Effect of Encapsulated Beet Extracts (Beta vulgaris) Added to Yogurt on the Physicochemical Characteristics and Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Analysis
2.2. pH and Syneresis (SYN)
2.3. Color
2.4. Antioxidant Activity (AA)
2.5. Total Polyphenols (TP)
2.6. Total Betalains (TB)
2.7. Total Protein Concentration (TPC)
2.8. Correlation between Variables
3. Materials and Methods
3.1. Materials
3.2. Reagents
3.3. Yogurt Elaboration
3.4. Preparation of Beet Extracts
3.5. Treatments
3.5.1. Physicochemical Analysis
3.5.2. pH and Syneresis
3.5.3. Color
3.5.4. Yogurt Aqueous Extract
3.5.5. Antioxidant Activity
3.5.6. Polyphenols Content
3.5.7. Extraction of Betalains
3.5.8. Total Betalains Content
3.5.9. Total Protein Concentration
3.5.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Salmerón, I. Fermented cereal beverages: From probiotic, prebiotic and synbiotic towards Nanoscience designed healthy drinks. Lett. Appl. Microbiol. 2017, 65, 114–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, N.P. Functional cultures and health benefits. Int. Dairy J. 2007, 17, 1262–1277. [Google Scholar] [CrossRef]
- Flores-Mancha, M.A.; Ruiz-Gutiérrez, M.G.; Renteria-Monterubio, A.L.; Sanchez-Vega, R.; Juarez-Moya, J.; Santellano-Estrada, E.; Chavez-Martinez, A. Stirred yogurt added with beetrot extracts as an antioxidant source: Rheological, sensory, and physicochemical characteristics. J. Food Process. Preserv. 2021, 53, 1689–1699. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packag. Shelf Life 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Cho, W.Y.; Kim, D.H.; Lee, H.J.; Yeon, S.J.; Lee, C.H. Quality characteristic and antioxidant activity of yogurt containing olive leaf hot water extract. CYTA J. Food 2020, 18, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Son, Y.-J.; Kwon, S.-H.; Kim, S. Biochemical and antioxidant activity of yogurt supplemented with paprika juice of different colors. Food Sci. Anim. Resour. 1390, 40, 613–627. [Google Scholar] [CrossRef]
- Shori, A.B. Proteolytic activity, antioxidant, and α-Amylase inhibitory activity of yogurt enriched with coriander and cumin seeds. LWT 2020, 133, 109912. [Google Scholar] [CrossRef]
- Sabeena-Farvin, K.H.; Baron, C.P.; Nielsen, S.; Otte, J.; Jacobsen, C. Antioxidant activity of yoghurt peptides: Part 2—Characterisation of peptide fractions. Food Chem. 2010, 123, 1090–1097. [Google Scholar] [CrossRef]
- Cho, W.; Yeon, S.; Hong, G.; Kim, J. Antioxidant activity and quality characteristics of yogurt added Green olive powder during storage. Korean J. Food Sci. Anim. Res. 2017, 37, 865–872. [Google Scholar]
- Yeon, S.; Hong, G.; Kim, C.; Park, W.J.; Kim, S.; Lee, C. Effects of yogurt containing fermented pepper juice on the body fat and cholesterol level in high fat and high cholesterol diet fed rat. Korean J. Food Sci. An. Res. 2015, 35, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Parra-Huertas, R.A. Effect of green tea (Camellia sinensis L.) on the physicochemical, microbiological, proximal and sensory characteristics of yogurt during refrigerated storage. Aliment. Cienc. Tecnol. Aliment. 2013, 11, 56–64. [Google Scholar]
- Ramos-Arrieta, K.; Zabaleta, K.; Granados-Conde, C. Preparation of a Standardized Yogurt with the Addition of Hibiscus Sabdariffa (Jamaica Flower) with Antioxidant Functional. Property Thesis, Universidad de Cartagena, Bolívar, Colombia, 2013. Available online: https://repositorio.unicartagena.edu.co (accessed on 20 July 2021).
