Cytotoxicity of Essential Oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Material Vegetal
4.2. Obtaining Essential Oil
4.3. Gas Chromatography Mass Spectrometry Analysis (GC MS)
4.4. Antiparasitic Activity
Cell Lines Used
4.5. Reagents
4.6. In Vitro Epimastigote Susceptibility Assay
4.7. In Vitro Leishmanicidal Assay
4.8. Cytotoxic Assays
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Momčilović, S.; Cantacessi, C.; Arsić-Arsenijević, V.; Otranto, D.; Otašević, S. Rapid diagnosis of parasitic diseases: Current scenario and future needs. Clin. Microbiol. Infect. 2019, 25, 290–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berriman, M.; Ghedin, E.; Hertz-Fowler, C.; Blandin, G.; Renauld, H.; Bartholomeu, D.C.; Lennard, N.J.; Caler, E.; Hamlin, N.E.; Haas, B.; et al. The Genome of the African Trypanosome Trypanosoma brucei. Science 2005, 309, 416–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, A.P. Genome evolution in trypanosomatid parasites. Parasitology 2015, 142, S40–S56. [Google Scholar] [CrossRef] [Green Version]
- Vacchina, P.; Lambruschi, D.A.; Uttaro, A.D. Lipoic acid metabolism in Trypanosoma cruzi as putative target for chemotherapy. Exp. Parasitol. 2018, 186, 17–23. [Google Scholar] [CrossRef]
- Bisceglia, J.Á.; Mollo, M.C.; Gruber, N.; Orelli, L.R. Polyamines and Related Nitrogen Compounds in the Chemotherapy of Neglected Diseases Caused by Kinetoplastids. Curr. Top. Med. Chem. 2018, 18, 321–368. [Google Scholar] [CrossRef]
- Rodrigues, R.F.; Castro-Pinto, D.; Echevarria, A.; dos Reis, C.M.; Del Cistia, C.N.; Sant’Anna, C.M.R.; Teixeira, F.; Castro, H.; Canto-Cavalheiro, M.; Leon, L.; et al. Investigation of trypanothione reductase inhibitory activity by 1,3,4-thiadiazolium-2-aminide derivatives and molecular docking studies. Bioorganic Med. Chem. 2012, 20, 1760–1766. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, K.; Vieira, F.A.; Porrozzi, R.; Marchevsky, R.; Miekeley, N.; Grimaldi, G.; Paumgartten, F.J.R. Disposition of Antimony in Rhesus Monkeys Infected withLeishmania braziliensisand Treated with Meglumine Antimoniate. J. Toxicol. Environ. Health Part A 2011, 75, 63–75. [Google Scholar] [CrossRef]
- Ferreira, C.D.S.; Martins, P.S.; Demicheli, C.; Brochu, C.; Ouellette, M.; Frézard, F. Thiol-induced reduction of antimony(V) into antimony(III): A comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. BioMetals 2003, 16, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.A.; Navas, A.; Márquez, R.; Rojas, L.J.; Vargas, D.A.; Blanco, V.M.; Koren, R.; Zilberstein, D.; Saravia, N.G. Leishmania panamensis infection and antimonial drugs modulate expression of macrophage drug transporters and metabolizing enzymes: Impact on intracellular parasite survival. J. Antimicrob. Chemother. 2013, 69, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Fyfe, P.K.; Westrop, G.; Silva, A.; Coombs, G.H.; Hunter, W.N. Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation. Proc. Natl. Acad. Sci. USA 2012, 109, 11693–11698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, V.R.; de Jesus, L.C.L.; Soares, R.