Pb2+-Containing Metal-Organic Rotaxane Frameworks (MORFs)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure of [14+•(2)4•(2H+•2)•Pb2•2DMF•12H2O] (MORF-Pb-1)
2.2. Crystal Structure of [14+•(3)5•Pb3•12.5H2O] (MORF-Pb-2)
3. Materials and Methods
3.1. Reagents and Analytical Methods
3.2. General One-Pot Three-Layer Diffusion Protocol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.-W. Hydrogen Storage in Metal–Organic Frameworks. Chem. Rev. 2011, 112, 782–835. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Cairns, A.J.; Liu, J.; Motkuri, R.K.; Nune, S.; Fernandez, C.A.; Krishna, R.; Strachan, D.M.; Thallapally, P.K. Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton. Acc. Chem. Res. 2015, 48, 211–219. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhou, W.; Qian, G.; Chen, B. Methane storage in metal–organic frameworks. Chem. Soc. Rev. 2014, 43, 5657–5678. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Flaig, R.W.; Jiang, H.-L.; Yaghi, O.M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828. [Google Scholar] [CrossRef]
- Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [Green Version]
- Heine, J.; Müller-Buschbaum, K. Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242. [Google Scholar] [CrossRef]
- Amabilino, D.; Stoddart, J.F. Interlocked and Intertwined Structures and Superstructures. Chem. Rev. 1995, 95, 2725–2828. [Google Scholar] [CrossRef]
- Stoddart, J.F. The chemistry of the mechanical bond. Chem. Soc. Rev. 2009, 38, 1802–1820. [Google Scholar] [CrossRef]
- Breault, G.A.; Hunter, C.A.; Mayers, P.C. Supramolecular topology. Tetrahedron 1999, 55, 5265–5293. [Google Scholar] [CrossRef]
- Hubin, T.J.; Busch, D.H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 2000, 200–202, 5–52. [Google Scholar] [CrossRef]
- Kay, E.; Leigh, D.A.; Zerbetto, F. Synthetic Molecular Motors and Mechanical Machines. Angew. Chem. Int. Ed. 2007, 46, 72–191. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Baggi, G.; Loeb, S.J. Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat. Chem. 2018, 10, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Bulit, P.; Stirk, A.J.; Loeb, S.J. Rotors, Motors, and Machines Inside Metal–Organic Frameworks. Trends Chem. 2019, 1, 588–600. [Google Scholar] [CrossRef]
- Martinez-Bulit, P.; O’Keefe, C.A.; Zhu, K.; Schurko, R.W.; Loeb, S.J. Solvent and Steric Influences on Rotational Dynamics in Porphyrinic Metal–Organic Frameworks with Mechanically Interlocked Pillars. Cryst. Growth Des. 2019, 19, 5679–5685. [Google Scholar] [CrossRef]
- Wilson, B.; Loeb, S.J. Integrating the Mechanical Bond into Metal-Organic Frameworks. Chem 2020, 6, 1604–1612. [Google Scholar] [CrossRef]
- Wilson, B.H.; Vojvodin, C.S.; Gholami, G.; Abdulla, L.M.; O’Keefe, C.A.; Schurko, R.W.; Loeb, S.J. Precise Spatial Arrangement and Interaction between Two Different Mobile Components in a Metal-Organic Framework. Chem 2021, 7, 202–211. [Google Scholar] [CrossRef]
- Wilson, B.H.; Abdulla, L.M.; Schurko, R.W.; Loeb, S.J. Translational dynamics of a non-degenerate molecular shuttle imbedded in a zirconium metal–organic framework. Chem. Sci. 2021, 12, 3944–3951. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, W.; Miljanić, O.Š.; Knobler, C.B.; Stoddart, J.F.; Yaghi, O.M. A metal–organic framework replete with ordered donor–acceptor catenanes. Chem. Commun. 2010, 46, 380–382. [Google Scholar] [CrossRef]
