Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method
Abstract
:1. Introduction
2. Computational Approaches
2.1. The EE-GMFCC Method for Excited State and Its Application for PR105Q
2.2. Structure Preparation and Molecular Dynamics (MD) Simulation
2.2.1. Homology Modelling
2.2.2. Force Field Construction of the Non-Standard Residue LYR231
2.2.3. Molecular Dynamics (MD) Simulation
2.2.4. Key Residue Mutation and Fragment-Based QM Calculations for Excitation Energies
3. Results and Discussion
3.1. Comparison between Calculated Excitation Energies and Experiment for Wild-Type PR and Its Mutants
3.2. Residue-Based Decomposition of Excitation Energies
3.3. The Local Electric Field along the Retinal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikuta, T.; Shihoya, W.; Sugiura, M.; Yoshida, K.; Watari, M.; Tokano, T.; Yamashita, K.; Katayama, K.; Tsunoda, S.P.; Uchihashi, T.; et al. Structural insights into the mechanism of rhodopsin phosphodiesterase. Nat. Commun. 2020, 11, 5605–5616. [Google Scholar] [CrossRef]
- Hontani, Y.; Broser, M.; Luck, M.; Weissenborn, J.; Kloz, M.; Hegemann, P.; Kennis, J.T.M. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin. J. Am. Chem. Soc. 2020, 142, 11464–11473. [Google Scholar] [CrossRef]
- Lienard, M.A.; Bernard, G.D.; Allen, A.; Lassance, J.M.; Song, S.; Childers, R.R.; Yu, N.; Ye, D.; Stephenson, A.; Valencia-Montoya, W.A.; et al. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc. Natl. Acad. Sci. USA 2021, 118, 2008986118. [Google Scholar] [CrossRef]
- Han, C.T.; Song, J.; Chan, T.; Pruett, C.; Han, S. Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor. Biophys. J. 2020, 118, 1838–1849. [Google Scholar] [CrossRef]
- Hirschi, S.; Kalbermatter, D.; Ucurum, Z.; Fotiadis, D. Cryo-electron microscopic and X-ray crystallographic analysis of the light-driven proton pump proteorhodopsin reveals a pentameric assembly. J. Struct. Biol. X 2020, 4, 100024. [Google Scholar] [CrossRef]
- Ernst, O.P.; Lodowski, D.T.; Elstner, M.; Hegemann, P.; Brown, L.S.; Kandori, H. Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms. Chem. Rev. 2014, 114, 126–163. [Google Scholar] [CrossRef]
- Béja, O.; Spudich, E.N.; Spudich, J.L.; Leclerc, M.; DeLong, E.F. Proteorhodopsin phototrophy in the ocean. Nature 2001, 411, 786. [Google Scholar] [CrossRef] [PubMed]
- Bamann, C.; Bamberg, E.; Wachtveitl, J.; Glaubitz, C. Proteorhodopsin. Biochim. Biophys. Acta Bioenerg. 2014, 1837, 614–625. [Google Scholar] [CrossRef] [Green Version]
- Béja, O.; Aravind, L.; Koonin, E.V.; Suzuki, M.T.; Hadd, A.; Nguyen, L.P.; Jovanovich, S.B.; Gates, C.M.; Feldman, R.A.; Spudich, J.L. Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 2000, 289, 1902–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, D.; Wang, W.; Sabehi, G.; Aravind, L.; Post, A.F.; Massana, R.; Spudich, E.N.; Spudich, J.L.; Béjà, O. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 2003, 22, 1725–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Nossoni, Z.; Berbasova, T.; Watson, C.T.; Yapici, I.; Lee, K.S.S.; Vasileiou, C.; Geiger, J.H.; Borhan, B. Tuning the electronic absorption of protein-embedded all-trans-retinal. Science 2012, 338, 1340–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, Y.; Kawashima, T.; Abe-Yoshizumi, R.; Kandori, H. A color-determining amino acid residue of proteorhodopsin. Biochemistry 2014, 53, 6032–6040. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Glover, W.J.; He, X. Fragment Quantum Mechanical Method for Excited States of Proteins: Development and Application to the Green Fluorescent Protein. J. Chem. Theory Comput. 2020, 16, 5174–5188. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Zhang, J.Z.; He, X. Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy. J. Phys. Chem. A 2013, 117, 7149–7161. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhang, J.Z.; He, X. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method. J. Phys. Chem. A 2017, 121, 2503–2514. [Google Scholar] [CrossRef]