- Šeregelj, V.; Pezo, L.; Šovljanski, O.; Lević, S.; Nedović, V.; Markov, S.; Tomić, A.; Čanadanović-Brunet, J.; Vulić, J.; Šaponjac, V.T.; et al. New concept of fortified yogurt formulation with encapsulated carrot waste extract. LWT Food Sci. Technol. 2020, 138, 110732. [Google Scholar] [CrossRef]
- Gies, M.; Descalzo, A.M.; Servent, A.; Dhuique-Mayer, C. Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. LWT 2019, 111, 105–110. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Jiménez, A.R.; Paredes-López, O. Natural pigments: Carotenoids, anthocyanins, and betalains—Characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Santos, J.; Franco-Zavaleta, M.; Pelayo-Zaldivar, C.; Armella-Villalpando, M.; Yañez-López, M.; Guerrero-Legarreta, I. Partial characterization of the red pigment of the “Jiotilla” fruit (Escontria chiotilla [Weber] Britton & Rose). Rev. Mex. Ing. Química 2007, 6, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Amaya, D.B. Natural food pigments and colorants. Curr. Opin. Food Sci. 2016, 7, 20–26. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Granit, R. Betalains-A New class of dietary cationized antioxidants. J. Agric. Food Chem. 2001, 49, 5178–5185. [Google Scholar] [CrossRef]
- Kapadia, G.J.; Azuine, M.A.; Sridhar, R.; Okuda, Y.; Tsuruta, A.; Ichiishi, E.; Mukainake, T.; Takasaki, M.; Konoshima, T.; Nishino, H.; et al. Chemoprevention of DMBA-induced UV-B promoted, NOR-1-induced TPA promoted skin carcinogenesis, and DEN-induced phenobarbital promoted liver tumors in mice by extract of beetroot. Pharmacol. Res. 2003, 47, 141–148. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; García-Carmona, F. Biosynthesis of betalains: Yellow and violet plant pigments. Trends Plant Sci. 2013, 18, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Gandía-Herrero, F.; Cabanes, J.; Escribano, J.; García-Carmona, F.; Jiménez-Atiénzar, M. Encapsulation of the most potent antioxidant betalains in edible matrixes as powders of different colors. J. Agric. Food Chem. 2013, 61, 4294–4302. [Google Scholar] [CrossRef]
- Kapadia, G.J.; Subba, R.G. Red Beet Biotechnology; Neelwarne, B., Ed.; Springer: New York, NY, USA, 2013; ISBN 9781461434573. [Google Scholar]
- Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. Biological activities of plant pigments betalains biological activities of plant pigments betalains. Crit. Rev. Food Sci. Nutr. 2016, 56, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Mikołajczyk-Bator, K.; Pawlak, S. The effect of thermal treatment on antioxidant capacity and pigment contents in separated betalain fractions. Acta Sci. Pol. Technol. Aliment. 2016, 15, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Ciriminna, R.; Fidalgo, A.; Danzì, C.; Timpanaro, G.; Ilharco, L.M.; Pagliaro, M. Betanin: A bioeconomy insight into a valued betacyanin. ACS Sustain. Chem. Eng. 2018, 6, 2860–2865. [Google Scholar] [CrossRef]
- Martínez, L.; Cilla, I.; Beltrán, J.A.; Roncalés, P. Comparative effect of red yeast rice (Monascus purpureus), red beet root (Beta vulgaris) and betanin (E-162) on colour and consumer acceptability of fresh pork sausages packaged in a modified atmosphere. J. Sci. Food Agric. 2006, 86, 500–508. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Von Elbe, J.H.; Young-Maing, I.; Amundson, C.H. Color stability os betanin. J. Food Sci. 1974, 39, 334–337. [Google Scholar] [CrossRef]
- Huang, A.; Von Elbe, J. Kinetics of the degradation and regeneration of betanine. J. Food Sci. 1985, 50, 1115–1120. [Google Scholar] [CrossRef]
- Penfield, M.; Campbell, A. Fruits and vegetables. In Experimental Food Science; Academic Press: San Diego, CA, USA, 1990; Volume 3, pp. 294–330. [Google Scholar]
- Reyes-Aguilar, S.L. Processing Effect on the Stability of Polyphenols in Mango Extract (Mangifera indica L.). Thesis, Escuela Agrícola Panamericana, Tegucigalpa, Honduras, 2014. Available online: https://bdigital.zamorano.edu/bitstream/11036/3374/1/AGI-2014-T038.pdf (accessed on 20 July 2021).
