Validation of a Simple HPLC-Based Method for Lysine Quantification for Ruminant Nutrition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Optimization
2.2. Method Validation
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Matrices Samples
3.3. Derivatization
3.4. Chromatographic Conditions
3.5. Method Validation
3.6. Sample Stability
3.7. Application of the Method towards Lys Quantification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fraser, D.L.; Ørskov, E.R.; Whitelaw, F.G.; Franklin, M.F. Limiting amino acids in dairy cows given casein as the sole source of protein. Livest. Prod. Sci. 1991, 28, 235–252. [Google Scholar] [CrossRef]
- Schwab, C.G. Rumen-protected amino acids for dairy cattle: Progress towards determining lysine and methionine requirements. Anim. Feed Sci. Technol. 1996, 59, 87–101. [Google Scholar] [CrossRef]
- Swanepoel, N.; Robinson, P.H.; Erasmus, L.J. Amino acid needs of lactating dairy cows: Impact of feeding lysine in a ruminally protected form on productivity of lactating dairy cows. Anim. Feed Sci. Technol. 2010, 157, 79–94. [Google Scholar] [CrossRef]
- Schwab, C.G.; Broderick, G.A. A 100-Year Review: Protein and amino acid nutrition in dairy cows. J. Anim. Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Dairy Cattle; The National Academies Press: Washington, DC, USA, 2001; p. 408. [Google Scholar] [CrossRef] [Green Version]
- Gwatidzo, L.; Botha, B.M.; McCrindle, R.I. Determination of amino acid contents of manketti seeds (Schinziophyton rautanenii) by pre-column derivatisation with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and RP-HPLC. Food Chem. 2013, 141, 2163–2169. [Google Scholar] [CrossRef]
- Knapp, D.R. Handbook of Analytical Derivatization Reactions; John Wiley & Sons: Hoboken, NJ, USA, 1979. [Google Scholar]
- Lawrence, J.F.; Frei, R.W. Chapter 1 Introduction. In Journal of Chromatography Library; Lawrence, J.F., Frei, R.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1976; Volume 7, pp. 1–4. [Google Scholar]
- Lawrence, J.F.; Frei, R.W. Chapter 4 Applications. In Journal of Chromatography Library; Lawrence, J.F., Frei, R.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1976; Volume 7, pp. 111–209. [Google Scholar]
- Takeuchi, T. 1.2.5.—HPLC of Amino Acids as Dansyl and Dabsyl Derivatives. In Journal of Chromatography Library; Molnár-Perl, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 70, pp. 229–241. [Google Scholar]
- Ribeiro, B.; Andrade, P.B.; Silva, B.M.; Baptista, P.; Seabra, R.M.; Valentao, P. Comparative study on free amino acid composition of wild edible mushroom species. J. Agric. Food Chem. 2008, 56, 10973–10979. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Zhou, H.; Li, L.; Wang, Y.; Zhang, Y. Determination of eight amino acids in mice embryonic stem cells by pre-column derivatization HPLC with fluorescence detection. J. Pharm. Biomed. Anal. 2012, 66, 356–358. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Sun, Z.; Zhang, S.; Li, G.; Song, C.; Suo, Y.; You, J. Rapid and sensitive ultrasonic-assisted derivatisation microextraction (UDME) technique for bitter taste-free amino acids (FAA) study by HPLC-FLD. Food Chem. 2014, 143, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Castillo, G.; Hernandez, A. Isocratic high-performance liquid chromatographic method for quantitative determination of lysine, histidine and tyrosine in foods. J. Chromatogr. A 1996, 719, 195–201. [Google Scholar] [CrossRef]
