Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis sativa L. Cultivars
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oils Extractions
2.2. Essential Oils Chemical Composition
2.3. Antioxidant Capacity (AOC) Evaluation
2.4. Antimicrobial Activity Evaluation
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oils Distillation
3.3. Chemical Characterization
3.4. Antioxidant Capacity and Total Phenolic Content
3.5. Antimicrobial Activity
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Wei, A.; Shibamoto, T. Antioxidant/Lipoxygenase Inhibitory Activities and Chemical Compositions of Selected Essential Oils. J. Agric. Food Chem. 2010, 58, 7218–7225. [Google Scholar] [CrossRef]
- Janero, D.R.; Vemuri, V.K.; Makriyannis, A. The Molecular Basis of Cannabinoid Activity: Application to Therapeutics Design and Discovery for Cannabis Use Disorders. In Cannabis Use Disorders, 1st ed.; Montoya, I.D., Weiss, S.R.B., Eds.; Springer: Cham, Switzerland, 2019; pp. 43–54. [Google Scholar]
- Peng, H.; Shahidi, F. Cannabis and Cannabis Edibles: A Review. J. Agric. Food Chem. 2021, 69, 1751–1774. [Google Scholar] [CrossRef]
- Karas, J.A.; Wong, L.J.; Paulin, O.K.; Mazeh, A.C.; Hussein, M.H.; Li, J.; Velkov, T. The antimicrobial activity of cannabinoids. Antibiotics 2020, 9, 406. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Santini, G.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; Canale, A.; Maggi, F. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind. Crop. Prod. 2018, 122, 308–315. [Google Scholar] [CrossRef]
- Happyana, N.; Kayser, O. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR. Planta Med. 2016, 82, 1217–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef]
- Calzolari, D.; Magagnini, G.; Lucini, L.; Grassi, G.; Appendino, G.; Amaducci, S. High added-value compounds from Cannabis threshing residues. Ind. Crop. Prod. 2017, 108, 558–563. [Google Scholar] [CrossRef]
- Palmieri, S.; Pellegrini, M.; Ricci, A.; Serio, A.; Paparella, A.; Lo Sterzo, C. In vitro antioxidant and antimicrobial activity of Cannabis sativa L. Cv. ‘Futura 75’ essential oil. Nat. Prod. Res. 2020, 1–6. [Google Scholar] [CrossRef]
- Zengin, G.; Menghini, L.; Di Sotto, A.; Mancinelli, R.; Sisto, F.; Carradori, S.; Cesa, S.; Fraschetti, C.; Filippi, A.; Angiolella, L. Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. Essential oil: A multidisciplinary study. Molecules 2018, 23, 3266. [Google Scholar] [CrossRef] [Green Version]
- Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 2010, 81, 413–419. [Google Scholar] [CrossRef]
- Marini, E.; Magi, G.; Ferretti, G.; Bacchetti, T.; Giuliani, A.; Pugnaloni, A.; Rippo, M.R.; Facinelli, B. Attenuation of Listeria monocytogenes virulence by Cannabis sativa L. essential oil. Front. Cell. Infect. Microbiol. 2018, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Dima, C.; Dima, S. Essential oils in foods: Extraction, stabilization, and toxicity. Curr. Opin. Food Sci. 2015, 5, 29–35. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268–127275. [Google Scholar] [CrossRef]
- Novak, J.; Zitterl-Eglseer, K.; Deans, S.G.; Franz, C.M. Essential oils of different cultivars of Cannabis sativa L. and their antimicrobial activity. Flavour Fragr. J. 2001, 16, 259–262. [Google Scholar] [CrossRef]