- Slimen, I.B.; Najar, T.; Abderrabba, M. Chemical and antioxidant properties of betalains. J. Agric. Food Chem. 2017, 65, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Von Elbe, J.; Schwartz, S. Colorants. In Food Chemistry; Marcel Dekker: New York, NY, USA, 1996; Volume 651, p. 722. [Google Scholar]
- Wong, Y.M.; Siow, L.F. Effects of heat, pH, antioxidant, agitation and light on betacyanin stability using red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate as models. J. Food Sci. Technol. 2015, 52, 3086–3092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serris, G.S.; Biliaderis, C.G. Degradation kinetics of beetroot pigment encapsulated in polymeric matrices. J. Sci. Food Agric. 2001, 700, 691–700. [Google Scholar] [CrossRef]
- Herbach, K.; Stintzing, F.; Carle, R. Betalain stability and degradation. J. Food Sci. 2006, 71, 41–50. [Google Scholar] [CrossRef]
- Herbach, K.M.; Rohe, M.; Stintzing, F.C.; Carle, R. Structural and chromatic stability of purple pitaya (Hylocereus polyrhizus [Weber] Britton & Rose) betacyanins as affected by the juice matrix and selected additives. Food Res. Int. 2006, 39, 667–677. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Stability and color changes of thermally treated betanin, phyllocactin, and hylocerenin solutions. J. Agric. Food Chem. 2006, 54, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Trichterborn, J.; Carle, R. Characterisation of anthocyanin-betalain mixtures for food colouring by chromatic and HPLC-DAD-MS analyses. Food Chem. 2006, 94, 296–309. [Google Scholar] [CrossRef]
- Martins, N.; Roriz, C.; Morales, P.; Barrosa, L.; Ferreira, I. Coloring attributes of betalains: A key emphasis on stability and future applications. Food Funct. 2017, 8, 1357–1372. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mancha, M.A.; Renteria-Monterubio, A.L.; Sanchez-Vega, R.; Chavez-Martinez, A. Structure and stability of betalains. Investig. Y Cienc. 2019, 44, 318–325. [Google Scholar]
- Flores-Mancha, M.A.; Ruíz-Gutiérrez, M.G.; Sánchez-Vega, R.; Santellano-Estrada, E.; Chávez-Martínez, A. Characterization of beet root extract (Beta vulgaris) encapsulated with maltodextrin and inulin. Molecules 2020, 25, 5498. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. The role of phenolic hydroxy groups in the free radical scavenging activity of betalains. J. Nat. Prod. 2009, 72, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Obón, J.M.; Castellar, M.R.; Alacid, M.; Fernández-lópez, J.A. Production of a red-purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. J. Food Eng. 2009, 90, 471–479. [Google Scholar] [CrossRef]
- López, A.; Deladino, L.; Navarro, S.; Martino, M. Encapsulation of bioactive compounds with alginates for the food industry. Aliment. Cienc. Y Tecnol. Aliment. 2012, 10, 18–27. [Google Scholar]
- Omae, J.M.; Goto, P.A.; Rodrigues, L.M.; Santos, S.; Paraiso, C.M.; Madrona, G.S.; Bergamasco, D.C. Beetroot extract encapsulated in inulin: Storage stability and incorporation in sorbet. Chem. Eng. Trans. 2017, 57, 1843–1848. [Google Scholar] [CrossRef]