-E.P.; Silva, L.D.M.; Pinto, B.A.S.; Melo, M.N.; Paes, A.M.D.A.; Pereira, S.R.F. Meglumine Antimoniate (Glucantime) Causes Oxidative Stress-Derived DNA Damage in BALB/c Mice Infected by Leishmania (Leishmania) infantum. Antimicrob. Agents Chemother. 2017, 61, e02360-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, M.; Goyal, N. MAPK1 of Leishmania donovani Modulates Antimony Susceptibility by Downregulating P-Glycoprotein Efflux Pumps. Antimicrob. Agents Chemother. 2015, 59, 3853–3863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, R.K.; Prajapati, P.; Goyal, S.; Grover, A.; Prajapati, V. Molecular Modeling and Virtual Screening Approach to Discover Potential Antileishmanial Inhibitors Against Ornithine Decarboxylase. Comb. Chem. High Throughput Screen. 2016, 19, 813–823. [Google Scholar] [CrossRef]
- Ruiz-Santaquiteria, M.; Sánchez-Murcia, P.A.; Toro, M.A.; de Lucio, H.; Gutiérrez, K.J.; De Castro, S.; Carneiro, F.A.; Gago, F.; Jiménez-Ruiz, A.; Camarasa, M.-J.; et al. First example of peptides targeting the dimer interface of Leishmania infantum trypanothione reductase with potent in vitro antileishmanial activity #. Eur. J. Med. Chem. 2017, 135, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Castillo, E.; Dea-Ayuela, M.A.; Bolas-Fernandez, F.; Rangel, M.; Gonzalez-Rosende, M.E. The kinetoplastid chemotherapy revisited: Current drugs, recent advances and future perspectives. Curr. Med. Chem. 2012, 17, 4027–4051. [Google Scholar] [CrossRef]
- Yoshioka, K.; Manne-Goehler, J.; Maguire, J.H.; Reich, M.R. Access to Chagas disease treatment in the United States after the regulatory approval of benznidazole. PLoS Negl. Trop. Dis. 2020, 14, e0008398. [Google Scholar] [CrossRef]
- Santamaria, C.; Chatelain, E.; Jackson, Y.; Miao, Q.; Ward, B.J.; Chappuis, F.; Ndao, M. Serum biomarkers predictive of cure in Chagas disease patients after nifurtimox treatment. BMC Infect. Dis. 2014, 14, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, M.T.; Branquinho, R.T.; Alessio, G.D.; Mello, C.G.C.; Nogueira-De-Paiva, N.C.; Carneiro, C.M.; Toledo, M.J.D.O.; Reis, A.B.; Martins-Filho, O.A.M.; de Lana, M. TcI, TcII and TcVI Trypanosoma cruzi samples from Chagas disease patients with distinct clinical forms and critical analysis of in vitro and in vivo behavior, response to treatment and infection evolution in murine model. Acta Trop. 2017, 167, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Jackson, Y.; Wyssa, B.; Chappuis, F. Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas’ disease. J. Antimicrob. Chemother. 2020, 75, 690–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murcia, L.; Carrilero, B.; Viñas, P.A.; Segovia, M. Nifurtimox chemotherapy: Collateral effects in treated Trypanosoma cruzi infected patients. Rev. Espanola Quimioter. Publ. Of. Soc. Espanola Quimioter. 2012, 25, 74–75. [Google Scholar]
- Sangenito, L.S.; Menna-Barreto, R.F.S.; D’Avila-Levy, C.M.; Branquinha, M.H.; Dos Santos, A.L.S. Repositioning of HIV Aspartyl Peptidase Inhibitors for Combating the Neglected Human Pathogen Trypanosoma cruzi. Curr. Med. Chem. 2019, 26, 6590–6613. [Google Scholar] [CrossRef]
