Recent Advances in Sample Preparation for Cosmetics and Personal Care Products Analysis
Abstract
:1. Introduction
2. Sample Preparation Strategies for Cosmetics Analysis
2.1. Direct Sample Dilution
2.2. Liquid–Liquid and Solid–Liquid Extraction (LLE, SLE)
Analytes | Matrix | Sample Amount | Sample Pre-Treatment | Extraction Technique | Extraction/Elution Solvent | Extraction Time (min) | Post-Extraction Treatment | Analysis | Recovery (%) | LOD (ng mL−1) | RSD (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Direct dilution | ||||||||||||
8 phthalates | Perfumes, shampoos, creams, body milks, shower gels | 1 mL (perfumes), 1 g (others) | Dilution in 10 mL H2O (other cosmetics) | Direct dilution (perfumes), SLE (others) | 10 mL EtOH (perfumes), 10 mL H2O + 10 mL MTBE (others samples) | Other cosmetics: centrifugation, drying (Na2SO4), reconstitution: 1mL EtOH | GC-MS | >80 | LOQ: 1000 (perfumes), 200 ng g−1 (cosmetics) | <10 | [18] | |
8 phthalates | Perfumes | 0.8 mL | Direct dilution | 0.8 mL EtOH | GC-MS | 88–128 | 3–294 | <6 | [19] | |||
Fragrances, synthetic musks, plasticizers, preservatives | Perfumes, colognes | 0.1 mL | Direct dilution | Dilution (1:10, 1:100 or 1:1000, v/v) EtAc | GC-MS | 89–110 | <6 | [20] | ||||
Liquid–Liquid Extraction (LLE), Solid–Liquid Extraction (SLE) | ||||||||||||
Alkylphenols, bisphenols, preservatives | Toothpastes, shampoos, hair conditioners, gels, facial cleansers, hand soaps, sanitary products, lotions, creams, makeup, lipsticks | 0.2–0.5 g | SLE | 5 mL MTBE | 30 | Centrifugation, concentration, reconstitution in 3 mL DCM/hexane (1:9, v/v). SPE, elution: 10 mL DCM/EtAc (1:1, v:v), concentration | LC-MS/MS | 66–135 | LOQ: 0.2–1 ng g−1 | [22] | ||
Bisphenols | Toothpastes, shampoos, face cleansers, bath gels, hand sanitizers, sunscreens, body lotions, lipsticks, hand lotions, hair gels, masks | 0.2 g | SLE | 5 mL MTBE | 20 | Concentration, evaporation, reconstitution: 3 mL DCM/hexane (1:9, v/v). SPE, elution: 10 mL DCM/EtAc, concentration | LC-MS/MS | 91–113 | 1.4–85 ng g−1 | [23] | ||
4 phenols | Cosmetics | SLE, LLE | EtOH/H2O (1:1, v/v), | 0.5 (vortex agitation) | Centrifugation, filtration | LC-MS | 90–116 | 7–15 | <8 | [24] | ||
8 preservatives, 14 dyes | Lipsticks, lotions, creams, masks, shampoos, gels, soaps, gels, toothpastes | 0.1 g | Mixture with 100 mg C18 | SLE | 1.5 mL MeOH | 5 (vortex agitation) | Filtration, dilution MP | LC-MS/MS | 70–117 | LOQ: 600–3400 ng g−1 | <16 | [25] |
6 plasticizers, 7 preservatives | Shower gels | 0.1 g | LLE | 5 mL MeOH | Dilution in MeOH/H2O (75:25, v/v) | UHPLC-MS | 96–105 | 490–2600 ng g−1 | <12 | [26] | ||
2 preservatives, 2 phthalates | Shampoos, body washes, face cleansers, lipsticks, hair dyes | 0.2 g | SLE | 5 mL MTBE | 30 (shaking) | Centrifugation, evaporation until 1 mL, filtration | LC-MS/MS | 5–20 ng g−1 | [27] | |||
12 preservatives | Creams, gels, lotions | 2 g | SLE | 25 mL ACN + 25 mL MeOH/H2O (1:1, v/v, 0.6% oxalic acid) | 15 (shaking) | Centrifugation, filtration | HPLC-DAD | 95–105 | <3 | [28] | ||
1,4-dioxane | Rinse-off, leave-on cosmetics | 0.2 g | LLE, SLE | 2 mL hexane/DCM (80:20, v/v) | 3 (vortex agitation) | Centrifugation, SPE | GC-MS/MS | 84–108 | 200 ng g−1 | <4 | [29] | |
15 UV filters | Sunscreen, creams, balms, after shaves | 0.01–0.02 g | SLE | 10 mL EtOH | Filtration | HPLC-UV | 97–104 | 30–220 | <8 | [30] | ||
Ultrasound-Assisted Extraction (UAE) | ||||||||||||
15 UV filters | Sunscreens | 0.1 g | Dilution with 4 mL THF (0.2% ammonium hydroxide), vortex | UAE | 6 mL MeOH/H2O (80:20, v/v) | 10 | Centrifugation, evaporation, reconstitution: 1 mL MeOH, filtration | LC-MS/MS | 87–104 | 2000–20,000 ng g−1 | <8 | [31] |
9 preservatives | Lipsticks, foundations, deodorants, lotions, soaps, toothpastes | 0.1 g | UAE | 5 mL MeOH/ACN (1:1, v/v), | 10 | Centrifugation, filtration | LC-MS/MS | 900–4200 | [32] | |||
Hydroxyethoxyphenyl butanone | Creams, sunscreens, shampoos, soaps, make-up | 0.1 g | UAE | 10 mL H2O | Filtration | LC-UV | 86–103 | 30,000 ng g−1 | <5 | [33] | ||
6 preservatives | Tonics, creams, lotions, shower gels, masks | 1 g | UAE | 6 mL MeOH | 15 | Dilution, filtration | LC-DAD | 69–119 | 150–5300 | <11 | [34] | |
15 synthetic musks | Perfumes, shampoos, lotions, soaps, antiperspirants, sunscreens | 0.03 g | UAE | 3 mL (×2) hexane | 20 | Concentration to 0.2 mL | GC-MS | 83–94 | 0.12–20 ng g−1 | [35] | ||
ε-aminocaproic acid + amino acids | Cosmetics | 0.02 g | UAE (40 KHz, 40 °C) | 50 μL NaCl (aq) + 950 μL 0.2 mol L−1 borate buffer + 80 μL of 100 mM NBD | 10 | Dilution, filtration | HPLC-FL | 77–122 | 0.09–0.15 | <4 | [36] | |
2 plants derived | Gels, shampoos, creams, antioxidant ampoules, lotions, masks | 0.4 g | UAE | 25 mL EtOH | 1 | Filtration, dilution | HPLC-UV | 93–115 | 18–13 μg g−1 | <9 | [37] | |
4 natural pigments | Temporary tattoos | 0.02–0.03 g | UAE (35 kHz) | 7.5 mL MeOH | 5 | Filtration | HPLC-DAD | 100–200 | <2 | [38] | ||
70 compounds: fragrances, preservatives, plasticizers | Masks, baby wipes, extreme cosmetics, borderline products | A wipe/mask, 0.1 g (cosmetics), 0.05 g (products with applicators) | UAE, sup-UAE | UAE (50 KHz, 25 °C) | 20 mL (wipes), 2 mL (cosmetics), 5 mL (products with applicators) EtAc | 10 | Dilution, filtration | GC-MS | 70–120 | <10 | [39] | |
Free formaldehyde | Hair cosmetics | 0.5–1 g | Dilution in 20 mL 2-propanol (0.1%, w/v SDS), UAE, centrifugation + 2 mL EtOH, dilution | UAE-CPE (50 °C) | 6 µmol TB+ (0.4 mg L−1 sulphite, 0.05% Triton X-114) | 15 | Dilution to 1.2 mL EtOH | UV-Vis | 95 | 0.38 | <5 | [40] |
2 resin acids | Depilatory wax strips, liquid foundations, mascaras, eyeliner, lip balms | 0.05 g | UCSED (60 °C) | 500 μL CAN + 200 μL of ANITS solution | 45 | Filtration | HPLC-DAD, online MS/MS | 95–104 | 8–24 | <3 | [41] | |
Solid-phase extraction (SPE) | ||||||||||||
16 antibiotics | Anti-acne samples | 0.5 g | Dilution in 10 mL ACN/H2O (2% formic acid, 1:2, v/v), shaking, UAE, centrifugation, evaporation, reconstitution with 2 mL H2O (0.1% formic acid) | SPE (Oasis MCX® 3 cc/60 mg cartridge) | 1 mL (×2) MeOH: ammonium hydroxide (4:1, v/v) | Evaporation, reconstitution: 1 mL MeOH/ACN: H2O (5 mM ammonium formate), 12:88, v/v, filtration | LC-MS/MS | 81–113 | 0.5–1.6 ng g−1 | <12 | [42] | |