- Hernandez, A.; Serrano, M.A.; Munoz, M.M.; Castillo, G. Liquid chromatographic determination of the total available free and intrachain lysine in various foods. J. Chromatogr. Sci. 2001, 39, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, X.; Su, J.; Liu, H.; Zhang, Z.; Qin, L.; He, C.; Peng, L.; Guo, M.; Gao, X. One single amino Acid for estimation the content of total free amino acids in qingkailing injection using high-performance liquid chromatography-diode array detection. J. Anal. Methods Chem. 2014, 2014, 951075. [Google Scholar] [CrossRef] [PubMed]
- Riahi, S.; Ganjali, M.R.; Hariri, M.; Abdolahzadeh, S.; Norouzi, P. Determination of the formation constant for the inclusion complex between Lanthanide ions and Dansyl chloride derivative by fluorescence spectroscopy: Theoretical and experimental investigation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 74, 253–258. [Google Scholar] [CrossRef]
- Karabacak, M.; Cinar, M.; Kurt, M.; Poiyamozhi, A.; Sundaraganesan, N. The spectroscopic (FT-IR, FT-Raman, UV and NMR) first order hyperpolarizability and HOMO–LUMO analysis of dansyl chloride. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhou, Z.-Q.; Zhao, X.-X.; Xiao, Y.-H.; Xi, G.; Liu, J.-T.; Zhao, B.-X. A dansyl based fluorescence chemosensor for Hg2+ and its application in the complicated environment samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 148, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Oldekop, M.-L.; Herodes, K.; Rebane, R. Comparison of amino acid derivatization reagents for liquid chromatography atmospheric pressure chemical ionization mass spectrometric analysis of seven amino acids in tea extract. Int. J. Mass Spectrom. 2017, 421, 189–195. [Google Scholar] [CrossRef]
- Liu, S.-J.; Xu, J.-J.; Ma, C.-L.; Guo, C.-F. A comparative analysis of derivatization strategies for the determination of biogenic amines in sausage and cheese by HPLC. Food Chem. 2018, 266, 275–283. [Google Scholar] [CrossRef]
- Song, Y.; Xu, C.; Kuroki, H.; Liao, Y.; Tsunoda, M. Recent trends in analytical methods for the determination of amino acids in biological samples. J. Pharm. Biomed. Anal. 2018, 147, 35–49. [Google Scholar] [CrossRef]
- Minocha, R.; Long, S. Simultaneous separation and quantitation of amino acids and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization. J. Chromatogr. A 2004, 1035, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Belenkii, B.G.; Vilenchik, L.Z. Chapter 1 General theory of chromatography. In Modern Liquid Chromatography of Macromolecules; Belenkii, B.G., Vilenchik, L.Z., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; Volume 25, pp. 1–67. [Google Scholar]
- Martins, S.M.; Wendling, T.; Goncalves, V.M.; Sarmento, B.; Ferreira, D.C. Development and validation of a simple reversed-phase HPLC method for the determination of camptothecin in animal organs following administration in solid lipid nanoparticles. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 880, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Jajic, I.; Krstovic, S.; Glamocic, D.; Jaksic, S.; Abramovic, B. Validation of an HPLC method for the determination of amino acids in feed. J. Serb. Chem. Soc. 2013, 78, 839–850. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research; Center for Veterinary Medicine. Bioanalytical Method Validation Guidance for Industry; U.S. Department of Health and Human Services: Silver Spring, MD, USA, 2018.