- Moreira, R.R.D.; Dos Santos, A.G.; Carvalho, F.A.; Perego, C.H.; Crevelin, E.J.; Crotti, A.E.M.; Cogo, J.; Cardoso, M.L.C.; Nakamura, C.V. Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis. Revista do Instituto de Medicina Tropical de São Paulo 2019, 61, e33. [Google Scholar] [CrossRef]
- Ravera, M.; Moreno-Viguri, E.; Paucar, R.; Pérez-Silanes, S.; Gabano, E. Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. Eur. J. Med. Chem. 2018, 155, 459–482. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Costa-Lima, T.C.; Souza, A.V.V.; Gonçalves-Gervásio, R.D.C.R. Essential oils activity from plants of the Brazilian Caatinga on the vegetable leafminer. Pesquisa Agropecuária Tropical 2020, 50, 50. [Google Scholar] [CrossRef]
- Rhind, J.P. Essential Oils: A Comprehensive Handbook for Aromatic, 3rd ed.; Singing Dragon: London, UK, 2019. [Google Scholar]
- Shokouhian, A.; Habibi, H.; Agahi, K. Allelopatic effects of some medicinal plant essential oils on plant seeds germination. J. BioSci. Biotechnol. 2016, 5, 13–17. [Google Scholar]
- Hanif, M.A.; Nisar, S.; Khan, G.S.; Mushtaq, Z.; Zubair, M. Essential Oils. In Essential Oil Research; Springer Science and Business Media LLC: Berlin, Germany, 2019; pp. 3–17. [Google Scholar]
- Batiha, G.E.-S.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Hameed, I.H.; Mohammed, G.J. Phytochemistry, Antioxidant, Antibacterial Activity, and Medicinal Uses of Aromatic (Medicinal Plant Rosmarinus officinalis). In Aromatic and Medicinal Plants—Back to Nature; IntechOpen: London, UK, 2017. [Google Scholar]
- Tiwari, G.; Patil, S.; Bondarde, P.; Khadke, S.; Gakhare, R. Antimicrobial efficacy of commercially available plant essential oils with calcium hydroxide as intracanal medicaments against Enterococcus faecalis: An in-vitro study. J. Dent. Med. Sci. 2018, 17, 19–24. [Google Scholar]
- Larayetan, R.; Ololade, Z.S.; Ogunmola, O.O.; Ladokun, A. Phytochemical Constituents, Antioxidant, Cytotoxicity, Antimicrobial, Antitrypanosomal, and Antimalarial Potentials of the Crude Extracts of Callistemon citrinus. Evid. Based Complement. Altern. Med. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, A.M.; Rosa, T.; Mouchrek, A.N.; Abreu-Silva, A.L.; Calabrese, K.D.S.; Almeida-Souza, F. Cinnamomum zeylanicum, Origanum vulgare, and Curcuma longa Essential Oils: Chemical Composition, Antimicrobial and Antileishmanial Activity. Evid. Based Complement. Altern. Med. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baananou, S.; Bagdonaitė, E.; Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Boughattas, N. Extraction of the volatile oil fromCarum carviof Tunisia and Lithuania by supercritical carbon dioxide: Chemical composition and antiulcerogenic activity. Nat. Prod. Res. 2013, 27, 2132–2136. [Google Scholar] [CrossRef] [PubMed]
- Chansang, A.; Champakaew, D.; Junkum, A.; Amornlerdpison, D.; Chaithong, U.; Jitpakdi, A.; Riyong, D.; Wannasan, A.; Intirach, J.; Muangmoon, R.; et al. Potential of natural essential oils and cinnamaldehyde as insecticides against the dengue vector aedes aegypti (Diptera: Culicidae). Southeast Asian J. Trop. Med. Public Health 2018, 49, 6–22. [Google Scholar]