- Diaz, Y.L.; Torres, L.S.; Serna, J.A. Effect of encapsulation in drying by atomization of biocomponents of yellow pitahaya with functional interest. Inf. Tecnol. 2017, 28, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Saénz, C.; Tapia, S.; Chávez, J.; Robert, P. Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficusindica). Food Chem. 2009, 114, 616–622. [Google Scholar] [CrossRef]
- Castellar, R.; Obón, J.; Alacid, M.; Fernández-López, J. Color properties and stability of betacyanins from Opuntia fruits. J. Agric. Food Chem. 2003, 51, 2772–2776. [Google Scholar] [CrossRef] [PubMed]
- Parra-Huertas, R. Evaluacion fisicoquimica, proximal y sensorial de una bebida lactea fermentada con concentrado de rubas (Ullucus tuberosus). Vitae 2012, 19, 225–227. [Google Scholar]
- Sanchez, N.; Sepulveda, J.; Rojano, B. Development of a milk drink with extracts of curuba (Passiflora mollissima Bailey) as a natural antioxidant. Biotecnol. Sect. Agropecu. Agroind. 2013, 11, 164–173. [Google Scholar]
- Parra-Huertas, R. Physicochemical, sensory, proximal and microbiological characteristics of yoghurt with. Temas Agrar. 2014, 19, 146–158. [Google Scholar]
- Parra-Huertas, R.A. Use of Rubas (Ullucus tuberosus) in the elaboration and characterization of a yogurt. Temas Agrar. 2015, 20, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Rodríguez, G.; Salazar-Tijerino, M. Effect of Betalains and Total Soluble Phenols of Pitahaya (Hylocereus polyrhizus) as Antioxidants in Yogurt. Thesis, Escuela Agrícola Panamericana, Tegucigalpa, Honduras, 2017; p. 28. Available online: https://bdigital.zamorano.edu/bitstream/11036/6060/1/AGI-2017-029.pdf (accessed on 20 July 2021).
- Macedo-Ramírez, R.C.; Vélez-Ruíz, J.F. Physicochemical and flow properties of a seated yogurt enriched with microcapsules containing omega 3 fatty acids. Inf. Tecnol. 2015, 26, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Jimenez, B.; Sosa-Morales, M.; Velez-Ruiz, J. Effect of the addition of fiber and the reduction of fat on the physicochemical properties of yogurt. Rev. Mex. Ing. Quím. 2004, 3, 287–305. [Google Scholar]
- Achanta, K.; Aryana, K.J.; Boeneke, C.A. Fat free plain set yogurts fortified with various minerals. LWT Food Sci. Technol. 2007, 40, 424–429. [Google Scholar] [CrossRef]
- Antigo, J.L.D.; Bergamasco, R.D.C.; Madrona, G.S. Effect of ph on the stability of red beet extract (Beta vulgaris l.) microcapsules produced by spray drying or freeze drying. Food Sci. Technol. 2017, 38, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Pitalua, E.; Jimenez, M.; Vernon-Carter, E.J.; Beristain, C.I. Antioxidative activity of microcapsules with beetroot juice using gum Arabic as wall material. Food Bioprod. Process. 2010, 88, 253–258. [Google Scholar] [CrossRef]
- Anese, M.; Calligaris, S.; Nicoli, M.C.; Massini, R. Influence of total solids concentration and temperature on the changes in redox potential of tomato pastes. Int. J. Food Sci. Technol. 2003, 38, 55–61. [Google Scholar] [CrossRef]
- Sawicki, T.; Wiczkowski, W. The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem. 2018, 259, 292–303. [Google Scholar] [CrossRef]