22 coumarin derivatives | Creams, lotions, shampoos, lipsticks | 1 g | Dilution in 10 mL MeOH/H2O (1:9, v/v), vortex, UAE, centrifugation, evaporation, reconstitution with 2 mL MeOH/H2O (1:9, v/v) | SPE (Oasis HLB® cartridge) | 4 mL MeOH/H2O (1:9, v/v) | Evaporation, reconstitution: 2 mL ACN/H2O (70:30, v/v), filtration | LC-MS/MS | 80–93 | LOQ: 5–20 ng g−1 | <15 | [43] | |
NDELA | Soaps, emulsions | 0.5 g (water soluble products), 0.1 g (soaps), 0.25 g (water insoluble products) | Dilution in 10 mL H2O (water soluble products), 2 mL H2O + 8 mL DCM (soaps), 2 mL H2O + 4.5 mL H2O + 10 chloroform, (water insoluble products), centrifugation | SPE (Bond Elut AccuCAT® cartridge) | 1 mL H2O | LC-MS/MS | 91–114 | 1 | <15 | [44] | ||
4 parabens | Creams, make-up, lotions, shampoos, after sun lotions | 1 g | Dilution (dil 1:20–1:100) in H2O, UAE, centrifugation | SPE (20 mg MWCNTs) | 2 mL acetone | Evaporation, reconstitution: 0.5 mL mobile phase | HPLC-C-CAD | 82–104 | 500–2100 | <8 | [45] | |
Prednisone | Creams | 0.5 g | Dilution in 3 mL NaCl (aq) + 10 mL ACN + 0.2 mL potassium ferrocyanide (aq) + 0.2 mL zinc acetate, UAE, centrifugation | SPE (MIP-MWCNTs) | 3 mL (×3) MeOH | Evaporation, reconstitution: 1 mL ACN/H2O (40:60, v/v), filtration | HPLC-UV | 83–106 | 5 | <2 | [46] | |
BPA | Shampoos, bath lotions, creams | 0.025 g | Dilution in 10 mL NaOH (0.001 M) + 10 mL ethylether, centrifugation + 10 mL toluene | SPE (MIP: imprinted silica NPs) | 1 mL MeOH | Evaporation, reconstitution: MeOH/H2O (65:35, v/v) | HPLC-UV/FL | 87–97 | 0.001 micromol L−1 | <9 | [47] | |
6 benzotriazole UV filters | Lotions, emulsions, creams, sunscreens | 1 g | Dilution in 5 mL MeOH, UAE, filtration | SPE (GS cartridge) | 0.8 mL acetone | HPLC-UV | 89–105 | 0.03–0.10 | <8 | [48] | ||
7 sulphonamides | Anti-acne samples | 0.2 g | Dilution in 5 mL 0.1 M acetate-ammonium (aq), vortex, UAE | SPE (CGO/PVC cartridge) | 2.5 mL MeOH:acetone, (6:5, v/v) | Evaporation, reconstitution: 0.5 mL MP | IC-UV | 88–102 | 3.4–7.1 | <6 | [49] | |
PABA | Creams, sunscreens | 0.1 g | Dilution in H2O or EtOH | SPE (Ni-Zn-Al(NO3−)LDH) | 2.5 mL NaCl (2M) | UV | 96–101 | 3.7 | <4 | [50] | ||
9 glucocorticoids | Cosmetics samples | 0.2 g | Dilution in 3 mL NaCl (aq), vortex + 2 mL ACN. Centrifugation + 2 mL ACN + 10 mL H2O + K4[Fe(CN)6]·3H2O (10%, w/w) + zinc acetate (20%, w/w). Centrifugation, filtration | SPE-PMME | 0.1 mL ACN/H2O (80:20, v/v, 0.3% formic acid) | LC-MS | 84–104 | 0.1–1.9 | <15 | [51] | ||
11 N-nitrosamines | Skin care products | 1 g | Dilution in 7 mL ACN, vortex, UAE, centrifugation | dSPE-MWCNT (50 mg MWCNT-10) | 3 | Evaporation, reconstitution: 1 mL MeOH/formic acid (aq, 0.1%) (3:7, v/v), filtration | LC-MS/MS | 89–128 | 7–250 ng g−1 | <30 | [52] | |
7 parabens | Creams | 0.5 g | Dilution in 1 mL MeOH, stirring, centrifugation. Dilution in H2O | VA-d-SPE-MOF (150 mg HKUST-1) | 2 mL MeOH | 5 | Filtration, evaporation, reconstitution: 500 μL of ACN/H2O (35:65, v/v) | HPLC-DAD | 64–121 | 0.1–0.6 | <12 | [53] |
3 preservatives | Sunscreen, antiperspirants, creams, lotions | 0.05 g | Dilution in 3 mL MeOH, UAE + 50 mL H2O. Filtration + 500 mL with acetate buffer | d-SPE (SBA-15/PANI-p-TSA-NCs) | 500 μL MeOH (3% v/v acetic acid) | 40 | HPLC-UV | 82–108 | 0.1–0.4 | <7 | [54] | |
Pressurized Liquid Extraction (PLE) | ||||||||||||
15 UV filters | Sunscreens, cosmetics | 0.1 g | Mixture with Na2SO4 + 0.6 g sand | PLE (90 °C) | 20 mL MeOH/acetone (1:1, v/v) | 10 | Dilution in MP | LC-MS/MS | 82–101 | LOQ: <100 ng g−1 | <12 | [55] |
15 UV filters | Sunscreens, hair products, nail polishes, lipsticks | 0.1 g | Mixture with 0.6 g Florisil® | PLE (90 °C) | 10 mL ACN | 10 | Dilution in EtAc, derivatization | GC-MS/MS | >80 | <10 | [56] | |
26 fragrance allergens | Moisturizing creams, lotions, sunscreens, aftersun lotions | 1 g | Mixture with 2 g Na2SO4 + 2 g Florisil® | PLE (120 °C) | 15 mL hexane/acetone (1:1, v/v) | 15 | GC-MS | 85–114 | 12–1800 ng g−1 | <10 | [57] | |
13 preservatives | Leave-on cosmetics | 0.5 g | Mixture with 1 g Na2SO4 + 1 g Florisil® | PLE (120 °C + in situ derivatization) | 15 mL EtAc (1:1, v/v) | GC-MS | 74–110 | 40–1000 ng g−1 | <10 | [58] | ||
PFOS, PFOA | Waterproof sunscreen | 4–5 g | PLE (80 °C) | 60 mL MeOH | 30 | Evaporation + 500 mL H2O, SPE, evaporation, reconstitution: 0.5 mL MP | LC-MS/MS | 67–102 | <20 | [59] | ||
26 fragrance allergens, 13 preservatives, 15 phthalates, 11 musks | Baby wipes, wet toilet paper for children | Individual wipe | PLE (110 °C) | 20 mL MeOH | 5 | Dilution in EtAc, filtration | GC-MS | 75–119 | 1-31 ng g−1 | <10 | [60] | |
25 fragrance allergens, 13 preservatives | Baby, child cosmetics | 0.5 g | Mixture with 1 g Na2SO4 + 2 g Florisil® | PLE (120 °C) | 20 mL hexane/acetone (1:1, v/v) | 15 | Derivatization | GC-MS | <12 | [61] | ||
Matrix solid-phase dispersion (MSPD) | ||||||||||||
25 fragrance allergens | Creams, lotions, shampoos, gels, conditioners, soaps | 0.5 g | MSPD (2 g Florisil®) | 5 mL hexane/acetone (1:1, v/v) | Dilution (1:10, v/v or 1:1000, v/v) | GC-MS | 75–118 | 20–600 ng g−1 | <5 | [62] | ||
13 preservatives | Body milks, lipsticks, creams, sunscreens, deodorants, shampoos, soaps | 0.5 g | MSPD (2 g Florisil®) | 5 mL hexane/acetone (1:1, v/v) | Derivatization, dilution | GC-MS | 88–110 | 1.4–39 ng g−1 | <4 | [63] | ||
4 preservatives | Shampoos, cleansing gels, baby bath gels, creams, make-up | 0.5 g | MSPD (2 g Florisil®) | 5 mL MeOH | Dilution in H2O/MeOH (0.1% formic acid, 5 mM ammonium formate (70:30, v/v)) | LC-MS/MS | 60–80 | LOQ: 6.6–60 ng g−1 | <11 | [64] | ||
18 plasticizers, 12 musks | Shampoos, soaps, body milks, sunscreens, creams, aftershave lotions, deodorants | 0.1 g | µ-MSPD (0.4 g Florisil®) | 1 mL EtAc | GC-MS | 84–105 | 1.4–300 ng g−1 | <10 | [65] | |||
19 dyes | Face paints, make-up, hairsprays, soaps, toothpastes, shampoos | 0.1 g | µ-MSPD (0.4 g C18) | 2 mL MeOH | Dilution | LC-MS/MS | 69–121 | 17–952 ng g−1 | <15 | [66] | ||
9 dyes | Makeup, lipsticks, toothpastes, creams, shampoos, eye shadows | 0.1 g | µ-MSPD (0.4 g Florisil®) | 2 mL MeOH | Dilution 1:5, v/v in H2O/MeOH, filtration | LC-MS/MS | 70–120 | 0.01–0.62 | <15 | [67] | ||