- Hu, F.; Tu, X.-F.; Thakur, K.; Hu, F.; Li, X.-L.; Zhang, Y.-S.; Zhang, J.-G.; Wei, Z.-J. Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem. Toxicol. 2019, 134, 110821. [Google Scholar] [CrossRef] [PubMed]
- Sugumar, S.; Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Essential Oil-Based Nanoemulsion Formation by Low- and High-Energy Methods and Their Application in Food Preservation against Food Spoilage Microorganisms. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 93–100. [Google Scholar]
- Pesimo, A.R. Harnessing the Solar Energy in Extracting Essential Oil for Community Based Perfumery and Aromatherapy. Open Access Libr. J. 2017, 04, 1–11. [Google Scholar] [CrossRef]
- Aloui, Z.; Messaoud, C.; Haoues, M.; Neffati, N.; Jamoussi, I.B.; Essafi-Benkhadir, K.; Boussaid, M.; Guizani, I.; Karoui, H. AsteraceaeArtemisia campestrisandArtemisia herba-albaEssential Oils Trigger Apoptosis and Cell Cycle Arrest inLeishmania infantumPromastigotes. Evid. Based Complement. Altern. Med. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Saeidnia, S.; Gohari, A.R.; Haddadi, A. Biogenic trypanocidal sesquiterpenes: Lead compounds to design future trypanocidal drugs - a mini review. DARU J. Pharm. Sci. 2013, 21, 35. [Google Scholar] [CrossRef] [Green Version]
- Figueira, G.-M.; Risterucci, A.-M.; Zucchi, M.I.; Cavallari, M.M.; Noyer, J.-L. Development and characterisation of microsatellite markers for Cordia verbenacea (Boraginaceae), an important medicinal species from the Brazilian coast. Conserv. Genet. 2009, 11, 1127–1129. [Google Scholar] [CrossRef]
- Ventrella, M.C.; Marinho, C.R. Morphology and histochemistry of glandular trichomes of Cordia verbenacea DC. (Boraginaceae) leaves. Braz. J. Bot. 2008, 31, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Taravati, G.; Masoudian, N.; Gholamian, A. 3-Evaluation-of Medical-Metabolites-in-Boraginaceae-Family. J. Chem. Health Risks 2014, 4, 53–61. [Google Scholar]
- Sciarrone, D.; Giuffrida, D.; Rotondo, A.; Micalizzi, G.; Zoccali, M.; Pantò, S.; Donato, P.; Rodrigues-Das-Dores, R.G.; Mondello, L. Quali-quantitative characterization of the volatile constituents in Cordia verbenacea D.C. essential oil exploiting advanced chromatographic approaches and nuclear magnetic resonance analysis. J. Chromatogr. A 2017, 1524, 246–253. [Google Scholar] [CrossRef]
- Carvalho, V.R.D.A.; Silva, M.K.D.N.; Aguiar, J.J.S.; Bitu, V.D.C.N.; Da Costa, J.G.M.; Filho, J.R.; Coutinho, H.D.M.; Pinho, A.I.; Matias, E.F.F. Antibiotic-Modifying Activity and Chemical Profile of the Essential Oil from the Leaves ofCordia verbenaceaDC. J. Essent. Oil Bear. Plants 2017, 20, 337–345. [Google Scholar] [CrossRef]
- Parisotto, E.B.; Michielin, E.M.; Biscaro, F.; Ferreira, S.R.S.; Filho, D.W.; Pedrosa, R.C. The antitumor activity of extracts from Cordia verbenacea D.C. obtained by supercritical fluid extraction. J. Supercrit. Fluids 2012, 61, 101–107. [Google Scholar] [CrossRef]