- Li, Q.; Sue, A.; Basu, S.; Shveyd, A.K.; Zhang, W.; Barin, G.; Fang, L.; Sarjeant, A.A.; Stoddart, J.F.; Yaghi, O.M. A Catenated Strut in a Catenated Metal-Organic Framework. Angew. Chem. Int. Ed. 2010, 49, 6751–6755. [Google Scholar] [CrossRef]
- Lee, E.; Heo, J.; Kim, K. A Three-Dimensional Polyrotaxane Network. Angew. Chem. Int. Ed. 2000, 39, 2699–2701. [Google Scholar] [CrossRef]
- Lee, E.; Kim, J.; Heo, J.; Whang, D.; Kim, K. A Two-Dimensional Polyrotaxane with Large Cavities and Channels: A Novel Approach to Metal-Organic Open-Frameworks by Using Supramolecular Building Blocks. Angew. Chem. Int. Ed. 2001, 40, 399–402. [Google Scholar] [CrossRef]
- Kim, K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 2002, 31, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Timco, G.A.; Fernandez, A.; Kostopoulos, A.; Charlton, J.F.; Lockyer, S.J.; Hailes, T.R.; Adams, R.; McInnes, E.J.L.; Tuna, F.; Vitorica-Yrezabal, I.J.; et al. Hybrid Organic-Inorganic Rotaxanes, Including a Hetero-Hybrid [3]Rotaxane Featuring Two Distinct Heterometallic Rings and a Molecular Shuttle. Angew. Chem. Int. Ed. 2018, 57, 10919–10922. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.; Mon, M.; Greco, R.; Kalinke, L.; Vidal-Moya, J.A.; Fernandez, A.; Winpenny, R.E.P.; Doménech-Carbó, A.; Leyva-Pérez, A.; Armentano, D.; et al. Self-Assembly of Catalytically Active Supramolecular Coordination Compounds within Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 10350–10360. [Google Scholar] [CrossRef] [PubMed]
- Ferrando-Soria, J.; Fernandez, A.; Asthana, D.; Nawaz, S.; Vitorica-Yrezabal, I.; Whitehead, G.F.S.; Muryn, C.A.; Tuna, F.; Timco, G.A.; Burton, N.D.; et al. A [13]rotaxane assembled via a palladium molecular capsule. Nat. Commun. 2019, 10, 3720. [Google Scholar] [CrossRef] [PubMed]
- Lockyer, S.J.; Nawaz, S.; Brookfield, A.; Fielding, A.J.; Vitorica-Yrezabal, I.; Timco, G.; Burton, N.A.; Bowen, A.M.; Winpenny, R.E.P.; McInnes, E.J.L. Conformational Flexibility of Hybrid [3]- and [4]-Rotaxanes. J. Am. Chem. Soc. 2020, 142, 15941–15949. [Google Scholar] [CrossRef] [PubMed]
- Saura-Sanmartin, A.; Martinez-Cuezva, A.; Bautista, D.; Marzari, M.R.B.; Martins, M.A.P.; Alajarin, M.; Berná, J. Copper-Linked Rotaxanes for the Building of Photoresponsive Metal Organic Frameworks with Controlled Cargo Delivery. J. Am. Chem. Soc. 2020, 142, 13442–13449. [Google Scholar] [CrossRef] [PubMed]
- Saura-Sanmartin, A.; Martinez-Cuezva, A.; Marin-Luna, M.; Bautista, D.; Berna, J. Effective Encapsulation of C 60 by Metal–Organic Frameworks with Polyamide Macrocyclic Linkers. Angew. Chem. Int. Ed. 2021, 60, 10814–10819. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.-Y.; Rambo, B.M.; Karnas, E.; Lynch, V.M.; Sessler, J.L. A ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace. Nat. Chem. 2010, 2, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Tian, J.; Luo, D.; Gong, H.-Y.; Huang, F.; Sessler, J. “Texas-Sized” Molecular Boxes: From Chemistry to Applications. Molecules 2021, 26, 2426. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Fan, W.; Bi, J.; Jiang, P.; Liu, D.; Zhang, X.; Lin, H.; Gong, C.; Wang, R.; Zhang, L.-L.; et al. A lead–porphyrin metal–organic framework: Gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Trans. 2016, 45, 61–65. [Google Scholar] [CrossRef]