63 colorants | 69 cosmetics | 0.1 g | µ-MSPD (0.4 g sand) | 2 mL MeOH | Concentration to 1 mL, filtration | UHPL-Q-orbitrap HRMS | 64–128 | 0.5–100 ng g−1 | <10 | [68] | ||
25 fragrance allergens, 13 preservatives | Shampoos, toothpastes, gels, soaps, sunscreen, lipsticks, deodorants | 0.1 g | µ-MSPD (0.4 g Florisil®) | 1 mL EtAc | Derivatization, dilution | GC, GC-MS/MS | 83–115 | 0.4–37 ng g−1 (GC–MS/MS) | <15 | [69] | ||
11 preservatives | Liquid cosmetics, gels | 0.05 g | µ-MSPD (0.2 g Florisil®) | 3 mL (×2) EtAc | Dilution | GC-FID | 80–124 | 53–180 | <12 | [70] | ||
4 preservatives | Skin-, hand-, face creams | 0.1 g | µ-MSPD (0.4 g C18) | 0.5 mL THF | Dilution in H2O, centrifugation | HPLC-UV | 63–83 | 30–40 ng g−1 | <8 | [71] | ||
26 fragrance allergens, 15 plasticizers, 11 synthetic musks, 13 preservatives, 14 UV filters | Sunscreen, hair products, creams, make-up, lip balms, make-up, lipsticks | 0.1 g | µ-MSPD (0.4 g Florisil®) | 1 mL ACN | Dilution, filtration | GC-MS/MS | 97–111 | <10 | [72] | |||
26 fragrance allergens, 13 preservatives, 15 plasticizers, 12 musks | Gels, shampoos, soaps, sunscreen, lotions, body milks, creams, deodorants | 0.1 g | µ-MSPD (0.4 g Florisil®) | 1 mL EtAc | Dilution | GC-MS | 80–110 | 3–700 ng g−1 | <15 | [73] | ||
13 PAHs, 13 pesticides, 8 phthalates, 10 nitrosamines, 2 dyes, 5 fragrances, 6 APEOs | Hand creams, shower gels | 0.1 g | µ-MSPD (0.4 g Florisil®) | 1 mL EtAc (GC-MS), ACN (LC-MS/MS) | Dilution 1:10, v/v in EtAc (GC–MS) or 1:5, v/v in ACN/H2O; 50:50, v/v), filtration | GC-MS, LC-MS/MS | 72–116 | 0.09–1.30 ng g−1 | <15 | [74] | ||
2 glucocorticoids | 0.2 g | Dilution in 0.3 mL MeOH: H2O (1:19, v/v) + 0.1 g MMIM | MSPD (2 g Florisil®) | 5 mL MeOH:acetic acid (6:1, v/v) | HPLC-UV | 85–89 | 200–300 ng g−1 | <6 | [75] |
2.3. Ultrasound-Assisted Extraction (UAE)
2.4. Solid Phase Extraction (SPE)
New Sorbent Materials for SPE
2.5. Pressurized Liquid Extraction (PLE)
2.6. Matrix Solid-Phase Dispersion (MSPD)
2.7. Microextraction Techniques for Cosmetic Analysis
2.7.1. Liquid-Phase Microextraction Techniques
Analytes | Matrix | Sample Amount | Sample Pre-Treatment | Extraction Technique | Extraction/Desorption Solvent | Extraction Time (min) | Post-Extraction Treatment | Analysis | Recovery (%) | LOD (ng mL−1) | RSD (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Liquid-Phase Microextraction Techniques for Cosmetics Analysis | ||||||||||||
Liquid–liquid Microextraction (LLME) | ||||||||||||
4 alternative preservatives | Creams, gels | 0.1 g | Dilution in 5 mL H2O, centrifugation | VA-LLME | 1 mL hexane | 0.3 | Evaporation, reconstitution: 400 µL ACN | HPLC-UV | 84–118 | 20–60 | <10 | [93] |
4 preservatives | Cosmetic- oil products | 0.5 g | VA-LLME (DES) | 200 μL [ChCl-Ethylene glycol (1/2)] | HPLC-UV | >84 | 50–60 | <3 | [94] | |||
Bronopol | Creams, shampoos, gels | 0.1 g | VAEsME | 0.5 mL H2O | 0.3 | HPLC-UV | 91–104 | 900 | [95] | |||
Dispersive Liquid–Liquid Microextraction (DLLME) | ||||||||||||
6 preservatives | Aqueous cosmetics | 5 g | Dilution in 100 mL H2O | DLLME | 30 μL chloroform | 2 | GC-FID | 81–103 | 5–25 | <8 | [96] | |
7 preservatives | Lotions, creams | 1 g | Dilution in 25 mL H2O (lotion), 5 mL EtOH (cream), vortex. UAE, centrifugation | DLLME | 0.5 mL isopropyl alcohol | Evaporation, reconstitution: MeOH/H2O (20:80, v/v) | HPCE | 71–113 | 200–375 ng g−1 | <5 | [97] | |
Acrylamide | Creams, gels | 0.15–0.5 g | Dilution in 10 mL H2O, vortex + 0.2 g NaCl + 3.5 mL hexane, vortex, centrifugation + 250 μL ethanolic 2-naphthalenethiol (aq) + 250 μL di-sodium tetraborate (aq), MW | DLLME | 80 µL chloroform | 5 | Evaporation, reconstitution: 30 µL EtOH/H2O (50:50, v/v) | LC-UV | 85–112 | 0.7–2.4 ng g−1 | <14 | [98] |
Atranol, chloroatranol | Perfumes | 1 mL | Dilution in 1.5 mL H2O + 1.5 mL hexane, vortex, centrifugation + 8 mL H2O + 1 mL K2CO3 (aq) | DLLME | 100 μL chloroform | 5 | GC-MS | 79–110 | 3-5 | <9 | [99] | |
1 preservative | Moisturizer, toner, lotion, soap | Sample dilution (1:100), filtration | VA-DLLME | 5 mL chloroform | 5 | UV-Vis | 82–97 | 476 | <6 | [100] | ||
4 preservatives | Cream, lotion | 0.05 g | Dilution in 200 µL MeOH, vortex, UAE. Dilution in H2O (1:100), centrifugation | VA-DLLME | 100 µL DES | 4 | HPLC-DAD | 0.3–2 | [101] | |||
6 phthalates | Shampoos, gels, creams, deodorants, makeup | 0.03 g | Dilution in 3 mL ACN, UAE, centrifugation, filtration | US-DLLME | 150 μL CCl4 | 2 | Evaporation, reconstitution: 25 μL ACN | HPLC-DAD, LC-MS/MS | 84–124 | 0.04–0.45 (LC-MS/MS) | <10 | [102] |
5 UV filters | Sunscreens | 0.4 mL | US-VA-DLLME | 160 μL anisole | 5 | Evaporation, reconstitution: 20 μL 2-VNT | HPLC-DAD | 88–105 | 15 | <3 | [103] | |
6 parabens | Face masks, cream, hair conditioner | 0.05 g | UNE-DLLME (35 W) | 200 μL octanol | 10 | GC-FID | 82–109 | 2000–9500 ng g−1 | <5 | [104] | ||
2 dyes | Lipsticks | 50 mL | Magnetic stirring assisted-DLLME | 500 µL acetone | 6 | HPLC-DAD | 90-95 | 1 | <3 | [105] | ||
Vitamin E | Creams, make-up, shampoos | 0.5 g | PLE, dilution to 50 mL ACN, filtration | DLLME | 100 μL CCl4 | 3 | Evaporation, reconstitution: 15 μL MeOH | HPLC-DAD | 87–115 | 3–15 ng g−1 | <8 | [106] |
1 dye | Eau de toilette, shampoos | Sample dilution and pH =4 adjustment | IL-DLLME | 150 mL of [C10MIM][BF4] | Evaporation, reconstitution: 260 mL MeOH | HPLC-UV | 99–103 | 0.34 ng | <1 | [107] | ||
1 preservative | 1 g | MSPE, UAE, centrifugation + 100 µL Fe3O4 NPs suspension + 20 mL H2O, vortex | IL-DLLME | 100 μL [C6MIM][PF6] | 10 | HPLC-DAD | 75–98 | 140 | <7 | [108] | ||
4 phenolic compounds | Toner, lotion, make-up remover, perfume | 1 mL | Dilution in 3 mL ACN, UAE, dilution in 10 mL H2O | IL-DLLME | +80 μL [C8MIM] [PF6] | 5 | CE | 82–119 | 5–100 | <13 | [109] | |
6 oestrogens | Lotion | Centrifugation, pH = 4 adjustment, filtration | IL-DLLME | 40 mg [P6,6,6,14+]2[CoCl42−] | 5 | Supernatant + 500 μL ACN | LC-UV | 96–111 | 5–15 | <10 | [110] | |
4 parabens | Facial tonics | Sample dilution in 100 mL NaCl (aq, 8% w/v, pH = 5) | IL-DLLME | 30 μL C8Gu-Cl + 45 μL Li-NTf2 | 5 | Microdroplet dilution to 60 μL ACN | HPLC-DAD | 82–114 | 0.5–1.4 | <16 | [111] | |