- Barros, L.M.; Duarte, A.E.; Morais-Braga, M.F.B.; Waczuk, E.P.; Vega, C.; Leite, N.F.; De Menezes, I.R.A.; Coutinho, H.D.M.; Rocha, J.B.T.; Kamdem, J.P. Chemical Characterization and Trypanocidal, Leishmanicidal and Cytotoxicity Potential of Lantana camara L. (Verbenaceae) Essential Oil. Molecules 2016, 21, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, P.S.; Maia, A.J.; Duarte, A.E.; Oliveira-Tintino, C.D.M.; Tintino, S.R.; Barros, L.M.; Vega-Gomez, M.C.; Rolón, M.; Coronel, C.; Coutinho, H.; et al. Cytotoxic and anti-kinetoplastid potential of the essential oil of Alpinia speciosa K. Schum. Food Chem. Toxicol. 2018, 119, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Ndjonka, D.; Rapado, L.N.; Silber, A.M.; Liebau, E.; Wrenger, C. Natural Products as a Source for Treating Neglected Parasitic Diseases. Int. J. Mol. Sci. 2013, 14, 3395–3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamorro, E.R.; Zambón, S.N.; Morales, W.G.; Sequeira, A.F.; Velasco, G.A. Study of the Chemical Composition of Essential Oils by Gas Chromatography. In Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications; InTech: London, UK, 2012. [Google Scholar]
- Fun, C.E.; Svendsen, A.B. The Essential Oil ofCordia cylindrostachyaRoem. & Schult. Grown on Aruba. J. Essent. Oil Res. 1990, 2, 209–210. [Google Scholar] [CrossRef]
- Miguel, M.; García-Bores, A.M.; Meraz, S.; Piedra, E.; Vila, M.A.; O Serrano, R.I.; Orozco, J.; Estrada, M.J.E.N.; A, J.C.C.I.; Alosa, I.P.N.; et al. Antimicrobial activity of essential oil of Cordia globosa. Afr. J. Pharm. Pharmacol. 2016, 10, 179–184. [Google Scholar] [CrossRef]
- Diniz, J.C.; Viana, F.A.; De Oliveira, O.F.; Silveira, E.R.; Pessoa, O.D.L. Chemical Composition of the Leaf Essential Oil ofCordia leucocephalaMoric from Northeast of Brazil. J. Essent. Oil Res. 2008, 20, 495–496. [Google Scholar] [CrossRef]
- Avoseh, O.N.; Afolabi, P.O.; Lawal, O.A.; Thang, T.D.; Ascrizzi, R.; Guido, F.; Ogunwande, I.A. Essential oil of Cordia millenii from Nigeria. Am. J. Essent. Oils Nat. Prod. 2018, 6, 13–17. [Google Scholar]
- Wille, V.K.D.; Wastowski, A.D.; Pedrazzi, C.; Sauer, M.P. COMPOSIÇÃO QUÍMICA DA MADEIRA DE Cordia trichotoma (Vell.) Arráb. ex Steud. Ciência Florestal 2017, 27, 1441. [Google Scholar] [CrossRef] [Green Version]
- Das Graças, M.; Zoghbi, B.; Andrade, E.H.D.A.; Pereira, R.A.; Oliveira, J. Volatiles of theCordia multispicataCham.: A Weed Medicinal Brazilian Plant. J. Essent. Oil Res. 2010, 22, 543–545. [Google Scholar] [CrossRef]
- Kendir, G.; Özek, G.; Özek, T.; Köroğlu, A. Leaf essential oil analysis and anatomical study of Cordia myxa from Turkey. Plant Biosyst. Int. J. Deal. all Asp. Plant Biol. 2021, 155, 204–210. [Google Scholar] [CrossRef]
- Arze, J.B.L.; Collin, G.; Garneau, F.-X.; Jean, F.-I.; Gagnon, H. Essential Oils from Bolivia. XI. Verbenaceae: Aloysia gratissima(Gillies & Hook.) Tronc. and Boraginaceae: Cordia chacoensisChodat. J. Essent. Oil Bear. Plants 2013, 16, 545–550. [Google Scholar] [CrossRef]