- Pellegrini, M.; Ricci, A.; Serio, A.; Chaves-López, C.; Mazzarrino, G.; D’Amato, S.; Lo Sterzo, C.; Paparella, A. Characterization of essential oils obtained from Abruzzo autochthonous plants: Antioxidant and antimicrobial activities assessment for food application. Foods 2018, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Iseppi, R.; Brighenti, V.; Licata, M.; Lambertini, A.; Sabia, C.; Messi, P.; Pellati, F.; Benvenuti, S. Chemical Characterization and Evaluation of the Antibacterial Activity of Essential Oils from Fibre-Type Cannabis sativa L.(Hemp). Molecules 2019, 24, 2302. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, P.L.B.; Pinto, L.C.; da Costa, J.S.; da Silva, A.R.C.; Mourão, R.H.V.; Montenegro, R.C.; da Silva, J.K.R.; Maia, J.G.S. Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. J. Ethnopharmacol. 2019, 232, 30–38. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Ozer, M.S.; Calli, N.; Popović-Djordjević, J. Essential oil composition and antioxidant activity of endemic Marrubium parviflorum subsp. oligodon. Ind. Crop. Prod. 2018, 119, 209–213. [Google Scholar] [CrossRef]
- Nafis, A. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind. Crop. Prod. 2019, 197, 396–400. [Google Scholar] [CrossRef]
- Salleh, W.M.N.H.; Kammil, M.F.; Ahmad, F.; Sirat, H.M. Antioxidant and anti-inflammatory activities of essential oil and extracts of Piper miniatum. Nat. Prod. Commun. 2015, 10, 2005–2008. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Kasrati, A.; Alaoui Jamali, C.; Bekkouche, K.; Spooner-Hart, R.; Leach, D.; Abbad, A. Chemical characterization and insecticidal properties of essential oils from different wild populations of Mentha suaveolens subsp. timija (Briq.) Harley from Morocco. Chem. Biodivers. 2015, 12, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf. B Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Wen-Bing, H.E.; Zhang, B.Q. Comparison on the Compositions and Antioxidant Activity of Essential Oil from the Fruits of Phellodendron amurense Rupr. Under Four Different Picking Stage. Plants 2016, 19, 328–338. [Google Scholar]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simoes, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
- Aelenei, P.; Miron, A.; Trifan, A.; Bujor, A.; Gille, E.; Aprotosoaie, A.C. Essential oils and their components as modulators of antibiotic activity against gram-negative bacteria. Medicines 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Langezaal, C.; Chandra, A.; Scheffer, J. Antimicrobial screening of essential oils and extracts of some Humulus lupulus L. cultivars. Pharm. Weekbl. Sci. 1992, 14, 353–356. [Google Scholar] [CrossRef]
- Ali, E.M.; Almagboul, A.Z.; Khogali, S.M.; Gergeir, U.M. Antimicrobial Activity of Cannabis sativa L. Chin. Med. 2012, 3, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Prakash, O.; Rajput, M.; Kumar, M.; Pant, A.K. Chemical Composition and Antibacterial Activity of Rhizome Oils from Hedychium coronarium Koenig and Hedychium spicatum Buch-Ham. J. Essent. Oil Bear. Plants 2013, 13, 250–259. [Google Scholar] [CrossRef]
- Buriani, A.; Fortinguerra, S.; Sorrenti, V.; Caudullo, G.; Carrara, M. Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020, 25, 1833. [Google Scholar] [CrossRef] [Green Version]
- Commission Delegated Regulation (EU) 2017/1155 of 15 February 2017 Amending Delegated Regulation (EU) No 639/2014 as Regards the Control Measures Relating to the Cultivation of Hemp, Certain Provisions on the Greening Payment, the Payment for Young Farmers in Control of a Legal Person, the Calculation of the per Unit Amount in the Framework of Voluntary Coupled Support, the Fractions of Payment Entitlements and Certain Notification Requirements Relating to the Single Area Payment Scheme and the Voluntary Coupled Support, and Amending Annex X to Regulation (EU) No 1307/2013 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/eli/reg_del/2017/1155/oj (accessed on 4 August 2021).