10 phthalates | Emulsions | 0.3 g | DLLME-SFO | 20 μL 1-dodecanol | 10 | Ice bath (5 min) | LC-UV | <4 | [112] | |||
14 colorants | Lipsticks, eye shadows | 0.1 g | Homogenization | MA-DLLME-SFO | 1 mL EtOH/H2O (pH = 4, 95:5, v/v) | 8 | Placing into an ice-bath, filtration | HPLC-DAD | 90–106 | 250–3200 ng g−1 | <3 | [113] |
3 alkanolamines, 2 alkylamines | Creams, sunscreen, lotions, shampoos, powders | 0.25 g | UA-LDS-DLLME (2.5 mM MSA) | 1 mL cyclohexane | 15 | Filtration | IC-non-suppressed conductivity detection | 87–109 | 72–120 | <6 | [114] | |
7 N-nitrosamines | Creams, shower gels | 0.1 g | Mixture with 0.2 Na2SO4 + 5 mL of hexane, centrifugation | RP-DLLME | 75 μL H2O | 0.5 | LC–MS | 80–113 | 2–50 ng g−1 | <10 | [115] | |
NDELA | Creams, shower gels | 0.1 g | Dilution in 5 mL toluene, centrifugation | RP-DLLME | 125 µL H2O | 5 | HPLC-UV | 87–117 | 1.1 | <8 | [116] | |
Free formaldehyde | Gels, masks, creams, shampoos, soaps | 0.01–0.1 g | Mixture with 0.4 g MgSO4 + 5 mL toluene, centrifugation | RP-DLLME | 50 µL H2O | 5 | HPLC-UV | 91–113 | 0.7–2.3 | <9 | [117] | |
Ultrasound-Assisted Emulsification Microextraction (USAEME) | ||||||||||||
5 preservatives | Sunscreen, shampoos, toothpastes | 0.1–0.25 g | Dilution in 20 mL MeOH, UAE, centrifugation. Dilution to 50 mL MeOH. Dilution | USAEME | 40 µL 1-octanol | HPLC-UV | 22–102 | 0.3–8.3 | <10 | [118] | ||
9 hormones | Cosmetics | 0.2 g | IL-USAEME | 125 µL [C7MIM][PF6] | 27 | Dilution of the IL extraction solution (~100 µL) to 1 mL MeOH | LC | 86–109 | 100–900 ng g-1 | <3 | [119] | |
18 fragrance allergens | Eau de toilettes, colognes, perfumes | USAEME-SFOD | 50 μL 2-dodecanol | 10 | Dilution with 20 μL MeOH | HPLC-DAD | 90–138 | 1–154 | <12 | [120] | ||
5 phthalates | Shampoos, after shave gels, hair sprays | 0.03 g | Dilution in 100 μL MeOH + 10 mL H2O. Hair spray: Dilution in MeOH | USAEME-SFO | 30 μL 1-undecanol | 12 | HPLC-DAD | 0.005–0.01 | [121] | |||
5 preservatives | Skin cleansers, toothpastes, creams, sunscreens | 0.02 g (skin cleanser), 0.05 g (other) | Dilution in 10 mL H2O or MeOH, UAE, filtration. Dilution to 500 mL | UASEME | 125 µL 1-octanol + 50 µL tween 20 solution | 6 | HPLC-UV | 70–138 | 0.03–10 | <7 | [122] | |
Sorbent-Based Microextraction Techniques for Cosmetics Analysis | ||||||||||||
Solid-Phase Microextraction (SPME) | ||||||||||||
24 fragrance allergens | Balms, creams, deodorants, toothpastes | 1 mL | SPME (PDMS/DVB fibre, HS, 40 °C, 20 min) | 20 | GC-FID | 80 | 7–2700 | <6 | [123] | |||
16 preservatives | Rinse-off, leave-on cosmetics | 0.1 g | Dilution in 10 mL H2O + 20% NaCl, w/v + derivatization | SPME (PDMS/DVB/CAR fibre, DI, 40 °C) | 15 | GC-MS/MS | >85 | 6–780 ng g−1 | <13 | [124] | ||
Bronidox | Rinse-off cosmetics | 1 mL | Dilution in 10 mL H2O + 20% NaCl (aq) | SPME (PDMS/DVB fibre, DI) | 30 | GC-µECD | 70–92 | 60 ng g−1 | <10 | [125] | ||
11 preservatives | Creams, hair conditioners | 0.1 g | UV radiation | SPME (PDMS/DVB fibre, DI) | 20 | Dilution | GC-MS | 54–111 | 31–170 ng g−1 | <12 | [126] | |
6 preservatives | Emulsions, lotions, creams | 0.02 g | SFE-online-SPME (SFE-CO2 (55 °C,), derivatization + SPME (PA fibre, HS, 50 °C) | 25 | GC-MS | 89–172 | 0.5–8.3 ng g−1 | <8 | [127] | |||
BHT | 0.1 g | Dilution in 4 mL H2O, vortex, centrifugation | Purge-and-trap-NTD (PDMS/DVB fibre, HS, 60 °C) | 30 | Portable GC-MS | 90–99 | <10 | [128] | ||||
NDELA | Shampoos, body gels, hands soaps | 10 mL | Dilution in H2O | SPME (Aluminium hydroxide grafted fibre, HS, 70 °C) | 15 | GC-MS | 95–99 | 1 ng g−1 | <6 | [129] | ||
4 preservatives | Sunscreen, lotions, creams | Sample dilution (1:25, w/v) in NaCl (aq), UAE | SPME (PEG-DA fibre, DI, 65 °C) | 20 | Desorption: 1 mL MeOH, filtration | HPLC-DAD | 90–98 | 120–150 | <7 | [130] | ||
6 PAHs | Cosmetics | 0.3 g | Dilution in 50 mL H2O | SPME (C3N4@G fibre, DI, 40 °C) | 35 | GC-MS | 70–118 | 0.001–0.002 | <12 | [131] | ||
6 fragrance allergens | Shampoos, creams | 0.05–0.1 g | Dilution in 100 mL H2O | SPME (β-CD/GO fibre, HS, 70 °C) | 40 | GC-FID | 70–94 | 0.05–0.15 | <11 | [132] | ||
MVOCs | Hands cream | 0.1 g | Mixture with API® 10S + incubation (37 °C, 24 h) | SPME (PDMS/DVB/CAR fibre, HS, 60 °C) | 30 | GC-MS | [133] | |||||
MVOCs | Shampoos, creams, gels, make-up | 0.1 g | Dilution in 2 mL H2O + bacterial culture | SPME (PDMS/DVB/CAR fibre, HS, 60 °C) | 30 | GC-MS | [134] | |||||
Fabric phase sorptive extraction (FPSE) | ||||||||||||
3 preservatives | FPSE (CW-20 coating) | MeOH | Filtration | HPLC-DAD | 2.7–3.0 | <4 | [135] | |||||
5 preservatives | Rose waters, deodorants, serums, creams | 0.1 g (cream) | Sample dilution in H2O, filtration, UAE, centrifugation | FPSE (PEG coating) | 0.5 mL MeOH | 25 | Filtration | HPLC-DAD | 88–122 | 0.2–0.6 | <5 | [136] |
Stir bar sorptive dispersive microextraction (SBSDME) | ||||||||||||
8 N-nitrosamines | Shower gels, body creams | 0.5 g | Dilution in 25 mL NaCl (aq), vortex + 1 mL hexane. Centrifugation | SBSDME (CoFe2O4/MIL-101(Fe) stir bar) | 1 mL acetone | 30 | Filtration, evaporation, reconstitution: 50 µL H2O | LC-MS/MS | 96–109 | 3–13 ng g−1 | <17 | [137] |
10 PAHs | Creams, milks, body-milks | 4 g | Dilution in 40 mL hexane, vortex, centrifugation | SBSDME (CoFe2O4-rGO stir bar) | 0.5 mL toluene | 10 | Filtration | GC-MS | 0.1–24 ng g−1 | <10 | [138] |
Liquid–Liquid Microextraction (LLME)
Dispersive Liquid–Liquid Microextraction (DLLME)
Ultrasound-Assisted Emulsification Microextraction (USAEME)
2.7.2. Sorbent-Based Microextraction Techniques
Solid-Phase Microextraction (SPME)
Fabric-Phase Sorptive Extraction (FPSE)
Stir Bar Sorptive Dispersive Microextraction (SBSDME)
3. Future Trends and Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cosmetics Europe. Cosmetics and Personal Care Industry Overview. Available online: https://cosmeticseurope.eu/cosmetics-industry/ (accessed on 29 July 2021).
- Regulation (EC) No. 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products (Recast). Available online: https://ec.europa.eu/health/sites/health/files/endocrine_disruptors/docs/cosmetic_1223_2009_regulation_en.pdf (accessed on 20 July 2021).