- Ruiz-Gutiérrez, M.G.; Amaya-Guerra, C.A.; Quintero-Ramos, A.; Ruiz-Anchondo, T.D.J.; Gutiérrez-Uribe, J.A.; Baez-González, J.G.; Lardizabal-Gutiérrez, D.; Campos-Venegas, K. Effect of soluble fiber on the physicochemical properties of cactus pear (Opuntia ficus indica) encapsulated using spray drying. Food Sci. Biotechnol. 2014, 23, 755–763. [Google Scholar] [CrossRef]
- Janiszewska, E. Microencapsulated beetroot juice as a potential source of betalain. Powder Technol. 2014, 264, 190–196. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Barragán-Huerta, B.; Yáñez-Fernández, J. Use of gelatin-maltodextrin composite as an encapsulation support for clari fi ed juice from purple cactus pear (Opuntia stricta). LWT Food Sci. Technol. 2015, 62, 242–248. [Google Scholar] [CrossRef]
- Ayed, L.; Hamdi, M. Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation. Ann. Microbiol. 2015, 65, 2293–2299. [Google Scholar] [CrossRef]
- Azeredo, H.; Santos, A.; Souza, A.; Mendes, K.; Andrade, M.I. Betacyanin stability during processing and storage of a microencapsulated red beetroot extract. Am. J. Food Technol. 2007, 2, 307–312. [Google Scholar] [CrossRef]
- Attoe, E.L.; von Elbe, J.H. Oxygen involvement in betanin degradation-Oxygen uptake and influence of metal ions. Z. Für. Lebensm. Unters. Und. Forsch. 1984, 179, 232–236. [Google Scholar] [CrossRef]
- Huang, A.; Von Elbe, J. Effect of pH on the degradation and regeneration of betanine. J. Food Sci. 1987, 52, 1689–1693. [Google Scholar] [CrossRef]
- von Elbe, J.; Attoe, E. Oxygen involvement in betanine degradation–Measurement of active oxygen species and oxidationreduction potentials. Food Chem. 1985, 16, 49–67. [Google Scholar] [CrossRef]
- Azeredo, H.M.C. Betalains: Properties, sources, applications, and stability-A review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Gandía-Herrero, F.; Jiménez-Atiénzar, M.; Cabanes, J.; García-Carmona, F.; Escribano, J. Stabilization of the bioactive pigment of opuntia fruits through maltodextrin encapsulation. J. Agric. Food Chem. 2010, 58, 10646–10652. [Google Scholar] [CrossRef]
- Ravichandran, K.; Palaniraj, R.; Min, N.; Thaw, M.; Gabr, A.M.M.; Ahmed, A.R.; Knorr, D.; Smetanska, I. Effects of different encapsulation agents and drying process on stability of betalains extract. J. Food Sci. Technol. 2014, 51, 2216–2221. [Google Scholar] [CrossRef] [Green Version]
- Jayabalan, R.; Marimuthu, S.; Swaminathan, K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem. 2007, 102, 392–398. [Google Scholar] [CrossRef]
- Khan, M.I. Stabilization of betalains: A review. Food Chem. 2016, 197, 1280–1285. [Google Scholar] [CrossRef]
- Castillo-Garrido, I.C. Stability of Betalains in A Dry Mix for Refreshing Beverages, Based on Microencapsulated Pulp and Extract of Purple Prickly Pear (Opuntia Ficus-Indica). Repositorio Universidad de Chile. 2013. Available online: http://repositorio.uchile.cl/bitstream/handle/2250/113994/castillo_ic.pdf?sequence=1&isAllowed=y (accessed on 20 July 2021).
- Vergara, C. Extraction and Stabilization of Betalains from Purple Prickly Pear (Opuntia Ficusindica) using Membrane Technology and Microencapsulation, as A Food Coloring. Thesis, Universidad de Chile, Santiago, Región Metropolitana, Chile, 2013. Available online: http://repositorio.uchile.cl/handle/2250/114868 (accessed on 20 July 2021).