- He, X.; Zhu, T.; Wang, X.; Liu, J.; Zhang, J.Z. Fragment quantum mechanical calculation of proteins and its applications. Acc. Chem. Res. 2014, 47, 2748–2757. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Li, J.; He, X. Fragment-based quantum mechanical calculation of protein-protein binding affinities. J. Comput. Chem. 2018, 39, 1617–1628. [Google Scholar] [CrossRef]
- Liu, J.; Sun, H.; Glover, W.J.; He, X. Prediction of Excited-State Properties of Oligoacene Crystals Using Fragment-Based Quantum Mechanical Method. J. Phys. Chem. A 2019, 123, 5407–5417. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Jin, X.; Gu, X.; Zeng, X.C.; He, X.; Li, H. Quantitative Prediction of Aggregation-Induced Emission: A Full Quantum Mechanical Approach to the Optical Spectra. Angew. Chem. Int. Ed Engl. 2020, 2–8. [Google Scholar] [CrossRef]
- Liu, J.; He, X. Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids. Phys. Chem. Chem. Phys. 2020, 22, 12341–12367. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Y.; Li, J.; He, X. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy. J. Phys. Chem. B 2020, 124, 3027–3035. [Google Scholar] [CrossRef]
- Isborn, C.M.; Luehr, N.; Ufimtsev, I.S.; Martinez, T.J. Excited-State Electronic Structure with Configuration Interaction Singles and Tamm-Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units. J. Chem. Theory Comput. 2011, 7, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Ufimtsev, I.S.; Martinez, T.J. Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. J. Chem. Theory Comput. 2009, 5, 2619–2628. [Google Scholar] [CrossRef] [PubMed]
- Titov, A.V.; Ufimtsev, I.S.; Luehr, N.; Martinez, T.J. Generating Efficient Quantum Chemistry Codes for Novel Architectures. J. Chem. Theory Comput. 2013, 9, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Borin, V.A.; Wiebeler, C.; Schapiro, I. A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin. Faraday Discuss. 2018, 207, 137–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eswar, N.; Eramian, D.; Webb, B.; Shen, M.-Y.; Sali, A. Protein structure modeling with MODELLER. In Structural Proteomics; Springer: San Francisco, CA, USA, 2008; pp. 145–149. [Google Scholar]
- Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005, 33, 2302–2309. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [Green Version]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. WIREs. Comput. Mol. Sci. 2013, 3, 198–210. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Price, D.J.; Brooks, C.L., III. A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 2004, 121, 10096–10103. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [Green Version]
- Jakalian, A.; Bush, B.L.; Jack, D.B.; Bayly, C.I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method. J. Comput. Chem. 2000, 21, 132–146. [Google Scholar] [CrossRef]
- Walker, R.C.; Crowley, M.F.; Case, D.A. The implementation of a fast and accurate QM/MM potential method in Amber. J. Comput. Chem. 2008, 29, 1019–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutinho, K.; Canuto, S. Advances in Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 1997; Volume 28, pp. 89–105. [Google Scholar]
- Tao, P.; Fisher, J.F.; Shi, Q.; Vreven, T.; Mobashery, S.; Schlegel, H.B. Matrix metalloproteinase 2 inhibition: Combined quantum mechanics and molecular mechanics studies of the inhibition mechanism of (4-phenoxyphenylsulfonyl)methylthiirane and its oxirane analogue. Biochemistry 2009, 48, 9839–9847. [Google Scholar] [CrossRef] [Green Version]
- Van der Kamp, M.W.; Mulholland, A.J. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013, 52, 2708–2728. [Google Scholar] [CrossRef]
- Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E.; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K.; et al. AMBER18; University of California: San Francisco, CA, USA, 2018. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, RevisionA.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2007, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Adcock, S.A.; McCammon, J.A. Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins. Chem. Rev. 2006, 106, 1589–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Zhang, Q.; Shiota, Y.; Nakagawa, T.; Kuwabara, K.; Yoshizawa, K.; Adachi, C. Computational Prediction for Singlet- and Triplet-Transition Energies of Charge-Transfer Compounds. J. Chem. Theory Comput. 2013, 9, 3872–3877. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Kamiya, M.; Uchida, Y.; Hayashi, S. Molecular Mechanism of Wide Photoabsorption Spectral Shifts of Color Variants of Human Cellular Retinol Binding Protein II. J. Am. Chem. Soc. 2015, 137, 13362–13370. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, L.; Yuan, J.; An, Z.; Chen, R.; Tao, Y.; Li, H.; Xie, X.; Huang, W. Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach. Sci. Rep. 2015, 5, 10923–10933. [Google Scholar] [CrossRef]
- Mao, J.; Do, N.N.; Scholz, F.; Reggie, L.; Mehler, M.; Lakatos, A.; Ong, Y.S.; Ullrich, S.J.; Brown, L.J.; Brown, R.C.; et al. Structural basis of the green-blue color switching in proteorhodopsin as determined by NMR spectroscopy. J. Am. Chem. Soc. 2014, 136, 17578–17590. [Google Scholar] [CrossRef]
- Burke, K.; Werschnik, J.; Gross, E.K. Time-dependent density functional theory: Past, present, and future. J. Chem. Phys. 2005, 123, 062206. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef]
- He, X.; Zhang, J.Z.H. The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy. J. Chem. Phys. 2006, 124, 184703. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Zhang, J.Z. Predicting mutation-induced Stark shifts in the active site of a protein with a polarized force field. J. Phys. Chem. A 2013, 117, 6015–6023. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.Z.; He, X. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase. J. Chem. Phys. 2015, 143, 184111. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, D.J.; Rudnitskaya, A.N.; Gascon, J.A. QM/MM Prediction of the Stark Shift in the Active Site of a Protein. J. Chem. Theory Comput. 2012, 8, 2817–2823. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.L.; Mei, Y.; Zhang, Q.G.; Zhang, J.Z. Intra-protein hydrogen bonding is dynamically stabilized by electronic polarization. J. Chem. Phys. 2009, 130, 115102. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Ji, C.G.; Mei, Y.; Zhang, J.Z.H. Simulation of NMR Data Reveals That Proteins’ Local Structures Are Stabilized by Electronic Polarization. J. Am. Chem. Soc. 2009, 131, 8636–8641. [Google Scholar] [CrossRef]
- Liu, J.; He, X.; Zhang, J.Z.H. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization. J. Chem. Inf. Model. 2013, 53, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- William, H.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Kollman, P.A. Application of RESP Charges to Calculate Conformational Energies, Hydrogen Bond Energies, and Free Energies of Solvation. J. Am. Chem. Soc. 1993, 115, 9620–9631. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. B 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Ji, C.; Mei, Y.; Zhang, J.Z. Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pKa shifts for Asp26/Asp20 in thioredoxin. Biophys. J. 2008, 95, 1080–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Gunsteren, W.F.; Huenenberger, P.H.; Mark, A.E.; Smith, P.E.; Tironi, I.G. Computer simulation of protein motion. Comput. Phys. Commun. 1995, 91, 305–319. [Google Scholar] [CrossRef]