- Albuquerque, J.; Casal, S.; Páscoa, R.N.M.d.J.; Van Dorpe, I.; Fonseca, A.J.M.; Cabrita, A.R.J.; Neves, A.R.; Reis, S. Applying nanotechnology to increase the rumen protection of amino acids in dairy cows. Sci. Rep. 2020, 10, 6830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marten, G.C.; Barnes, R.F. Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems [ruminants, domesticated birds]. In Proceedings of the Workshop on Standardization of Analytical Methodology for Feeds, Ottawa, ON, Canada, 12–14 March 1979. [Google Scholar]
Compound | tR (min; Mean (RSD)) | k | N | α | Rs |
---|---|---|---|---|---|
Lysine | 13.5 (0.2) | 6.9 | 2037 | 1.2 | 1.9 |
IS | 15.7 (0.1) | 8.2 | 3275 |
Matrix | Range (µM) | Slope | Correlation Coefficient | LOD (µM) | LOQ (µM) |
---|---|---|---|---|---|
Li2CO3 | 1–225 | 0.011265 | 0.9999 | 0.12 | 0.41 |
PBS | 1–225 | 0.009982 | 0.9998 | 0.16 | 0.53 |
Rumen | 5–225 | 0.031104 | 0.9996 | 1.24 | 4.14 |
Matrix | Concentration (µM) | Accuracy (%) | Precision (%) | |
---|---|---|---|---|
Intra-Day | Inter-Day | |||
Li2CO3 | 25 | 94 ± 3 | 2 ± 1 | 13 ± 7 |
PBS | 25 | 92 ± 2 | 2 ± 3 | 22 ± 10 |
Rumen | 25 | 92 ± 9 | 9 ± 5 | 9 ± 5 |
Matrix | 24 h | 48 h | 96 h | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | |
Recovery (%) when stored at RT | |||||||||
Li2CO3 | 99 ± 2 | 286 ± 83 | 102 ± 1 | 75 ± 4 | 343 ± 67 | 109 ± 1 | 76 ± 4 | 151 ± 762 | 83 ± 1 |
PBS | 100 ± 1 | 211 ± 7 | 100 ± 1 | 101 ± 1 | 588 ± 17 | 105 ± 1 | 100 ± 1 | 1976 ± 62 | 85 ± 1 |
Rumen | 100 ± 3 | 8414 ± 1472 | 99 ± 1 | 107 ± 14 | 5375 ± 4227 | 100 ± 1 | 106 ± 13 | 2105 ± 2917 | 95 ± 1 |
Recovery (%) when stored at 4 °C | |||||||||
Li2CO3 | 101 ± 1 | 167 ± 5 | 103 ± 1 | 115 ± 70 | 111 ± 3 | 108 ± 1 | 344 ± 377 | 155 ± 6 | 83 ± 1 |
PBS | 100 ± 1 | 115 ± 5 | 100 ± 1 | 101 ± 1 | 168 ± 5 | 105 ± 1 | 100 ± 1 | 189 ± 7 | 85 ± 1 |
Rumen | 99 ± 3 | 69 ± 2 | 99 ± 1 | 101 ± 9 | 83 ± 21 | 101 ± 1 | 99 ± 9 | 4891 ± 2198 | 96 ± 1 |
Recovery (%) when stored at −20 °C | |||||||||
Li2CO3 | 338 ± 111 | 134 ± 7 | 102 ± 1 | 400 ± 98 | 85 ± 15 | 108 ± 1 | 368 ± 96 | 91 ± 7 | 83 ± 1 |
PBS | 105 ± 9 | 105 ± 10 | 100 ± 1 | 524 ± 264 | 122 ± 6 | 106 ± 1 | 410 ± 178 | 110 ± 7 | 85 ± 1 |
Rumen | 474 ± 91 | 147 ± 19 | 99 ± 1 | 287 ± 62 | 140 ± 11 | 101 ± 1 | 522 ± 422 | 167 ± 27 | 96 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albuquerque, J.; Casal, S.; Cruz, R.; Van Dorpe, I.; Maia, M.R.G.; Fonseca, A.J.M.; Cabrita, A.R.J.; Neves, A.R.; Reis, S. Validation of a Simple HPLC-Based Method for Lysine Quantification for Ruminant Nutrition. Molecules 2021, 26, 4173. https://doi.org/10.3390/molecules26144173
Albuquerque J, Casal S, Cruz R, Van Dorpe I, Maia MRG, Fonseca AJM, Cabrita ARJ, Neves AR, Reis S. Validation of a Simple HPLC-Based Method for Lysine Quantification for Ruminant Nutrition. Molecules. 2021; 26(14):4173. https://doi.org/10.3390/molecules26144173
Chicago/Turabian StyleAlbuquerque, João, Susana Casal, Rebeca Cruz, Ingrid Van Dorpe, Margarida Rosa Garcez Maia, António José Mira Fonseca, Ana Rita Jordão Cabrita, Ana Rute Neves, and Salette Reis. 2021. "Validation of a Simple HPLC-Based Method for Lysine Quantification for Ruminant Nutrition" Molecules 26, no. 14: 4173. https://doi.org/10.3390/molecules26144173
APA StyleAlbuquerque, J., Casal, S., Cruz, R., Van Dorpe, I., Maia, M. R. G., Fonseca, A. J. M., Cabrita, A. R. J., Neves, A. R., & Reis, S. (2021). Validation of a Simple HPLC-Based Method for Lysine Quantification for Ruminant Nutrition. Molecules, 26(14), 4173. https://doi.org/10.3390/molecules26144173