- Nicoli, M.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Özturk, B.; Óner, M. Production and evaluation of yogurt with concentrated grape juice. J. Food Sci. 1999, 64, 530–532. [Google Scholar] [CrossRef]
- Aportela-Palacios, A.; Sosa-Morales, M.E.; Vélez-Ruiz, J.F. Rheological and physicochemical behavior of fortified yogurt, with fiber and calcium. J. Texture Stud. 2005, 36, 333–349. [Google Scholar] [CrossRef]
- Torres-Llanez, M.J.; Vallejo-Cordoba, B.; Díaz-Cinco, M.E.; Mazorra-Manzano, M.A.; González-Córdova, A.F. Characterization of the natural microflora of artisanal Mexican Fresco cheese. Food Control 2011, 17, 683–690. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic 1965, 16, 144–158. [Google Scholar]
- Xu, B.J.; Chang, S.K.C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, S159–S166. [Google Scholar] [CrossRef] [PubMed]
- Güneşer, O. Pigment and color stability of beetroot betalains in cow milk during thermal treatment. Food Chem. 2016, 196, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 254, 248–254. [Google Scholar] [CrossRef]
Treatment | % Fat | % Protein | % Moisture | % Ashes |
---|---|---|---|---|
T1 | 5.09 ± 0.45 a | 3.87 ± 0.31 b | 78.94 ± 0.15 b | 0.18 ± 0.01 a |
T2 | 5.02 ± 0.86 a | 3.88 ± 0.36 b | 79.92 ± 0.12 a | 0.18 ± 0.01 a |
T3 | 5.49 ± 0.81 a | 4.88 ± 0.22 a | 78.10 ± 0.17 d | 0.18 ± 0.02 a |
T4 | 5.36 ± 0.32 a | 4.84 ± 0.48 a | 78.60 ± 0.33 c | 0.19 ± 0.02 a |
Parameter | Day | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
L* | 1 | 96.354 ± 2.543 Aa | 43.700 ± 1.376 Db | 79.330 ± 1.441 Cb | 83.678 ± 0.659 Ba |
7 | 88.170 ± 1.294 Ab | 41.780 ± 1.828 Dc | 82.079 ± 2.189 Ca | 80.719 ± 0.503 Bc | |
14 | 87.528 ± 2.448 Ac | 50.884 ± 1.742 Da | 76.927 ± 2.739 Cc | 82.225 ± 1.033 Bb | |
a* | 1 | −3.522 ± 0.124 Cb | 32.763 ± 1.729 Ab | 22.705 ± 0.998 Ba | 21.076 ± 0.688 Bb |
7 | −3.272 ± 0.232 Ca | 30.701 ± 1.254 Ab | 21.581 ± 0.601 Bb | 22.822 ± 0.051 Ba | |
14 | −3.266 ± 0.106 Ca | 39.563 ± 3.047 Aa | 22.137 ± 0.816 Bb | 22.118 ± 0.732 Ba | |
b* | 1 | 8.612 ± 0.303 Ab | 2.174 ± 0.209 Bb | 0.617 ± 0.097 Db | 1.574 ± 0.380 Ca |
7 | 9.533 ± 0.281 Aa | 3.254 ± 0.077 Ba | 1.344 ± 0.248 Da | 0.696 ± 0.024 Cb | |
14 | 9.037 ± 0.132 Aa | 3.527 ± 0.414 Ba | 1.182 ± 0.117 Da | 1.169 ± 0.127 Ca | |
C* | 1 | 9.305 ± 0.278 Cb | 32.835 ± 1.735 Ab | 22.713 ± 0.998 Ba | 21.135 ± 0.673 Bb |
7 | 10.078 ± 0.314 Ca | 30.873 ± 1.241 Ab | 21.623 ± 0.595 Bb | 22.833 ± 0.503 Ba | |
14 | 9.609 ± 0.134 Cb | 39.720 ± 3.067 Aa | 22.169 ± 0.819 Bb | 22.149 ± 0.732 Ba | |
h* | 1 | 2.445 ± 0.134 Cc | 0.066 ± 0.005 Ac | 0.027 ± 0.004 Bc | 0.075 ± 0.019 Ba |
7 | 2.913 ± 0.168 Ca | 0.106 ± 0.006 Aa | 0.062 ± 0.012 Ba | 0.030 ± 0.002 Bc | |
14 | 2.767 ± 0.091 Cb | 0.089 ± 0.006 Ab | 0.053 ± 0.005 Bb | 0.053 ± 0.006 Bb | |
∆E | 1 | - | 64.268 ± 1.584 Aa | 32.273 ± 1.803 Ba | 28.553 ± 1.059 Ca |
7 | - | 57.841 ± 1.971 Ab | 26.867 ± 0.739 Bb | 28.539 ± 0.690 Ca | |