- Lee, M.L.; Vassilaros, D.L.; White, C.M. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal. Chem. 1979, 51, 768–773. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Masaldan, S.; Iyer, V.V. Antioxidant and antiproliferative activities of methanolic extract of Aloe vera leaves in human cancer cell lines. J. Pharm. Res. 2011, 4, 2791–2796. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
Sample | Variety | Distillation Time (hours) | EO Yield (%) |
---|---|---|---|
K | Kompolti | 2 | 0.71 c |
K 4 h | 4 | 0.72 c | |
C | Carmagnola | 2 | 0.58 e |
C 4 h | 4 | 0.58 e | |
CL | Carmagnola Lemon | 2 | 0.61 de |
CL 4 h | 4 | 0.85 b | |
GSK | Gran Sasso Kush | 2 | 1.01 a |
GSK 4 h | 4 | 0.64 d | |
F75 | Futura 75 | 2 | 0.13 f |
F75 4 h | 4 | 0.16 g |
RI 2 | Compounds | K | K 4 h | C | C 4 h | CL | CL 4 h | Gsk | Gsk 4 h | F75 | F75 4 h |
---|---|---|---|---|---|---|---|---|---|---|---|
915 | α-pinene | 12.31 ± 0.26 | 9.13 ± 0.94 | 12.75 ± 0.31 | 10.38 ± 0.34 | 12.61 ± 0.27 | 10.57 ± 1.16 | 1.022 ± 0.04 | 0.69 ± 0.04 | 17.36 ± 0.96 | 16.48 ± 1.55 |
932 | camphene | 0.09 ± 0.12 | 0.17 ± 0.00 | 0.23 ± 0.01 | 0.18 ± 0.01 | 0.30 ± 0.02 | 0.26 ± 0.02 | 0.20 ± 0.01 | 0.13 ± 0.01 | 0.51 ± 0.11 | 0.48 ± 0.03 |
959 | β-pinene | 4.64 ± 0.28 | 4.36 ± 0.04 | 5.04 ± 0.05 | 4.84 ± 0.01 | 5.55 ± 0.16 | 5.07 ± 0.22 | 1.532 ± 0.05 | 1.13 ± 0.05 | 2.84 ± 0.69 | 2.88 ± 0.25 |
969 | β-myrcene | 32.73 ± 1.69 | 27.53 ± 5.26 | 41.42 ± 0.79 | 23.83 ± 2.76 | 6.60 ± 0.12 | 6.52 ± 0.38 | 16.41 ± 0.35 | 10.85 ± 1.64 | 6.33 ± 0.51 | 5.85 ± 0.41 |
988 | α-phellandrene | 0.17 ± 0.22 | 0.26 ± 0.02 | 0.39 ± 0.02 | 0.27 ± 0.00 | 0.76 ± 0.03 | 0.69 ± 0.01 | 0.104 ± 0.00 | 0.01 ± 0.00 | 0.14 ± 0.03 | 0.14 ± 0.01 |
1011 | limonene | 4.32 ± 0.02 | 6.57 ± 0.06 | 4.19 ± 0.04 | 5.05 ± 0.10 | 8.02 ± 0.46 | 8.62 ± 0.34 | 0.413 ± 0.00 | 8.55 ± 0.90 | 1.21 ± 0.29 | 1.33 ± 0.11 |
1015 | β-phellandrene | 0.18 ± 0.24 | 0.31 ± 0.01 | 0.29 ± 0.01 | 0.33 ± 0.00 | 0.23 ± 0.03 | 0.28 ± 0.05 | 0.049 ± 0.00 | 0.34 ± 0.02 | 0.01 ± 0.07 | 0.06 ± 0.00 |
1016 | eucalyptol | - | - | - | - | - | - | 0.03 ± 0.00 | 0.61 ± 0.14 | 0.75 ± 0.05 | |
1027 | β-ocymene | - | 2.21 ± 0.09 | - | 2.85 ± 0.01 | - | - | 1.47 ± 0.40 | 1.12 ± 0.07 | ||
1039 | γ-terpinene | 0.12 ± 0.16 | 0.25 ± 0.01 | 0.27 ± 0.00 | 0.26 ± 0.01 | 0.59 ± 0.03 | 0.60 ± 0.01 | - | 0.05 ± 0.01 | 0.17 ± 0.04 | 0.18 ± 0.01 |