- Georg, H.C.; Coutinho, K.; Canuto, S. Solvent effects on the UV-visible absorption spectrum of benzophenone in water: A combined Monte Carlo quantum mechanics study including solute polarization. J. Chem. Phys. 2000, 113, 9132–9139. [Google Scholar] [CrossRef]
- Ali, A.; Le, T.T.B.; Striolo, A.; Cole, D.R. Salt Effects on the Structure and Dynamics of Interfacial Water on Calcite Probed by Equilibrium Molecular Dynamics Simulations. J. Phys. Chem. C 2020, 124, 24822–24836. [Google Scholar] [CrossRef]
- Manzoni, V.; Lyra, M.L.; Gester, R.M.; Coutinho, K.; Canuto, S. Study of the optical and magnetic properties of pyrimidine in water combining PCM and QM/MM methodologies. Phys. Chem. Chem. Phys. 2010, 12, 14023–14033. [Google Scholar] [CrossRef] [PubMed]
- Glover, W.J.; Larsen, R.E.; Schwartz, B.J. Simulating the formation of sodium:electron tight-contact pairs: Watching the solvation of atoms in liquids one molecule at a time. J. Phys. Chem. A 2011, 115, 5887–5894. [Google Scholar] [CrossRef] [PubMed]
Mutation | Exp (nm) a | 1B (nm) | 2B (nm) | Dev. (1B) | Dev. (2B) |
---|---|---|---|---|---|
Q105D | 510 | 495 | 512 | −15 | 2 |
Q105W | 527 | 504 | 521 | −23 | −6 |
Q105C | 512 | 507 | 511 | −5 | −1 |
Q105L | 516 | 518 | 522 | 2 | 6 |
PR105Q | 493 | 495 | 496 | 2 | 3 |
Q105M | 524 | 512 | 528 | −12 | 4 |
Q105Y | 524 | 519 | 525 | −5 | 1 |
Q105V | 523 | 520 | 525 | −3 | 2 |
Q105I | 517 | 512 | 518 | −5 | 1 |
Q105K | 529 | 537 | 538 | 8 | 9 |
Average | −5.6 | 2.1 | |||
MUE | 8.0 | 3.5 |
Res. Name | Ex (eV) | ΔEx (meV) | ΔWL (nm) |
---|---|---|---|
LYR231 a | 2.2348 | 0.0 | 0.0 |
LEU40 | 2.2329 | −1.9 | 0.5 |
VAL68 | 2.2392 | 4.4 | −1.1 |
THR69 | 2.2322 | −2.6 | 0.7 |
ALA72 | 2.2317 | −3.1 | 0.8 |
TYR95 | 2.2326 | −2.2 | 0.5 |
ASP97 | 2.5027 | 267.9 | −59.5 |
TRP98 | 2.2182 | −16.6 | 4.2 |
THR101 | 2.2258 | −9.0 | 2.2 |
VAL102 | 2.2265 | −8.3 | 2.1 |
ASP105 | 2.2779 | 43.1 | −10.5 |
MET134 | 2.2084 | −26.3 | 6.6 |
LEU135 | 2.2155 | −19.3 | 4.8 |
GLY138 | 2.2395 | 4.7 | −1.2 |
ALA151 | 2.2183 | −16.4 | 4.1 |
PHE152 | 2.2119 | −22.9 | 5.7 |
GLY155 | 2.2345 | −0.2 | 0.1 |
CYS156 | 2.2202 | −14.6 | 3.7 |
TRP159 | 2.2239 | −10.9 | 2.7 |
TRP197 | 2.2344 | −0.3 | 0.1 |
TYR200 | 2.2551 | 20.3 | −5.0 |
PRO201 | 2.2289 | −5.8 | 1.5 |
TYR204 | 2.2308 | −4.0 | 1.0 |
TYR223 | 2.2343 | −0.5 | 0.1 |
ASP227 | 2.4446 | 209.8 | −47.7 |
PHE228 | 2.2364 | 1.6 | −0.4 |
PHE234 | 2.2344 | −0.4 | 0.1 |
GLY235 | 2.2341 | −0.7 | 0.2 |
Mutations | Exp. (eV) | 2B (eV) | 1B (eV) | Ave. Field a (MV/cm) | Ave. Field b (MV/cm) | Distance (C10-C1) |
---|---|---|---|---|---|---|
Q105D | 2.436 | 2.428 | 2.509 | 22.7 | 25.9 | 9.849 |
Q105W | 2.357 | 2.382 | 2.460 | 22.1 | 21.1 | 9.809 |
Q105C | 2.427 | 2.431 | 2.445 | 20.2 | 18.3 | 9.799 |
Q105L | 2.408 | 2.378 | 2.396 | 19.8 | 20.0 | 9.826 |
PR105Q | 2.520 | 2.502 | 2.509 | 19.6 | 21.6 | 9.826 |
Q105M | 2.371 | 2.353 | 2.422 | 19.2 | 21.1 | 9.824 |
Q105Y | 2.371 | 2.365 | 2.391 | 17.5 | 18.0 | 9.830 |
Q105V | 2.375 | 2.365 | 2.390 | 17.0 | 16.3 | 9.850 |
Q105I | 2.403 | 2.398 | 2.427 | 16.7 | 16.7 | 9.855 |
Q105K | 2.349 | 2.311 | 2.315 | 13.2 | 16.3 | 9.857 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.; Jin, X.; Glover, W.J.; He, X. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method. Molecules 2021, 26, 4486. https://doi.org/10.3390/molecules26154486
Shen C, Jin X, Glover WJ, He X. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method. Molecules. 2021; 26(15):4486. https://doi.org/10.3390/molecules26154486
Chicago/Turabian StyleShen, Chenfei, Xinsheng Jin, William J. Glover, and Xiao He. 2021. "Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method" Molecules 26, no. 15: 4486. https://doi.org/10.3390/molecules26154486
APA StyleShen, C., Jin, X., Glover, W. J., & He, X. (2021). Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method. Molecules, 26(15), 4486. https://doi.org/10.3390/molecules26154486