- Lores, M.; Llompart, M.; Alvarez-Rivera, G.; Guerra, E.; Vila, M.; Celeiro, M.; Lamas, J.P.; Garcia-Jares, C. Positive lists of cosmetic ingredients: Analytical methodology for regulatory and safety controls—A review. Anal. Chim. Acta 2016, 915, 1–26. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, G. Current trends in sample preparation for cosmetic analysis. J. Sep. Sci. 2017, 40, 152–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvador, A.; Chisvert, A. Analysis of Cosmetic Products; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Cabaleiro, N.; de La Calle, I.; Bendicho, C.; Lavilla, I. Current trends in liquid-liquid and solid-liquid extraction for cosmetic analysis: A review. Anal. Methods 2013, 5, 323–340. [Google Scholar] [CrossRef]
- Rubio, L.; Guerra, E.; Garcia-Jares, C.; Lores, M. Body-decorating products: Ingredients of permanent and temporary tattoos from analytical and european regulatory perspectives. Anal. Chim. Acta 2019, 1079, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Martin-Pozo, L.; Gomez-Regalado, M.C.; Moscoso-Ruiz, I.; Zafra-Gómez, A. Analytical methods for the determination of endocrine disrupting chemicals in cosmetics and personal care products: A review. Talanta 2021, 234, 122642. [Google Scholar] [CrossRef]
- Abedi, G.; Talebpour, Z.; Jamechenarboo, F. The survey of analytical methods for sample preparation and analysis of fragrances in cosmetics and personal care products. TrAC-Trends Anal. Chem. 2018, 102, 41–59. [Google Scholar] [CrossRef]
- Cabaleiro, N.; de La Calle, I.; Bendicho, C.; Lavilla, I. An overview of sample preparation for the determination of parabens in cosmetics. TrAC-Trends Anal. Chem. 2014, 57, 34–46. [Google Scholar] [CrossRef]
- Grau, J.; Benedé, J.L.; Chisvert, A. Use of Nanomaterial-Based (Micro) Extraction Techniques for the Determination of Cosmetic-Related Compounds. Molecules 2020, 25, 2586. [Google Scholar] [CrossRef] [PubMed]
- Guerra, E.; Llompart, M.; Garcia-Jares, C. Analysis of dyes in cosmetics: Challenges and recent developments. Cosmetics 2018, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.M. Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis. TrAC-Trends Anal. Chem. 2015, 66, 176–192. [Google Scholar] [CrossRef]
- Nerín, C.; Salafranca, J.; Aznar, M.; Batlle, R. Critical review on recent developments in solventless techniques for extraction of analytes. Anal. Bioanal. Chem. 2009, 393, 809–833. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J.A.; Ibañez, E. Pressurized liquid extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 375–398. [Google Scholar]
- Kristenson, E.M.; Udo, A.T.; Ramos, L. Recent advances in matrix solid-phase dispersion. TrAC-Trends Anal. Chem. 2006, 25, 96–111. [Google Scholar] [CrossRef]
- Gimeno, P.; Maggio, A.F.; Bousquet, C.; Quoirez, A.; Civade, C.; Bonnet, P.A. Analytical method for the identification and assay of 12 phthalates in cosmetic products: Application of the ISO 12787 international standard-Cosmetics-Analytical methods-Validation criteria for analytical results using chromatographic techniques. J. Chromatogr. A 2012, 1253, 144–153. [Google Scholar] [CrossRef]
- Lopez-Nogueroles, M.; Benedé, J.L.; Chisvert, A.; Salvador, A. A rapid and sensitive gas chromatography-mass spectrometry method for the quality control of perfumes: Simultaneous determination of phthalates. Anal. Methods 2013, 5, 409–415. [Google Scholar] [CrossRef]
- Sanchez-Prado, L.; Llompart, M.; Lamas, J.P.; Garcia-Jares, C.; Lores, M. Multicomponent analytical methodology to control phthalates, synthetic musks, fragrance allergens and preservatives in perfumes. Talanta 2011, 85, 370–379. [Google Scholar] [CrossRef]
- Wells, D.A. Chapter 9 Liquid-liquid extraction: Strategies for method development and optimization. In Progress in Pharmaceutical and Biomedical Analysis; Elsevier: Amsterdam, The Netherlands, 2003; pp. 307–326. [Google Scholar]
- Liao, C.; Kannan, K. A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States. Arch. Environ. Contam. Toxicol. 2014, 67, 50–59. [Google Scholar] [CrossRef]
- Lu, S.; Yu, Y.; Ren, L.; Zhang, X.; Liu, G.; Yu, Y. Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact. Sci. Total Environ. 2018, 621, 1389–1396. [Google Scholar] [CrossRef]
- Miralles, P.; Chisvert, A.; Salvador, A. Determination of Phenolic Endocrine Disruptors in Cosmetics by High-Performance Liquid Chromatography Mass Spectrometry. Anal. Lett. 2018, 51, 717–727. [Google Scholar] [CrossRef]
- Guerra, E.; Alvarez-Rivera, G.; Llompart, M.; Garcia-Jares, C. Simultaneous determination of preservatives and synthetic dyes in cosmetics by single-step vortex extraction and clean-up followed by liquid chromatography coupled to tandem mass spectrometry. Talanta 2018, 188, 251–258. [Google Scholar] [CrossRef]
- Esteve, C.; Herrero, L.; Gómara, B.; Quintanilla-López, J. Fast and simultaneous determination of endocrine disrupting compounds by ultra-high performance liquid chromatography-tandem mass spectrometry. Talanta 2016, 146, 326–334. [Google Scholar] [CrossRef] [Green Version]
- Sardar, S.W.; Choi, Y.; Park, N.; Jeon, J. Occurrence and concentration of chemical additives in consumer products in Korea. Int. J. Environ. Res. Public Health 2019, 16, 5075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balireddi, V.; Tatikonda, K.M.; Tirukkovalluri, S.R.; Teja, S.B.; Manne, S. Simultaneous determination of multiple preservatives and antioxidants in topical products by ultra-pressure liquid chromatography with photo diode array detector. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1361–1370. [Google Scholar] [CrossRef]
- Zhou, W. The determination of 1, 4-dioxane in cosmetic products by gas chromatography with tandem mass spectrometry. J. Chromatogr. A 2019, 1607, 460400. [Google Scholar] [CrossRef] [PubMed]
- Chisvert, A.; Tarazona, I.; Salvador, A. A reliable and environmentally-friendly liquid-chromatographic method for multi-class determination of fat-soluble UV filters in cosmetic products. Anal. Chim. Acta 2013, 790, 61–67. [Google Scholar] [CrossRef]
- Meng, X.; Ma, Q.; Bai, H.; Wang, Z.; Han, C.; Wang, C. Simultaneous separation and determination of 15 organic UV filters in sunscreen cosmetics by HPLC-ESI-MS/MS. Int. J. Cosmet. Sci. 2017, 39, 386–392. [Google Scholar] [CrossRef]
- Myers, E.A.; Pritchett, T.H.; Brettell, T.A. Determination of preservatives in cosmetics and personal care products by LC-MS-MS. Lc Gc N. Am. 2015, 33, 16–22. [Google Scholar]
- Miralles, P.; Benedé, J.L.; Mata-Martín, A.; Chisvert, A.; Salvador, A. A Green and Rapid Analytical Method for the Determination of Hydroxyethoxyphenyl Butanone in Cosmetic Products by Liquid Chromatography. Cosmetics 2018, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Baranowska, I.; Wojciechowska, I. The Determination of Preservatives in Cosmetics and Environmental Waters by HPLC. Pol. J. Environ. Stud. 2013, 22, 1609–1623. [Google Scholar]
- Nakata, H.; Hinosaka, M.; Yanagimoto, H. Macrocyclic-, polycyclic-, and nitro musks in cosmetics, household commodities and indoor dusts collected from Japan: Implications for their human exposure. Ecotoxicol. Environ. Saf. 2015, 111, 248–255. [Google Scholar] [CrossRef]
- Du, Y.; Xia, L.; Xiao, X.; Li, G.; Chen, X. A simple one-step ultrasonic-assisted extraction and derivatization method coupling to high-performance liquid chromatographyfor the determination of ε-aminocaproic acid and amino acids in cosmetics. J. Chromatogr. A 2018, 1554, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Benedé, J.L.; Rodriguez, E.; Chisvert, A.; Salvador, A. Rapid and Simple Determination of Honokiol and Magnolol in Cosmetic Products by Liquid Chromatography with Ultraviolet Detection. Anal. Lett. 2021, 54, 1510–1521. [Google Scholar] [CrossRef]
- Rubio, L.; Lores, M.; Garcia-Jares, C. Monitoring of natural pigments in henna and jagua tattoos for fake detection. Cosmetics 2020, 7, 74. [Google Scholar] [CrossRef]
- Lores, M.; Celeiro, M.; Rubio, L.; Llompart, M.; Garcia-Jares, C. Extreme cosmetics and borderline products: An analytical-based survey of European regulation compliance. Anal. Bioanal. Chem. 2018, 410, 7085–7102. [Google Scholar] [CrossRef]
- Temel, N.K.; Gurkan, R. Combination of ultrasound-assisted cloud-point extraction with spectrophotometry for extraction, preconcentration, and determination of low levels of free formaldehyde from cosmetic products. J. AOAC Int. 2018, 101, 1763–1772. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Li, X.; Lu, X.; Chen, G.; Sun, Z.; Li, G.; Zhao, X.; Zhang, S.; Song, C. Development of ultrasonic-assisted closed in-syringe extraction and derivatization for the determination of labile abietic acid and dehydroabietic acid in cosmetics. J. Chromatogr. A 2014, 1371, 20–29. [Google Scholar] [CrossRef]
- Meng, X.; Ma, Q.; Zhang, Q.; Lv, Q.; Bai, H.; Wang, C.; Li, W. Simultaneous determination of 16 fluoroquinolone antibiotics in cosmetics by ultra-performance liquid chromatography/triple quadrupole mass spectrometry with ultrasound-assisted extraction and solid-phase extraction. Anal. Methods 2015, 7, 675–683. [Google Scholar] [CrossRef]
- Ma, Q.; Xi, H.; Ma, H.; Meng, X.; Wang, Z.; Bai, H.; Li, W.; Wang, C. Simultaneous separation and determination of 22 coumarin derivatives in cosmetics by UPLC-MS/MS. Chromatographia 2015, 78, 241–249. [Google Scholar] [CrossRef]