1067 | terpinolene | 11.04 ± 0.81 | 10.82 ± 0.07 | 12.04 ± 0.01 | 11.55 ± 0.36 | 21.36 ± 0.32 | 22.83 ± 3.33 | 0.176 ± 0.01 | 0.13 ± 0.00 | 2.65 ± 0.66 | 2.31 ± 0.25 |
1101 | α-fenchol | 0.14 ± 0.19 | 0.21 ± 0.28 | 0.17 ± 0.01 | 0.37 ± 0.01 | 0.85 ± 0.01 | 0.84 ± 0.03 | 1.662 ± 0.08 | 1.26 ± 0.03 | 0.04 ± 0.00 | - |
1390 | β-caryophyllene | 16.31 ± 1.25 | 19.96 ± 1.09 | 12.84 ± 0.48 | 19.36 ± 0.31 | 18.59 ± 0.44 | 18.06 ± 0.24 | 14.12 ± 0.08 | 12.74 ± 0.23 | 26.27 ± 5.75 | 29.09 ±1.73 |
1400 | trans-α-bergamotene | - | 0.02 ± 0.00 | - | 0.37 ± 0.02 | - | 0.06 ± 0.01 | - | 0.50 ± 0.01 | 2.61 ± 0.79 | 1.50 ± 0.89 |
1416 | cis-β-farnesene | - | 0.14 ± 0.03 | - | 0.02 ± 0.01 | - | 0.10 ± 0.01 | - | 0.03 ± 0.03 | 2.67 ± 0.81 | 3.04 ± 0.17 |
1423 | humulene | 5.31 ± 0.16 | 6.11 ± 0.64 | 3.76 ± 0.19 | 5.73 ± 0.13 | 4.86 ± 0.17 | 4.32 ± 0.26 | 4.47 ± 0.02 | 3.95 ± 0.01 | 8.01 ± 2.01 | 9.13 ± 0.78 |
1428 | alloaromadendrene | 0.21 ± 0.01 | 0.22 ± 0.00 | 0.17 ± 0.01 | 0.34 ± 0.01 | 0.56 ± 0.02 | 0.24 ± 0.33 | 0.053 ± 0.00 | 0.04 ± 0.00 | 1.13 ± 0.32 | 0.79 ± 0.15 |
1452 | γ-selinene | 0.25 ± 0.01 | 0.24 ± 0.06 | 0.19 ± 0.01 | 0.31 ± 0.01 | 0.71 ± 0.04 | 0.59 ± 0.04 | - | - | 0.57 ± 0.05 | 0.82 ± 0.01 |
1459 | β-selinene | 0.66 ± 0.02 | 0.59 ± 0.18 | 0.38 ± 0.01 | 0.62 ± 0.04 | 2.25 ± 0.10 | 1.99 ± 0.17 | 0.345 ± 0.01 | - | 2.80 ± 0.67 | 2.59 ± 0.31 |
1462 | (+)-valencene | 0.14 ± 0.01 | 0.08 ± 0.05 | 0.06 ± 0.00 | 0.08 ± 0.00 | 0.17 ± 0.02 | 0.17 ± 0.02 | 0.082 ± 0.01 | 0.22 ± 0.00 | - | - |
1466 | α-selinene | 0.41 ± 0.04 | 0.39 ± 0.08 | 0.23 ± 0.02 | - | 1.59 ± 0.06 | 1.46 ± 0.11 | 0.544 ± 0.01 | 0.60 ± 0.02 | 1.36 ± 0.41 | 1.05 ± 0.22 |
1391 | γ-gurjunene | 0.25 ± 0.01 | 0.33 ± 0.04 | 0.32 ± 0.02 | 0.50 ± 0.03 | 0.54 ± 0.03 | 0.44 ± 0.02 | 0.429 ± 0.01 | 0.34 ± 0.02 | ||
1408 | γ-cadinene | 0.94 ± 0.12 | 0.93 ± 0.14 | 0.89 ± 0.02 | 1.49 ± 0.09 | 1.75 ± 0.07 | 1.51 ± 0.14 | 11.22 ± 0.10 | 1.27 ± 0.06 | 0.6 ± 0.04 | 0.70 ± 0.07 |
1413 | guaia-3,9-diene | 0.92 ± 0.11 | 0.45 ± 0.13 | 0.29 ± 0.01 | 0.61 ± 0.04 | 0.57 ± 0.02 | 0.74 ± 0.07 | - | 10.56 ± 0.03 | 1.42 ± 0.20 | 1.37 ± 0.01 |
1418 | selina-3,7(11)-diene | 1.21 ± 0.25 | 0.55 ± 0.14 | 0.42 ± 0.03 | 0.80 ± 0.06 | 1.07 ± 0.04 | 1.28 ± 0.15 | 14.64 ± 0.05 | 13.36 ± 0.16 | 1.66 ± 0.41 | 1.59 ± 0.25 |
1435 | trans-α-farnesene | 0.62 ± 0.01 | 0.51 ± 0.13 | 0.41 ± 0.02 | 1.01 ± 0.12 | 1.38 ± 0.08 | 1.12 ± 0.22 | 0.65 ± 0.02 | 0.61 ± 0.05 | - | - |