14 | - | 56.635 ± 2.469 Ab | 28.626 ± 1.782 Bb | 27.099 ± 1.012 Cb |
DPPH˙ | TP | TB | BC | BX | TPC | L* | a* | b* | pH | SYN | |
---|---|---|---|---|---|---|---|---|---|---|---|
ABTS˙ | 0.9652 | 0.8263 | 0.9281 | 0.9231 | 0.9361 | 0.8022 | −0.9306 | 0.8322 | −0.4192 | 0.3101 | 0.7143 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
DPPH˙ | 0.8002 | 0.9395 | 0.9355 | 0.9447 | 0.8128 | −0.9463 | 0.8017 | −0.3518 | 0.2469 | 0.7660 | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
TP | 0.8615 | 0.8621 | 0.8552 | 0.7917 | −0.7921 | 0.4929 | 0.0126 | 0.2085 | 0.7890 | ||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.8217 | 0.0002 | <0.0001 | ||
TB | 0.9994 | 0.9960 | 0.8822 | −0.9410 | 0.7054 | −0.1638 | 0.2006 | 0.8773 | |||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0031 | 0.0003 | <0.0001 | |||
BC | 0.9924 | 0.8802 | −0.9355 | 0.6979 | −0.1525 | 0.1949 | 0.8802 | ||||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0059 | 0.0004 | <0.0001 | ||||
BX | 0.8827 | −0.9502 | 0.7214 | −0.1927 | 0.2147 | 0.8645 | |||||
p-value | <0.0001 | <0.0001 | <0.0001 | 0.0005 | <0.0001 | <0.0001 | |||||
TPC | −0.8939 | 0.5308 | −0.0260 | 0.2972 | 0.8480 | ||||||
p-value | <0.0001 | <0.0001 | 0.6416 | <0.0001 | <0.0001 | ||||||
L* | −0.7702 | 0.3215 | −0.2102 | −0.8032 | |||||||
p-value | <0.0001 | <0.0001 | 0.0001 | <0.0001 | |||||||
a* | −0.7934 | 0.1319 | 0.4245 | ||||||||
p-value | <0.0001 | 0.0175 | <0.0001 | ||||||||
b* | −0.1343 | 0.1679 | |||||||||
p-value | 0.0156 | 0.0024 | |||||||||
pH | −0.0415 | ||||||||||
p-value | 0.4562 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Mancha, M.A.; Ruíz-Gutiérrez, M.G.; Sánchez-Vega, R.; Santellano-Estrada, E.; Chávez-Martínez, A. Effect of Encapsulated Beet Extracts (Beta vulgaris) Added to Yogurt on the Physicochemical Characteristics and Antioxidant Activity. Molecules 2021, 26, 4768. https://doi.org/10.3390/molecules26164768
Flores-Mancha MA, Ruíz-Gutiérrez MG, Sánchez-Vega R, Santellano-Estrada E, Chávez-Martínez A. Effect of Encapsulated Beet Extracts (Beta vulgaris) Added to Yogurt on the Physicochemical Characteristics and Antioxidant Activity. Molecules. 2021; 26(16):4768. https://doi.org/10.3390/molecules26164768
Chicago/Turabian StyleFlores-Mancha, Martha A., Martha G. Ruíz-Gutiérrez, Rogelio Sánchez-Vega, Eduardo Santellano-Estrada, and América Chávez-Martínez. 2021. "Effect of Encapsulated Beet Extracts (Beta vulgaris) Added to Yogurt on the Physicochemical Characteristics and Antioxidant Activity" Molecules 26, no. 16: 4768. https://doi.org/10.3390/molecules26164768
APA StyleFlores-Mancha, M. A., Ruíz-Gutiérrez, M. G., Sánchez-Vega, R., Santellano-Estrada, E., & Chávez-Martínez, A. (2021). Effect of Encapsulated Beet Extracts (Beta vulgaris) Added to Yogurt on the Physicochemical Characteristics and Antioxidant Activity. Molecules, 26(16), 4768. https://doi.org/10.3390/molecules26164768