- Joo, K.M.; Shin, M.S.; Jung, J.H.; Kim, B.M.; Lee, J.W.; Jeong, H.J.; Lim, K.M. Determination of N-nitrosodiethanolamine, NDELA in cosmetic ingredients and products by mixed mode solid phase extraction and UPLC-tandem mass spectrometry with porous graphitic carbon column through systemic sample pre-cleanup procedure. Talanta 2015, 137, 109–119. [Google Scholar] [CrossRef]
- Márquez-Sillero, I.; Aguilera-Herrador, E.; Cárdenas, S.; Valcárcel, M. Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. J. Chromatogr. A 2010, 1217, 1–6. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.; Li, J.; Zhu, C.; Liu, M.; Wu, Z.; Liu, L.; Tan, X.; Lei, F. Preparation and application of a molecular capture for safety detection of cosmetics based on surface imprinting and multi-walled carbon nanotubes. J. Colloid Interface Sci. 2018, 527, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhao, W.; Zhai, M.; Wei, F.; Cai, Z.; Sheng, N.; Hu, Q. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples. Anal. Chim. Acta 2010, 658, 209–216. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Du, T.; Kou, H.; Du, X.; Lu, X. Determination of six benzotriazole ultraviolet filters in water and cosmetic samples by graphene sponge-based solid-phase extraction followed by high-performance liquid chromatography. Anal. Bioanal. Chem. 2018, 410, 6955–6962. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, G.; Luo, Z.; Liu, Z.; Shao, Y.; He, W.; Deng, J.; Luo, X. Carboxylated graphene oxide/polyvinyl chloride as solid-phase extraction sorbent combined with ion chromatography for the determination of sulfonamides in cosmetics. Anal. Chim. Acta 2015, 888, 75–84. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Falaghi, S.; Rahimpour, E. An innovative nano-sorbent for selective solid-phase extraction and spectrophotometric determination of p-amino benzoic acid in cosmetic products. Int. J. Cosmet. Sci. 2014, 36, 140–147. [Google Scholar] [CrossRef]
- Tong, S.; Liu, Q.; Li, Y.; Zhou, W.; Jia, Q.; Duan, T. Preparation of porous polymer monolithic column incorporated with graphene nanosheets for solid phase microextraction and enrichment of glucocorticoids. J. Chromatogr. A 2012, 1253, 22–31. [Google Scholar] [CrossRef]
- Liu, F.; Xian, Y.; Chen, J.; Dong, H.; Liu, H.; Guo, X.; Chen, M.; Li, H. Determination of eleven volatile N-nitrosamines in skin care cosmetics using multi-walled carbon nanotubes as a dispersive clean-up sorbent and ultrahigh-performance liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry. Anal. Methods 2016, 8, 4245–4253. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Martínez-Benito, C.; Pino, V.; Pasán, J.; Ayala, J.H.; Ruiz-Pérez, C.; Afonso, A.M. The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta 2015, 139, 13–20. [Google Scholar] [CrossRef]
- Ara, K.M.; Pandidan, S.; Aliakbari, A.; Raofie, F.; Amini, M.M. Porous-membrane-protected polyaniline-coated SBA-15 nanocomposite micro-solid-phase extraction followed by high-performance liquid chromatography for the determination of parabens in cosmetic products and wastewater. J. Sep. Sci. 2015, 38, 1213–1224. [Google Scholar] [CrossRef]
- Vila, M.; Facorro, R.; Lamas, J.P.; Garcia-Jares, C.; Dagnac, T.; Llompart, M. Determination of fifteen water and fat-soluble UV filters in cosmetics by pressurized liquid extraction followed by liquid chromatography tandem mass spectrometry. Anal. Methods 2016, 8, 6787–6794. [Google Scholar] [CrossRef]
- Vila, M.; Lamas, J.P.; Garcia-Jares, C.; Dagnac, T.; Llompart, M. Optimization of an analytical methodology for the simultaneous determination of different classes of ultraviolet filters in cosmetics by pressurized liquid extraction-gas chromatography tandem mass spectrometry. J. Chromatogr. A 2015, 1405, 12–22. [Google Scholar] [CrossRef]
- Lamas, J.P.; Sanchez-Prado, L.; Garcia-Jares, C.; Lores, M.; Llompart, M. Development of a solid phase dispersion-pressurized liquid extraction method for the analysis of suspected fragrance allergens in leave-on cosmetics. J. Chromatogr. A 2010, 1217, 8087–8094. [Google Scholar] [CrossRef]
- Sanchez-Prado, L.; Lamas, J.P.; Lores, M.; Garcia-Jares, C.; Llompart, M. Simultaneous in-cell derivatization pressurized liquid extraction for the determination of multiclass preservatives in leave-on cosmetics. Anal. Chem. 2010, 82, 9384–9392. [Google Scholar] [CrossRef]
- Keawmanee, S.; Boontanon, S.K.; Boontanon, N. Method development and initial results of testing for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in waterproof sunscreens. Environ. Eng. Res. 2015, 20, 127–132. [Google Scholar] [CrossRef]
- Celeiro, M.; Lamas, J.P.; Garcia-Jares, C.; Llompart, M. Pressurized liquid extraction-gas chromatography-mass spectrometry analysis of fragrance allergens, musks, phthalates and preservatives in baby wipes. J. Chromatogr. A 2015, 1384, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Prado, L.; Alvarez-Rivera, G.; Lamas, J.P.; Llompart, M.; Lores, M.; Garcia-Jares, C. Content of suspected allergens and preservatives in marketed baby and child care products. Anal. Methods 2013, 5, 416–427. [Google Scholar] [CrossRef]
- Sanchez-Prado, L.; Lamas, J.P.; Alvarez-Rivera, G.; Lores, M.; Garcia-Jares, C.; Llompart, M. Determination of suspected fragrance allergens in cosmetics by matrix solid-phase dispersion gas chromatography-mass spectrometry analysis. J. Chromatogr. A 2011, 1218, 5055–5062. [Google Scholar] [CrossRef]
- Sanchez-Prado, L.; Alvarez-Rivera, G.; Lamas, J.P.; Lores, M.; Garcia-Jares, C.; Llompart, M. Analysis of multi-class preservatives in leave-on and rinse-off cosmetics by matrix solid-phase dispersion. Anal. Bioanal. Chem. 2011, 401, 3293–3304. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; Dagnac, T.; Lores, M.; Garcia-Jares, C.; Sanchez-Prado, L.; Lamas, J.P.; Llompart, M. Determination of isothiazolinone preservatives in cosmetics and household products by matrix solid-phase dispersion followed by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2012, 1270, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Llompart, M.; Celeiro, M.; Lamas, J.P.; Sanchez-Prado, L.; Lores, M.; Garcia-Jares, C. Analysis of plasticizers and synthetic musks in cosmetic and personal care products by matrix solid-phase dispersion gas chromatography-mass spectrometry. J. Chromatogr. A 2013, 1293, 10–19. [Google Scholar] [CrossRef]
- Guerra, E.; Llompart, M.; Garcia-Jares, C. Miniaturized matrix solid-phase dispersion followed by liquid chromatography-tandem mass spectrometry for the quantification of synthetic dyes in cosmetics and foodstuffs used or consumed by children. J. Chromatogr. A 2017, 1529, 29–38. [Google Scholar] [CrossRef]
- Guerra, E.; Celeiro, M.; Lamas, J.P.; Llompart, M.; Garcia-Jares, C. Determination of dyes in cosmetic products by micro-matrix solid phase dispersion and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2015, 1415, 27–37. [Google Scholar] [CrossRef]
- Chen, M.; Bai, H.; Zhai, J.; Meng, X.; Guo, X.; Wang, C.; Wang, P.; Lei, H.; Niu, Z.; Ma, Q. Comprehensive screening of 63 coloring agents in cosmetics using matrix solid-phase dispersion and ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry. J. Chromatogr. A 2019, 1590, 27–38. [Google Scholar] [CrossRef]
- Celeiro, M.; Guerra, E.; Lamas, J.P.; Lores, M.; Garcia-Jares, C.; Llompart, M. Development of a multianalyte method based on micro-matrix-solid-phase dispersion for the analysis of fragrance allergens and preservatives in personal care products. J. Chromatogr. A 2014, 1344, 1–14. [Google Scholar] [CrossRef]
- Liu, Y.F.; Zhang, J.; Nie, X.; Zhang, P.; Yan, X.; Fu, K. Simultaneous determination of 11 preservatives in cosmetics and pharmaceuticals by matrix solid-phase dispersion coupled with gas chromatography. Acta Chromatogr. 2020, 32, 203–209. [Google Scholar] [CrossRef]
- Yildiz, E.; Cabuk, H. Miniaturized matrix solid-phase dispersion coupled with supramolecular solvent-based microextraction for the determination of paraben preservatives in cream samples. J. Sep. Sci. 2018, 41, 2750–2758. [Google Scholar] [CrossRef] [PubMed]
- Celeiro, M.; Vazquez, L.; Lamas, J.P.; Vila, M.; Garcia-Jares, C.; Llompart, M. Miniaturized Matrix Solid-Phase Dispersion for the Analysis of Ultraviolet Filters and Other Cosmetic Ingredients in Personal Care Products. Separations 2019, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Celeiro, M.; Lamas, J.P.; Llompart, M.; Garcia-Jares, C. In-vial micro-matrix-solid phase dispersion for the analysis of fragrance allergens, preservatives, plasticizers, and musks in cosmetics. Cosmetics 2014, 1, 171–201. [Google Scholar] [CrossRef] [Green Version]
- Celeiro, M.; Rubio, L.; Garcia-Jares, C.; Lores, M. Multi-Target Strategy to Uncover Unexpected Compounds in Rinse-Off and Leave-On Cosmetics. Molecules 2021, 26, 2504. [Google Scholar] [CrossRef]
- Guo, P.; Chen, G.; Shu, H.; Li, P.; Yu, P.; Chang, C.; Wang, Y.; Fu, Q. Monodisperse molecularly imprinted microsphere cartridges coupled with HPLC for selective analysis of dexamethasone and hydrocortisone in cosmetics by using matrix solid-phase dispersion. Anal. Methods 2019, 11, 3687–3696. [Google Scholar] [CrossRef]
- Priego-Capote, F.; de Castro, M.D.L. Analytical uses of ultrasound I. Sample preparation. TrAC-Trends Anal. Chem. 2004, 23, 644–653. [Google Scholar] [CrossRef]