1458 | caryophyllene oxide | 1.54 ± 0.16 | 2.05 ± 0.48 | 0.73 ± 0.03 | 1.92 ± 0.23 | 1.15 ± 0.05 | 1.09 ± 0.20 | 0.56 ± 0.00 | 0.71 ± 0.07 | 2.12 ± 0.57 | 3.98 ± 0.53 |
1472 | guaia-1(10),11-diene | - | 0.02 ± 0.01 | - | 0.54 ± 0.06 | - | 0.22 ± 0.05 | 5.22 ± 0.10 | 6.71 ± 0.38 | - | - |
1497 | β-maaliene | 0.82 ± 0.07 | 0.39 ± 0.08 | 0.19 ± 0.01 | 0.17 ± 0.01 | 0.58 ± 0.00 | 0.79 ± 0.16 | 5.25 ± 0.13 | 7.11 ± 0.26 | 0.46 ± 0.02 | 0.58 ± 0.15 |
1508 | aromadendrene oxide | - | 0.13 ± 0.04 | - | 0.34 ± 0.05 | - | 0.19 ± 0.04 | - | 0.27 ± 0.03 | 0.50 ± 0.01 | 1.51 ± 0.01 |
1529 | α-eudesmol | - | 0.24 ± 0.06 | - | 0.01 ± 0.01 | - | 0.36 ± 0.09 | 4.36 ± 0.10 | 6.24 ± 0.43 | - | - |
1539 | δ-guaiene | 0.29 ± 0.01 | - | - | 0.02 ± 0.00 | 0.18 ± 0.05 | 3.17 ± 0.10 | 4.51 ± 0.27 | - | - | |
2434 | CBD | 2.08 ± 0.08 | 2.92 ± 2.30 | 1.16 ± 0.10 | 4.48 ± 2.36 | 2.84 ± 0.30 | 4.32 ± 3.63 | 1.33 ± 0.11 | 5.23 ± 1.46 | 6.84 ± 0.01 | 10.5 ± 0.39 |
Total Identified | 86 ± 1.20 | 85 ± 1.11 | 87 ± 0.52 | 88 ± 1.14 | 88 ± 0.58 | 88 ± 0.77 | 86 ± 0.86 | 86 ± 1.70 | 88 ± 0.48 | 88 ± 0.95 |
TPC | FRAP | DPPH | ABTS | |
---|---|---|---|---|
K | 26.78 ± 1.13 e | 235.33 ± 32.53 fg | 8.63 ± 0.28 d | 13.76 ± 4.07 de |
K 4 h | 39.00 ± 0.02 bc | 476.67 ± 0.94 de | 9.15 ± 0.47 bcd | 57.54 ± 4.37 c |
C | 30.03 ± 0.29 de | 250.17 ± 29.93 fg | 8.51 ± 0.06 d | 13.57 ± 2.45 de |
C 4 h | 42.82 ± 8.61 bc | 519.50 ± 33.47 cd | 8.87 ± 0.36 d | 59.86 ± 13.25 bc |
CL | 35.19 ± 1.80 cd | 355.83 ± 14.38 ef | 9.39 ± 0.32 bc | 30.52 ± 3.80 d |
CL 4 h | 51.26 ± 4.60 a | 563.08 ± 1.30 bc | 9.18 ± 0.27 bcd | 82.53 ± 18.63 b |
GSK | 36.61 ± 3.52 bcd | 320.58 ± 1.538 ef | 8.94 ± 0.49 cd | 7.67 ± 3.37 de |
GSK 4 h | 43.51 ± 0.70 b | 595.92 ± 17.80 b | 9.84 ± 0.24 bc | 62.71 ± 4.59 bc |
F75 | 42.7 ± 0.58 bc | 536.08 ± 15.07 bcd | 10.30 ± 0.30 b | 2.57 ± 0.92 e |
F75 4 h | 51.70 ± 4.34 a | 706.25 ± 29.11 a | 11.70 ± 1.08 a | 137.23 ± 27.55 a |
Pearson Correlation Coefficients | ||||
ASSAY | FRAP | DPPH | ABTS | |
TPC | 0.99 | 0.92 | 0.97 |
MIC | ||||||||||
K | K4 h | C | C4 h | CL | CL4 h | GSK | GSK4 h | F75 | F754 h | |
L. monocytogenes ATCC 7644 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | 1.25 | >20 | >20 |
L. monocytogenes ATCC 19114 | >20 | 10 | >20 | 5 | >20 | 2.5 | >20 | 0.625 | >20 | >20 |
L. monocytogenes LM4 | >20 | >20 | >20 | >20 | >20 | >20 | 0.625 | 0.08 | >20 | >20 |
S. aureus STA 32 | >20 | >20 | >20 | 5 | >20 | >20 | 5 | >20 | >20 | >20 |