- Liu, J.; Yang, G.-P.; Jin, J.; Wu, D.; Ma, L.-F.; Wang, Y.-Y. A first new porous d–p HMOF material with multiple active sites for excellent CO2 capture and catalysis. Chem. Commun. 2020, 56, 2395–2398. [Google Scholar] [CrossRef]
- Lin, X.-M.; Li, T.-T.; Chen, L.-F.; Zhang, L.; Su, C.-Y. Two ligand-functionalized Pb(ii) metal–organic frameworks: Structures and catalytic performances. Dalton Trans. 2012, 41, 10422–10429. [Google Scholar] [CrossRef]
- Kamakura, Y.; Chinapang, P.; Masaoka, S.; Saeki, A.; Ogasawara, K.; Nishitani, S.R.; Yoshikawa, H.; Katayama, T.; Tamai, N.; Sugimoto, K.; et al. Semiconductive Nature of Lead-Based Metal–Organic Frameworks with Three-Dimensionally Extended Sulfur Secondary Building Units. J. Am. Chem. Soc. 2020, 142, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Li, Y.; Wei, Y.-L.; Wang, J.-C.; Ma, J.-P.; Ji, J.; Yao, B.-J.; Dong, Y.-B. A N-heterocyclic tetracarbene Pd(ii) moiety containing a Pd(ii)–Pb(ii) bimetallic MOF for three-component cyclotrimerization via benzyne. Chem. Commun. 2016, 52, 10505–10508. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shen, X.; Fan, S.; Trivedi, M.; Li, B.; Kumar, A.; Liu, J. The utilization of a sTable 2D bilayer MOF for simultaneous study of luminescent and photocatalytic properties: Experimental studies and theoretical analysis. RSC Adv. 2018, 8, 23529–23538. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Lin, X.-M.; Mo, J.-T.; Lin, J.; Gan, H.-L.; Yang, X.-L.; Cai, Y.-P. Lead-Based Metal–Organic Framework with Stable Lithium Anodic Performance. Inorg. Chem. 2017, 56, 4289–4295. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, B.; Zhang, Q.; Shang, Y.; Guo, Z.; Tan, B.; Peng, R. Nitrogen-Rich Energetic Metal-Organic Framework: Synthesis, Structure, Properties, and Thermal Behaviors of Pb(II) Complex Based on N,N-Bis(1H-tetrazole-5-yl)-Amine. Materials 2016, 9, 681. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.; Jin, B.; Peng, R.; Liu, Q.; Tan, B.; Guo, Z.; Zhao, J.; Zhang, Q. A novel 3D energetic MOF of high energy content: Synthesis and superior explosive performance of a Pb(ii) compound with 5,5′-bistetrazole-1,1′-diolate. Dalton Trans. 2016, 45, 13881–13887. [Google Scholar] [CrossRef]
- Peedikakkal, A.M.P.; Quah, H.S.; Chia, S.; Jalilov, A.; Shaikh, A.R.; Al-Mohsin, H.A.; Yadava, K.; Ji, W.; Vittal, J.J. Near-White Light Emission from Lead(II) Metal–Organic Frameworks. Inorg. Chem. 2018, 57, 11341–11348. [Google Scholar] [CrossRef]
- Hong, F.; Wang, Q.; Wang, W.; Chen, X.; Cao, Y.; Dong, Y.; Gan, N.; Wu, D.; Hu, F. Background signal-free and highly sensitive electrochemical aptasensor for rapid detecting tumor markers with Pb-MOF functionalized dendritic DNA probes. J. Electroanal. Chem. 2020, 861, 113956. [Google Scholar] [CrossRef]