- Bendicho, C.; de La Calle, I.; Pena, F.; Costas, M.; Cabaleiro, N.; Lavilla, I. Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry. TrAC-Trends Anal. Chem. 2012, 31, 50–60. [Google Scholar] [CrossRef]
- Poole, C.F. New trends in solid-phase extraction. TrAC-Trends Anal. Chem. 2003, 22, 362–373. [Google Scholar] [CrossRef]
- Augusto, F.; Hantao, L.W.; Mogollón, N.G.S.; Braga, S.C.G.N. New materials and trends in sorbents for solid-phase extraction. TrAC-Trends Anal. Chem. 2013, 43, 14–23. [Google Scholar] [CrossRef]
- Plotka-Wasylka, J.; Szczepanska, N.; de la Guardia, M.; Namiesnik, J. Modern trends in solid phase extraction: New sorbent media. TrAC-Trends Anal. Chem. 2016, 77, 23–43. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Sengupta, A.; Gupta, N.K. MWCNTs based sorbents for nuclear waste management: A review. J. Environ. Chem. Eng. 2017, 5, 5099–5114. [Google Scholar] [CrossRef]
- Chatzimitakos, T.G.; Stalikas, C.D. Sponges and sponge-like materials in sample preparation: A journey from past to present and into the future. Molecules 2020, 25, 3673. [Google Scholar] [CrossRef]
- Evans, D.G.; Slade, R.C.T. Structural aspects of layered double hydroxides. In Layered Double Hydroxides; Springer Nature: London, UK, 2006; Volume 119, pp. 1–87. [Google Scholar]
- Chisvert, A.; Cárdenas, S.; Lucena, R. Dispersive micro-solid phase extraction. TrAC-Trends Anal. Chem. 2019, 112, 226–233. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512. [Google Scholar] [CrossRef] [PubMed]
- Pérez, R.A.; Albero, B.; Tadeo, J.L.; Poole, C.F. Matrix solid phase dispersion. In Solid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 531–549. [Google Scholar]
- Barker, S.; Long, A.R.; Short, C.R. Isolation of drug residues from tissues by solid phase dispersion. J. Chromatogr. A 1989, 475, 353–361. [Google Scholar] [CrossRef]
- Hyotylainen, T.; Riekkola, M.L. Sorbent-and liquid-phase microextraction techniques and membrane-assisted extraction in combination with gas chromatographic analysis: A review. Anal. Chim. Acta 2008, 614, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Sarafraz-Yazdi, A.; Amiri, A. Liquid-phase microextraction. TrAC-Trends Anal. Chem. 2010, 29, 1–14. [Google Scholar] [CrossRef]
- Spietelun, A.; Marcinkowski, A.; de la Guardia, M.; Namiesnik, J. Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta 2014, 119, 34–45. [Google Scholar] [CrossRef]
- Miralles, P.; Vrouvaki, I.; Chisvert, A.; Salvador, A. Determination of alternative preservatives in cosmetic products by chromophoric derivatization followed by vortex-assisted liquid-liquid semimicroextraction and liquid chromatography. Talanta 2016, 154, 1–6. [Google Scholar] [CrossRef]
- Sivrikaya, S. A novel vortex-assisted liquid phase microextraction method for parabens in cosmetic oil products using deep eutectic solvent. Int. J. Environ. Anal. Chem. 2019, 99, 1575–1585. [Google Scholar] [CrossRef]
- Miralles, P.; Bellver, R.; Chisvert, A.; Salvador, A. Vortex-assisted emulsification semimicroextraction for the analytical control of restricted ingredients in cosmetic products: Determination of bronopol by liquid chromatography. Anal. Bioanal. Chem. 2016, 408, 1929–1934. [Google Scholar] [CrossRef]
- Wei, H.; Yang, J.; Zhang, H.; Shi, Y. Dispersive liquid-liquid microextraction for simultaneous determination of six parabens in aqueous cosmetics. Chem. Res. Chin. Univ. 2014, 30, 368–373. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, N.; Luo, C.; Wang, X.; Sun, C. Simultaneous determination of seven preservatives in cosmetics by dispersive liquid-liquid microextraction coupled with high performance capillary electrophoresis. Anal. Methods 2013, 5, 2391–2397. [Google Scholar] [CrossRef]
- Schettino, L.; Benedé, J.L.; Chisvert, A.; Salvador, A. Development of a sensitive method for determining traces of prohibited acrylamide in cosmetic products based on dispersive liquid-liquid microextraction followed by liquid chromatography-ultraviolet detection. Microchem. J. 2020, 159, 105402. [Google Scholar] [CrossRef]
- López-Nogueroles, M.; Chisvert, A.; Salvador, A. Determination of atranol and chloroatranol in perfumes using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Anal. Chim. Acta 2014, 826, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Beh, S.Y.; Mahfut, I.; Juber, N.; Asman, S.; Yusoff, F.; Saleh, N.M. Extraction of Parabens from Cosmetic and Environmental Water Samples Coupled With UV-Visible Spectroscopy. J. Appl. Spectrosc. 2021, 87, 1216–1223. [Google Scholar] [CrossRef]
- Ge, D.; Gao, Y.; Cao, Y.; Dai, E.; Yuan, L. Preparation of a New Polymeric Deep Eutectic Solvent and Its Application in Vortex-Assisted Liquid-Liquid Microextraction of Parabens in Foods, Cosmetics and Pharmaceutical Products. J. Braz. Chem. Soc. 2020, 31, 2120–2128. [Google Scholar] [CrossRef]
- Viñas, P.; Campillo, N.; Pastor-Belda, M.; Oller, A.; Hernández-Córdoba, M. Determination of phthalate esters in cleaning and personal care products by dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2015, 1376, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.Y.; Su, Y.L.; Weng, J.R.; Lin, Y.C.; Feng, C.H. Ultrasound-Vortex-Assisted Dispersive Liquid-Liquid Microextraction Combined with High Performance Liquid Chromatography-Diode Array Detection for Determining UV Filters in Cosmetics and the Human Stratum Corneum. Molecules 2020, 25, 4642. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Yang, J.; Zhang, H.; Shi, Y. Ultrasonic nebulization extraction assisted dispersive liquid-liquid microextraction followed by gas chromatography for the simultaneous determination of six parabens in cosmetic products. J. Sep. Sci. 2014, 37, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Ranjbari, E.; Hadjmohammadi, M.R. Optimization of magnetic stirring assisted dispersive liquid-liquid microextraction of rhodamine B and rhodamine 6G by response surface methodology: Application in water samples, soft drink, and cosmetic products. Talanta 2015, 139, 216–225. [Google Scholar] [CrossRef]
- Viñas, P.; Pastor-Belda, M.; Campillo, N.; Bravo-Bravo, M.; Hernández-Córdoba, M. Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products. J. Pharmac. Biom. Anal. 2014, 94, 173–179. [Google Scholar] [CrossRef]
- Guo, J.; Wu, H.; Du, L.; Fu, Y. Determination of Brilliant Blue FCF in food and cosmetic samples by ionic liquid independent disperse liquid-liquid micro-extraction. Anal. Methods 2013, 5, 4021–4026. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Cheng, C.; Yang, Y. Magnetic solid-phase extraction and ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of hexachlorophene in cosmetics. Chromatographia 2017, 80, 783–791. [Google Scholar] [CrossRef]
- Zhou, C.; Tong, S.; Chang, Y.; Jia, Q.; Zhou, W. Ionic liquid-based dispersive liquid-liquid microextraction with back-extraction coupled with capillary electrophoresis to determine phenolic compounds. Electrophoresis 2012, 33, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Xu, X.; Liu, Z.; Xue, S.; Zhang, L. Novel functionalized magnetic ionic liquid green separation technology coupled with high performance liquid chromatography: A rapid approach for determination of estrogens in milk and cosmetics. Talanta 2020, 209, 120542. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Fernández, I.; Pino, V.; Ayala, J.H.; Afonso, A.M. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid-liquid microextraction method for determining personal care products. J. Chromatogr. A 2018, 1559, 102–111. [Google Scholar] [CrossRef]
- Feng, C.H.; Jiang, S.R. Micro-scale quantitation of ten phthalate esters in water samples and cosmetics using capillary liquid chromatography coupled to UV detection: Effective strategies to reduce the production of organic waste. Microchim. Acta 2012, 177, 167–175. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, G.; Luo, Z.; Zhu, B. Microwave-assisted dispersive liquid-liquid microextraction coupling to solidification of floating organic droplet for colorants analysis in selected cosmetics by liquid chromatography. Talanta 2019, 194, 46–54. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, G.; Zhong, X.; Luo, Z.; Zhu, B. Ultrasound-assisted low-density solvent dispersive liquid-liquid extraction for the determination of alkanolamines and alkylamines in cosmetics with ion chromatography. Talanta 2013, 115, 518–525. [Google Scholar] [CrossRef]
- Miralles, P.; Chisvert, A.; Salvador, A. Determination of N-nitrosamines in cosmetic products by vortex-assisted reversed-phase dispersive liquid-liquid microextraction and liquid chromatography with mass spectrometry. J. Sep. Sci. 2018, 41, 3143–3151. [Google Scholar] [CrossRef]
- Chisvert, A.; Benedé, J.L.; Peiró, M.; Pedrón, I.; Salvador, A. Determination of N-nitrosodiethanolamine in cosmetic products by reversed-phase dispersive liquid-liquid microextraction followed by liquid chromatography. Talanta 2017, 166, 81–86. [Google Scholar] [CrossRef]
- Miralles, P.; Chisvert, A.; Alonso, M.J.; Hernandorena, S.; Salvador, A. Determination of free formaldehyde in cosmetics containing formaldehyde-releasing preservatives by reversed-phase dispersive liquid-liquid microextraction and liquid chromatography with post-column derivatization. J. Chromatogr. A 2018, 1543, 34–39. [Google Scholar] [CrossRef]
