the Thermal Ca(OH)2 Pretreatment Process in Biyogas Production from Agricultural Wastes. In Proceedings of the 9th National Environmental Engineering Conference, Samsun, Turkey, 5–8 October 2011; pp. 116–123. [Google Scholar]
- Gunerhan, U.; Carrere, H.; Perendeci, N.A. Optimization of Thermal-NaOH Pretreatment Process of Green House Wastes for Enhanced Methane Production. In Proceedings of the 14th IWA World Congress on Anaerobic Digestion, Vina Del Mare, Chile, 15–18 November 2015. [Google Scholar]
- Perendeci, N.A.; Yılmaz, V.; Ertit Taştan, B.; Gökgöl, S.; Fardinpoor, M.; Namlı, A.; Steyer, J.P. Correlations between Biochemical Composition and Biogas Production during Anaerobic Digestion of Microalgae and Cyanobacteria Isolated from Different Sources of Turkey. Bioresour. Technol. 2019, 281, 209–216. [Google Scholar] [CrossRef]
- Kim, H.W.; Han, S.K.; Shin, H.S. The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manag. Res. 2013, 21, 515–526. [Google Scholar] [CrossRef]
- Reichert, P.; Ruchti, J.; Simon, W. Aquasim 2.0; CH-8600; Swiss Federal Institute for Environmental Science and Technology (EAWAG): Duebendorf, Switzerland, 1998; ISBN 3-906484-16-5.
Mixing Ratio (AWs/SS) | Measured CMP (mL/gVS) | Theoretical CMP (mL/gVS) | Synergistic and Antagonistic Constant (α) |
---|---|---|---|
100:0 | 284.269 | - | |
80:20 | 266.846 | 262.749 | 1.02 |
60:40 | 239.594 | 241.229 | 0.99 |
50:50 | 226.758 | 230.468 | 0.98 |
40:60 | 212.546 | 219.708 | 0.97 |
20:80 | 193.958 | 198.188 | 0.98 |
0:100 | 176.668 | - |
Sample | T80 (Days) | kh (1/Day) | R2 |
---|---|---|---|
AW | 54 | 0.453 | 0.9964 |
AW1 | 37 | 0.604 | 0.9949 |
AW2 | - | 0.565 | 0.9785 |
AW3 | 22 | 0.816 | 0.9979 |
AW4 | 11 | 0.824 | 1.0000 |
AW5 | 27 | 0.462 | 0.9689 |
AWs/SS (w/w) | AW3/SS (w/w) | ||||||
---|---|---|---|---|---|---|---|
Mixing Ratio | kh1 (1/Day) | kh2 (1/Day) | R2 | Mixing Ratio | kh1 (1/Day) | kh2 (1/Day) | R2 |
100:0 | 0.453 | - | 0.9964 | 100:0 | 0.816 | - | 0.9979 |
80:20 | 0.335 | 0.411 | 0.9955 | 80:20 | 0.625 | 0.305 | 0.9837 |
60:40 | 0.335 | 0.411 | 0.9958 | 60:40 | 0.625 | 0.305 | 0.9922 |
50:50 | 0.335 | 0.411 | 0.9929 | 50:50 | 0.625 | 0.305 | 0.9911 |
40:60 | 0.335 | 0.411 | 0.9984 | 40:60 | 0.625 | 0.305 | 0.9730 |
20:80 | 0.314 | 0.365 | 0.9885 | 20:80 | 0.348 | 0.305 | 0.9768 |
0:100 | - | 0.305 | 0.9952 | 0:100 | - | 0.305 | 0.9995 |
Parameter | AWs | SS | |
---|---|---|---|
TS (gTS/kgSample) | 913.93 | 165.01 | |
VS (gVS/kgSample) | 694.09 | 117.76 | |
TKN (gTKN/kgVS) | 24.80 | 467.26 | |
Total COD (mgCOD/gVS) | 1047 | 17948 | |
Protein (g/kgVS) | 94.56 | 1174.17 | |
Extractable materials (g/kgVS) | 42.17 | 0.58 | |
Carbohydrate (g glucose/kgVS) | 279.50 | 727.73 | |
Soluble matter (%) | 46.86 | 53.37 | |
Hemicellulose (%) | 14.45 | 22.27 | |
Cellulose (%) | 26.40 | 6.32 | |
Lignin (%) | 12.28 | 18.04 | |
Elemental Composition (%) | Carbon (C) | 34.16 | 43.43 |
Hydrogen (H) | 5.03 | 6.14 | |
Nitrogen (N) | 2.39 | 6.84 | |
Sulfur (S) | 0.82 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumlu, L.; Ciggin, A.S.; Ručman, S.; Perendeci, N.A. Pretreatment, Anaerobic Codigestion, or Both? Which Is More Suitable for the Enhancement of Methane Production from Agricultural Waste? Molecules 2021, 26, 4175. https://doi.org/10.3390/molecules26144175
Dumlu L, Ciggin AS, Ručman S, Perendeci NA. Pretreatment, Anaerobic Codigestion, or Both? Which Is More Suitable for the Enhancement of Methane Production from Agricultural Waste? Molecules. 2021; 26(14):4175. https://doi.org/10.3390/molecules26144175
Chicago/Turabian StyleDumlu, Lütfiye, Asli Seyhan Ciggin, Stefan Ručman, and N. Altınay Perendeci. 2021. "Pretreatment, Anaerobic Codigestion, or Both? Which Is More Suitable for the Enhancement of Methane Production from Agricultural Waste?" Molecules 26, no. 14: 4175. https://doi.org/10.3390/molecules26144175
APA StyleDumlu, L., Ciggin, A. S., Ručman, S., & Perendeci, N. A. (2021). Pretreatment, Anaerobic Codigestion, or Both? Which Is More Suitable for the Enhancement of Methane Production from Agricultural Waste? Molecules, 26(14), 4175. https://doi.org/10.3390/molecules26144175