- Adeosun, C.B.; Olaseinde, S.; Opeifa, A.; Atolani, O. Essential oil from the stem bark of Cordia sebestena scavenges free radicals. J. Acute Med. 2013, 3, 138–141. [Google Scholar] [CrossRef] [Green Version]
- Bonesi, M.; Okusa, P.N.; Tundis, R.; Loizzo, M.R.; Menichini, F.; Stévigny, C.; Duez, P.; Menichini, F. Chemical Composition, Antioxidant Properties and Anti-cholinesterase Activity of Cordia gilletii (Boraginaceae) Leaves Essential Oil. Nat. Prod. Commun. 2011, 6, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Nizio, D.A.D.C.; Fujimoto, R.Y.; Maria, A.N.; Carneiro, P.C.F.; França, C.C.S.; Sousa, N.D.C.; Brito, F.D.A.; Sampaio, T.S.; Arrigoni-Blank, M.D.F.; Blank, A.F. Essential oils of Varronia curassavica accessions have different activity against white spot disease in freshwater fish. Parasitol. Res. 2018, 117, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Bonfim, F.P.G.; Dantas, W.F.C.; Puppi, R.; Marques, M. Chemical composition of essential oil from Varronia curassavica Jacq. accessions in different seasons of the year. Ind. Crop. Prod. 2019, 140, 111656. [Google Scholar] [CrossRef]
- De Morais, M.C.; De Souza, J.V.; Filho, C.D.S.M.B.; Dolabella, S.S.; De Sousa, D.P. Trypanocidal Essential Oils: A Review. Molecules. 2020, 25, 4568. [Google Scholar] [CrossRef]
- Le, T.B.; Beaufay, C.; Bonneau, N.; Mingeot-Leclercq, M.-P.; Quetin-Leclercq, J. Anti-protozoal activity of essential oils and their constituents against Leishmania, Plasmodium and Trypanosoma. Phytochimie 2018, 1, 1–3. [Google Scholar]
- Díaz, J.G.; Arranz, J.C.E.; Batista, D.D.G.J.; Fidalgo, L.M.; Acosta, J.D.L.V.; De Macedo, M.B.; Cos, P. Antileishmanial Potentialities of Croton linearis Leaf Essential Oil. Nat. Prod. Commun. 2018, 13, 1801300–1934578. [Google Scholar] [CrossRef]
- Ibrahim, A.Y.; El-Newary, S.A.; Ibrahim, G.E. Antioxidant, cytotoxicity and anti-tumor activity of Cordia dichotoma fruits accompanied with its volatile and sugar composition. Ann. Agric. Sci. 2019, 64, 29–37. [Google Scholar] [CrossRef]
- Ashmawy, A.M.; Ayoub, I.; Eldahshan, O.A. Chemical composition, cytotoxicity and molecular profiling of Cordia africana Lam. on human breast cancer cell line. Nat. Prod. Res. 2020, 1–6. [Google Scholar] [CrossRef]
- Mori-Yasumoto, K.; Kawano, M.; Fuchino, H.; Ooi, T.; Satake, M.; Agatsuma, Y.; Kusumi, T.; Sekita, S. Antileishmanial Compounds from Cordia fragrantissima Collected in Burma (Myanmar). J. Nat. Prod. 2008, 71, 18–21. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, P.M.; De Melo, D.C.; Alcoba, A.E.T.; Júnior, W.G.F.; Pagotti, M.C.; Magalhães, L.G.; Dos Santos, T.C.; Crotti, A.E.; Alves, C.C.; Miranda, M.L. Chemical composition and evaluation of antileishmanial and cytotoxic activities of the essential oil from leaves of Cryptocarya aschersoniana Mez. (Lauraceae Juss.). Anais da Academia Brasileira de Ciências 2018, 90, 2671–2678. [Google Scholar] [CrossRef]
- Ghaderi, A.; Khadem-Erfan, M.B.; Barati, M.; Ghaderi, S. Evaluation of antileishmanial effect of the plant extract of alpha-pinene (Pistacia atlantica) in vitro and in vivo. Sci. J. Kurdistan Univ. Med. Sci. 2018, 23, 32–44. [Google Scholar]