- Yamini, Y.; Saleh, A.; Rezaee, M.; Ranjbar, L.; Moradi, M. Ultrasound-assisted emulsification microextraction of various preservatives from cosmetics, beverages, and water samples. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 2623–2642. [Google Scholar] [CrossRef]
- Cao, X.; Shen, L.; Ye, X.; Zhang, F.; Chen, J.; Mo, W. Ionic Liquid-Based Ultrasound-Assisted Emulsification Microextraction Coupled with HPLC for Simultaneous Determination of Glucocorticoids and Sex Hormones in Cosmetics. Green Sustain. Chem. 2013, 3, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Outeiral, J.; Millén, E.; Garcia-Arrona, R. Ultrasound-assisted emulsification microextraction coupled with high-performance liquid chromatography for the simultaneous determination of fragrance allergens in cosmetics and water. J. Sep. Sci. 2015, 38, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Kamarei, F.; Ebrahimzadeh, H.; Yamini, Y. Optimization of ultrasound-assisted emulsification microextraction with solidification of floating organic droplet followed by high performance liquid chromatography for the analysis of phthalate esters in cosmetic and environmental water samples. Microchem. J. 2011, 99, 26–33. [Google Scholar] [CrossRef]
- Jan-E., S.; Santaladchaiyakit, Y.; Burakham, R. Ultrasound-assisted surfactant-enhanced emulsification micro-extraction followed by HPLC for determination of preservatives in water, beverages and personal care products. J. Chromatogr. Sci. 2016, 55, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Divisova, R.; Vitova, E.; Divis, P.; Zemanova, J.; Omelkova, J. Validation of SPME-GC-FID method for determination of fragrance allergens in selected cosmetic products. Acta Chromatogr. 2015, 27, 509–523. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Rivera, G.; Vila, M.; Lores, M.; Garcia-Jares, C.; Llompart, M. Development of a multi-preservative method based on solid-phase microextraction-gas chromatography-tandem mass spectrometry for cosmetic analysis. J. Chromatogr. A 2014, 1339, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Alvarez, M.; Lamas, J.P.; Sanchez-Prado, L.; Llompart, M.; Garcia-Jares, C.; Lores, M. Development of a solid-phase microextraction gas chromatography with microelectron-capture detection method for the determination of 5-bromo-5-nitro-1, 3-dioxane in rinse-off cosmetics. J. Chromatogr. A 2010, 1217, 6634–6639. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rivera, G.; Llompart, M.; Garcia-Jares, C.; Lores, M. Identification of unwanted photoproducts of cosmetic preservatives in personal care products under ultraviolet-light using solid-phase microextraction and micro-matrix solid-phase dispersion. J. Chromatogr. A 2015, 1390, 1–12. [Google Scholar] [CrossRef]
- Yang, T.J.; Tsai, F.J.; Chen, C.Y.; Yang, T.C.C.; Lee, M.R. Determination of additives in cosmetics by supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Anal. Chim. Acta 2010, 668, 188–194. [Google Scholar] [CrossRef]
- Ghosh, C.; Singh, V.; Grandy, J.; Pawliszyn, J. Development and validation of a headspace needle-trap method for rapid quantitative estimation of butylated hydroxytoluene from cosmetics by hand-portable GC-MS. RSC Adv. 2020, 10, 6671–6677. [Google Scholar] [CrossRef] [Green Version]
- Davarani, S.S.H.; Masoomi, L.; Banitaba, M.H.; Zhad, H.R.L.Z.; Sadeghi, O.; Samiei, A. Determination of N-nitrosodiethanolamine in cosmetic products by headspace solid phase microextraction using a novel aluminum hydroxide grafted fused silica fiber followed by gas chromatography-mass spectrometry analysis. Talanta 2013, 105, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Fei, T.; Li, H.; Ding, M.; Ito, M.; Lin, J.M. Determination of parabens in cosmetic products by solid-phase microextraction of poly (ethylene glycol) diacrylate thin film on fibers and ultra high-speed liquid chromatography with diode array detector. J. Sep. Sci. 2011, 34, 1599–1606. [Google Scholar] [CrossRef]
- Wu, T.; Wang, J.; Liang, W.; Zang, X.; Wang, C.; Wu, Q.; Wang, Z. Single layer graphitic carbon nitride-modified graphene composite as a fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons. Microchim. Acta 2017, 184, 2171–2180. [Google Scholar] [CrossRef]
- Hou, X.; Wang, L.; Tang, X.; Xiong, C.; Guo, Y.; Liu, X. Application of a beta-cyclodextrin/graphene oxide-modified fiber for solid-phase microextraction of six fragrance allergens in personal products. Analyst 2015, 140, 6727–6735. [Google Scholar] [CrossRef] [PubMed]
- Celeiro, M.; Varela, E.; Rodriguez, R.; Penedo, M.; Lores, M. Tracking bacterial spoilage in cosmetics by a new bioanalytical approach: API-SPME-GC-MS to monitor MVOCs. Cosmetics 2020, 7, 38. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; de Miguel, T.; Llompart, M.; Garcia-Jares, C.; Villa, T.G.; Lores, M. A novel outlook on detecting microbial contamination in cosmetic products: Analysis of biomarker volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. Anal. Methods 2013, 5, 384–393. [Google Scholar] [CrossRef]
- Gulle, S.; Ulusoy, H.I.; Kabir, A.; Tartaglia, A.; Furton, K.G.; Locatelli, M.; Samanidou, V.F. Application of a fabric phase sorptive extraction-high performance liquid chromatography-photodiode array detection method for the trace determination of methyl paraben, propyl paraben and butyl paraben in cosmetic and environmental samples. Anal. Methods 2019, 11, 6136–6145. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, R.; Grover, A.; Rani, S.; Malik, A.K.; Kabir, A.; Furton, K.G. Trace determination of parabens in cosmetics and personal care products using fabric-phase sorptive extraction and high-performance liquid chromatography with UV detection. J. Sep. Sci. 2020, 43, 2626–2635. [Google Scholar] [CrossRef]
- Miralles, P.; van Gemert, I.; Chisvert, A.; Salvador, A. Stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles-metal organic framework composite: Determination of N-nitrosamines in cosmetic products. J. Chromatogr. A 2019, 1604, 460465. [Google Scholar] [CrossRef]
- Vállez-Gomis, V.; Grau, J.; Benedé, J.L.; Chisvert, A.; Salvador, A. Reduced graphene oxide-based magnetic composite for trace determination of polycyclic aromatic hydrocarbons in cosmetics by stir bar sorptive dispersive microextraction. J. Chromatogr. A 2020, 1624, 461229. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of dispersive liquid-liquid microextraction method. J. Chromatogr. A 2010, 1217, 2342–2357. [Google Scholar] [CrossRef]
- Hashemi, P.; Raeisi, F.; Ghiasvand, A.R.; Rahimi, A. Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein. Talanta 2010, 80, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Regueiro, J.; Llompart, M.; Garcia-Jares, C.; Garcia-Monteagudo, J.C.; Cela, R. Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. J. Chromatogr. A 2008, 1190, 27–38. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, M.J.; Pacheco-Fernández, I.; Taima-Mancera, I.; Díaz, H.A.; Pino, V. Evolution and current advances in sorbent-based microextraction configurations. J. Chromatogr. A 2020, 1634, 461670. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Llompart, M.; Celeiro, M.; Garcia-Jares, C.; Dagnac, T. Environmental applications of solid-phase microextraction. TrAC-Trends Anal. Chem. 2019, 112, 1–12. [Google Scholar] [CrossRef]
- Kabir, A.; Mesa, R.; Jurmain, J.; Furton, J.G. Fabric Phase Sorptive Microextraction (FPSE): A New Direction in Sorptive Microextraction. U.S. Patent 9283544B2, 15 March 2013. [Google Scholar]
- Celeiro, M.; Acerbi, R.; Kabir, A.; Furton, K.G.; Llompart, M. Development of an analytical methodology based on fabric phase sorptive extraction followed by gas chromatography-tandem mass spectrometry to determine UV filters in environmental and recreational waters. Anal. Chim. Acta X 2020, 4, 100038. [Google Scholar] [CrossRef]
- Benedé, J.L.; Chisvert, A.; Giokas, D.L.; Salvador, A. Development of stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles and its analytical application to the determination of hydrophobic organic compounds in aqueous media. J. Chromatogr. A 2014, 1362, 25–33. [Google Scholar] [CrossRef]
- Vállez-Gomis, V.; Grau, J.; Benedé, J.L.; Giokas, D.L.; Chisvert, A.; Salvador, A. Fundamentals and applications of stir bar sorptive dispersive microextraction: A tutorial review. Anal. Chim. Acta 2021, 1153, 338271. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celeiro, M.; Garcia-Jares, C.; Llompart, M.; Lores, M. Recent Advances in Sample Preparation for Cosmetics and Personal Care Products Analysis. Molecules 2021, 26, 4900. https://doi.org/10.3390/molecules26164900
Celeiro M, Garcia-Jares C, Llompart M, Lores M. Recent Advances in Sample Preparation for Cosmetics and Personal Care Products Analysis. Molecules. 2021; 26(16):4900. https://doi.org/10.3390/molecules26164900
Chicago/Turabian StyleCeleiro, Maria, Carmen Garcia-Jares, Maria Llompart, and Marta Lores. 2021. "Recent Advances in Sample Preparation for Cosmetics and Personal Care Products Analysis" Molecules 26, no. 16: 4900. https://doi.org/10.3390/molecules26164900
APA StyleCeleiro, M., Garcia-Jares, C., Llompart, M., & Lores, M. (2021). Recent Advances in Sample Preparation for Cosmetics and Personal Care Products Analysis. Molecules, 26(16), 4900. https://doi.org/10.3390/molecules26164900