- Cullen, J.T.; McAlister, J. Biogeochemistry of Lead. Its Release to the Environment and Chemical Speciation. Met. Ions. Life Sci. 2017, 17, 21–48. [Google Scholar]
- Chen, X.-L.; Shen, Y.-J.; Gao, C.; Yang, J.; Sun, X.; Zhang, X.; Yang, Y.-D.; Wei, G.-P.; Xiang, J.-F.; Sessler, J.L.; et al. Regulating the Structures of Self-Assembled Mechanically Interlocked Moleculecular Constructs via Dianion Precursor Substituent Effects. J. Am. Chem. Soc. 2020, 142, 7443–7455. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhao, J.; Chen, X.; Shi, D.; Wang, G. Atomic structures and covalent-to-metallic transition of lead clusters Pbn(n=2–22). Phys. Rev. A 2005, 71, 033201. [Google Scholar] [CrossRef]
- Rajesh, C.; Majumder, C.; Rajan, M.G.R.; Kulshreshtha, S.K. Isomers of small Pbn clusters(n = 2–15): Geometric and electronic structures based onab initiomolecular dynamics simulations. Phys. Rev. B 2005, 72, 235411. [Google Scholar] [CrossRef]
- Gong, H.-Y.; Rambo, B.M.; Cho, W.; Lynch, V.M.; Oh, M.; Sessler, J.L. Anion-directed assembly of a three-dimensional metal–organic rotaxane framework. Chem. Commun. 2011, 47, 5973–5975. [Google Scholar] [CrossRef]
- Gong, H.-Y.; Rambo, B.M.; Karnas, E.; Lynch, V.M.; Keller, K.M.; Sessler, J.L. Environmentally Responsive Threading, Dethreading, and Fixation of Anion-Induced Pseudorotaxanes. J. Am. Chem. Soc. 2011, 133, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.J.C. International Tables for X-ray Crystallography; Tables 4.2.6.8 and 6.1.1.4; Kluwer Academic Press: Boston, MA, USA, 1992; Volume C. [Google Scholar]
- Sheldrick, G.M. SHELXTL/PC; Version 5.03; Siemens Axs-Inc.: Madison, WI, USA, 1994. [Google Scholar]
[14+•(2)4•(2H+•2)•Pb2•2DMF•12H2O] | [14+•(3)5•Pb3•12.5H2O] | |
---|---|---|
CCDC No. | 2084601 | 2084604 |
Description | prism | prism |
Colour | colourless | colourless |
From solution | DMF/H2O | DMF/H2O |
Empirical formula | C84H94N12O34Pb2 | C98H89N10O32.5Pb3 |
Mr | 2230.09 | 2548.36 |
Crystal size (mm3) | 0.11 × 0.07 × 0.04 | 0.21 × 0.12 × 0.10 |
Crystal system | triclinic | monoclinic |
Space group | P -1 | P 21/n |
a [Å] | 10.848(2) | 20.504(4) |
b [Å] | 14.117(3) | 20.005(4) |
c [Å] | 14.758(3) | 24.046(5) |
[deg] | 100.95(3) | 90 |
[deg] | 101.97(3) | 101.23(3) |
[deg] | 90.31(3) | 90 |
V/ [Å3] | 2168.3(8) | 9674(3) |
d/[g/cm3] | 1.711 | 1.75 |
Z | 1 | 4 |
T[K] | 173.15 | 153.15 |
R1, wR2 I > 2ó(I) | 0.0462, 0.1398 | 0.0789, 0.1877 |
R1, wR2 (all data) | 0.0485, 0.1426 | 0.1587, 0.2551 |
Quality of fit | 1.008 | 1.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, T.; Yu, Z.-Y.; Gong, H.-Y. Pb2+-Containing Metal-Organic Rotaxane Frameworks (MORFs). Molecules 2021, 26, 4241. https://doi.org/10.3390/molecules26144241
Xia T, Yu Z-Y, Gong H-Y. Pb2+-Containing Metal-Organic Rotaxane Frameworks (MORFs). Molecules. 2021; 26(14):4241. https://doi.org/10.3390/molecules26144241
Chicago/Turabian StyleXia, Ting, Zhi-Yong Yu, and Han-Yuan Gong. 2021. "Pb2+-Containing Metal-Organic Rotaxane Frameworks (MORFs)" Molecules 26, no. 14: 4241. https://doi.org/10.3390/molecules26144241
APA StyleXia, T., Yu, Z. -Y., & Gong, H. -Y. (2021). Pb2+-Containing Metal-Organic Rotaxane Frameworks (MORFs). Molecules, 26(14), 4241. https://doi.org/10.3390/molecules26144241