- Martínez-Díaz, R.A.; Ibáñez-Escribano, A.; Burillo, J.; Heras, L.D.L.; Del Prado, G.; Ortuño, M.T.A.; Julio, L.F.; Gonzalez-Coloma, A. Trypanocidal, trichomonacidal and cytotoxic components of cultivated Artemisia absinthium Linnaeus (Asteraceae) essential oil. Memórias do Instituto Oswaldo Cruz 2015, 110, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Meira, C.S.; Menezes, L.; Dos Santos, T.B.; Macedo, T.S.; Fontes, J.E.N.; Costa, E.V.; Pinheiro, M.L.B.; Da Silva, T.B.; Guimarães, E.T.; Soares, M.B.P. Chemical composition and antiparasitic activity of essential oils from leaves of Guatteria friesiana and Guatteria pogonopus (Annonaceae). J. Essent. Oil Res. 2016, 29, 156–162. [Google Scholar] [CrossRef]
- Kamte, S.L.N.; Ranjbarian, F.; Cianfaglione, K.; Sut, S.; Dall’Acqua, S.; Bruno, M.; Afshar, F.H.; Iannarelli, R.; Benelli, G.; Cappellacci, L.; et al. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family. Ecotoxicol. Environ. Saf. 2018, 156, 154–165. [Google Scholar] [CrossRef]
- Moreno, E.; Leal, S.M.; Stashenko, E.E.; García, L.T. Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC Complement. Altern. Med. 2018, 18, 225. [Google Scholar] [CrossRef]
- Machado, M.; Pires, P.; Dinis, A.; Santos-Rosa, M.; Alves, V.; Salgueiro, L.; Cavaleiro, C.; Sousa, M. Monoterpenic aldehydes as potential anti-Leishmania agents: Activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major. Exp. Parasitol. 2012, 130, 223–231. [Google Scholar] [CrossRef]
- Gonçalves, C.F.L.; De Freitas, M.L.; Fortunato, R.S.; Miranda-Alves, L.; Carvalho, D.; Ferreira, A.C.F. Rutin Scavenges Reactive Oxygen Species, Inactivates 5′-Adenosine Monophosphate-Activated Protein Kinase, and Increases Sodium–Iodide Symporter Expression in Thyroid PCCL3 Cells. Thyroid 2018, 28, 265–275. [Google Scholar] [CrossRef]
- Le-Senne, A.; Muelas-Serrano, S.; Fernández-Portillo, C.; Escario, J.A.; Gómez-Barrio, A. Biological characterization of a beta-galactosidase expressing clone of Trypanosoma cruzi CL strain. Memórias do Instituto Oswaldo Cruz 2002, 97, 1101–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roldos, V.; Nakayama, H.; Rolón, M.; Torres, A.M.; Trucco, F.; Torres, S.; Vega, C.; Marrero-Ponce, Y.; Heguaburu, V.; Yaluff, G. Activity of a hydroxybibenzyl bryophyte constituent against Leishmania spp. and Trypanosoma cruzi: In silico, in vitro and in vivo activity studies. Eur. J. Med. Chem. 2008, 43, 1797–1807. [Google Scholar] [CrossRef]
- Vega, C.; Escario, J.A.; Rolón, M.; Martínez-Fernández, A.R.; Gómez-Barrio, A. A new pharmacological screening assay with Trypanosoma cruzi epimastigotes expressing β-galactosidase. Parasitol. Res. 2005, 95, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Mikus, J.; Steverding, D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue®. Parasitol. Int. 2000, 48, 265–269. [Google Scholar] [CrossRef]
- Rolon, M.; Seco, E.M.; Vega, C.; Nogal, J.J.; Escario, J.A.; Gómez-Barrio, A.; Malpartida, F. Selective activity of polyene macrolides produced by genetically modified Streptomyces on Trypanosoma cruzi. Int. J. Antimicrob. Agents 2006, 28, 104–109. [Google Scholar] [CrossRef] [PubMed]