S. aureus ST 47 | >20 | 1.25 | >20 | 2.5 | >20 | >20 | 0.156 | >20 | >20 | >20 |
P. fluorescens P34 | 1.25 | 0.31 | 2.5 | 0.31 | 1.25 | 2.5 | 1.25 | 2.5 | 1.25 | 0.31 |
B. thermosphacta B1 | 1.25 | 20 | 2.5 | 20 | 1.25 | 20 | 1.25 | >20 | 0.31 | 0.31 |
S. Enteriditis S2 | >20 | 10 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 |
S. Typhimurium S4 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 |
E. faecium ATCC 19434 | 1.25 | >20 | 2.5 | >20 | 1.25 | >20 | 1.25 | >20 | 0.625 | 0.625 |
MBC | ||||||||||
K | K4 h | C | C4 h | CL | CL4 h | GSK | GSK4 h | F75 | F754 h | |
L. monocytogenes ATCC 7644 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | 1.25 | >20 | >20 |
L. monocytogenes ATCC 19114 | >20 | 10 | >20 | 5 | >20 | 2.5 | >20 | 0.625 | >20 | >20 |
L. monocytogenes LM4 | >20 | >20 | >20 | >20 | >20 | >20 | 2.5 | 0.08 | >20 | >20 |
S. aureus STA 32 | >20 | >20 | >20 | 5 | >20 | >20 | 5 | >20 | >20 | >20 |
S. aureus ST 47 | >20 | 1.25 | >20 | 2.5 | >20 | >20 | 0.156 | >20 | >20 | >20 |
P. fluorescens P34 | >20 | 0.31 | >20 | 0.31 | >20 | 2.5 | >20 | 2.5 | >20 | >20 |
B. thermosphacta B1 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | 10 | >20 |
S. Enteriditis S2 | >20 | 10 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 |
S. Typhimurium S4 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 |
E. faecium ATCC 19434 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, S.; Maggio, F.; Pellegrini, M.; Ricci, A.; Serio, A.; Paparella, A.; Lo Sterzo, C. Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis sativa L. Cultivars. Molecules 2021, 26, 4770. https://doi.org/10.3390/molecules26164770
Palmieri S, Maggio F, Pellegrini M, Ricci A, Serio A, Paparella A, Lo Sterzo C. Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis sativa L. Cultivars. Molecules. 2021; 26(16):4770. https://doi.org/10.3390/molecules26164770
Chicago/Turabian StylePalmieri, Sara, Francesca Maggio, Marika Pellegrini, Antonella Ricci, Annalisa Serio, Antonello Paparella, and Claudio Lo Sterzo. 2021. "Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis sativa L. Cultivars" Molecules 26, no. 16: 4770. https://doi.org/10.3390/molecules26164770
APA StylePalmieri, S., Maggio, F., Pellegrini, M., Ricci, A., Serio, A., Paparella, A., & Lo Sterzo, C. (2021). Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis sativa L. Cultivars. Molecules, 26(16), 4770. https://doi.org/10.3390/molecules26164770