Components | RT (min) a | (%) |
---|---|---|
α-thujene α-pinene Zingiberene Tricyclo[2.2.1.0(2,6)]heptane Caryophyllene | 12.09 12.52 39.91 40.90 41.13 | 1.70 45.71 1.37 12.56 18.77 |
α-humulene | 43.24 | 3.43 |
Alloaromadendrene | 43.77 | 4.37 |
Beta-bisabolene | 46.10 | 3.53 |
Tetradecane Nerolidol Caryophyllene oxide α-sinensal Santalol | 47.86 52.70 47.98 49.04 49.15 | 1.19 3.38 2.04 2.43 2.90 |
Total | 100.00 |
Natural Product | Conc. µg/mL C. verbenacea | %C | ±%DS | Conc. µg/mL Nifurtimox | %C | ±%DS |
---|---|---|---|---|---|---|
C. verbenacea | 1000 | 100 | - | |||
600 | 100 | 4.3 | ||||
500 | 100 | - | ||||
400 | 100 | 3.9 | ||||
250 | 97.85 | 0.49 | ||||
200 | 100 | 0.6 | ||||
125 | 64.21 | 0.80 | ||||
100 | 65 | 1.8 | ||||
62.5 | 10.04 | 0.70 | ||||
31.5 | 9.04 | 0.77 |
Natural Product | Conc. µg/mL C. verbenacea | %S | ±%DS | Conc. µg/mL Pentamidine | %S | ±%DS |
---|---|---|---|---|---|---|
C. verbenacea | 1000 | 100 | - | |||
500 | 100 | - | ||||
250 | 100 | - | ||||
125 | 100 | - | ||||
100 | 6.0 | 0.3 | ||||
62.5 | 60.87 | 2.11 | ||||
31.5 | 34.44 | 1.02 | ||||
25 | 11 | 0.6 | ||||
6.2 | 40.8 | 0.3 | ||||
3.2 | 84 | 1.1 |
Natural Product | Conc. µg/mL C. verbenacea | %S | ±%DS | Conc. g/mL Pentamidine | %S | ±%DS |
---|---|---|---|---|---|---|
C. verbenacea | 1000 | 100 | - | |||
500 | 100 | - | ||||
250 | 100 | - | ||||
125 | 100 | - | ||||
100 | 0 | 0.8 | ||||
62.5 | 25.11 | 1.70 | ||||
50 | 7 | 0.6 | ||||
31.5 | 16.12 | 2.52 | ||||
10 | 16 | 0.9 | ||||
1.0 | 57 | 0.7 | ||||
0.5 | 87 | 0.8 | ||||
0.1 | 100 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, P.S.; Oliveira, C.V.B.; Maia, A.J.; Tintino, S.R.; Oliveira-Tintino, C.D.d.M.; Vega-Gomez, M.C.; Rolón, M.; Coronel, C.; Duarte, A.E.; Barros, L.M.; et al. Cytotoxicity of Essential Oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi. Molecules 2021, 26, 4485. https://doi.org/10.3390/molecules26154485
Pereira PS, Oliveira CVB, Maia AJ, Tintino SR, Oliveira-Tintino CDdM, Vega-Gomez MC, Rolón M, Coronel C, Duarte AE, Barros LM, et al. Cytotoxicity of Essential Oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi. Molecules. 2021; 26(15):4485. https://doi.org/10.3390/molecules26154485
Chicago/Turabian StylePereira, Pedro S., Carlos Vinicius B. Oliveira, Ana J. Maia, Saulo R. Tintino, Cícera Datiane de M. Oliveira-Tintino, Maria C. Vega-Gomez, Miriam Rolón, Cathia Coronel, Antônia Eliene Duarte, Luiz M. Barros, and et al. 2021. "Cytotoxicity of Essential Oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi" Molecules 26, no. 15: 4485. https://doi.org/10.3390/molecules26154485
APA StylePereira, P. S., Oliveira, C. V. B., Maia, A. J., Tintino, S. R., Oliveira-Tintino, C. D. d. M., Vega-Gomez, M. C., Rolón, M., Coronel, C., Duarte, A. E., Barros, L. M., Kamdem, J. P., Siyadatpanah, A., Wilairatana, P., & Coutinho, H. D. M. (2021). Cytotoxicity of Essential Oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi. Molecules, 26(15), 4485. https://doi.org/10.3390/molecules26154485