Application of d-SPE before SPE and HPLC-FLD to Analyze Bisphenols in Human Breast Milk Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatographic and Detection Conditions (HPLC-FLD)
2.2. Optimization and Validation of the HPLC-FLD Method
2.3. Sample Preparations and Optimization of the d-SPE/SPE-Based Procedure
2.3.1. d-SPE/SPE-Based Sample Preparation Development
2.3.2. Optimization of Dispersive Solid-Phase Extraction (d-SPE) before the SPE Procedure
2.4. Recovery and Repeatability Studies
Recovery Values Obtained after Optimization of the d-SPE/SPE-HPLC-FLD Procedure
2.5. Application of the Optimized Procedure to the Identification of Bisphenols in Human Breast Milk Samples by HPLC-FLD
3. Experiment
3.1. Chemicals and Reagents
3.2. Solvents and Mobile-Phase Solutions
3.3. Apparatus and HPLC-FLD Conditions
3.4. HPLC-FLD Analysis and Method Validation
3.4.1. Selectivity
3.4.2. Linearity
3.4.3. Calculation of Extraction Recovery
3.5. Dispersive Solid Phase (d-SPE) Salts and Solid Phase Extraction (SPE) Sorbents
3.6. Optimization of the d-SPE/SPE-Based Extraction Procedure
- (1)
- 5 mL 0.5% acetic acid (CH3COOH) in n-heptane/dichloromethane/tetrahydrofuran (THF)/methanol (MeOH) 7.5/7.5/17/68 (v/v)
- (2)
- 5 mL 0.5 acetic acid (CH3COOH) in n-heptane/dichloromethane/tetrahydrofuran (THF)/methanol (MeOH) 7.5/7.5/42.5/42.5 (v/v).
3.7. Human Breast Milk Sample Collection
4. Conclusions
- (1)
- A 10-fold reduction in the sample volume (from 5 to 0.5 mL);
- (2)
- Optimization of the d-SPE/SPE technique for the majority of the analyzed bisphenols;
- (3)
- Optimal recovery values obtained for all analytes in the range 57 to 88% for seven bisphenols (compared to 41.5–115.9% in [24] for only four analytes) combined with a low matrix effect, ensuring the reliable identification and quantification of analytes;
- (4)
- The sample volume of 0.5 mL enabled us to combine several milk samples from one woman, allowing for the identification and quantitation of the analytes in biological samples using a sensitive fluorescence detector (FLD); and
- (5)
- Due to the use of HPLC-FLD, it was possible to identify and quantify bisphenols in human milk samples without having to confirm their identities using tandem mass spectrometry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Michałowicz, J. Bisphenol A—Sources, Toxicity and Biotransformation. Environ. Toxicol. Pharmacol. 2014, 37, 738–758. [Google Scholar] [CrossRef]
- European Commission Commission Regulation (EU). 2018/213 of 12 February 2018 on the Use of Bisphenol A in Varnishes and Coatings Intended to Come into Contact with Food and Amending Regulation (EU) No 10/2011 as Regards the Use of That Substance in Plastic Food Contact Materi. Off. J. Eur. Union 2018, 2001, 20–30. [Google Scholar]
- European-Parliament. Comission Directive 2011/8/EU. 2011. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32011L0008 (accessed on 14 June 2021).
- Lehmler, H.J.; Liu, B.; Gadogbe, M.; Bao, W. Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega 2018, 3, 6523–6532. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Wang, C.; He, J.; Xu, T.; Han, H.; Zhu, Z.; Meng, L.; Pang, Q.; Fan, R. Bisphenol A(BPA), BPS and BPB-Induced Oxidative Stress and Apoptosis Mediated by Mitochondria in Human Neuroblastoma Cell Lines. Ecotoxicol. Environ. Saf. 2021, 207, 111299. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, X.; Bai, J.; Li, J.; Zhang, C.; Zhao, Y.; Zhu, Y.; Zhang, J.; Zhou, X. Bisphenol S Increases the Obesogenic Effects of a High-Glucose Diet through Regulating Lipid Metabolism in Caenorhabditis Elegans. Food Chem. 2021, 339, 127813. [Google Scholar] [CrossRef]
- İyigündoğdu, İ.; Üstündağ, A.; Duydu, Y. Toxicological Evaluation of Bisphenol a and Its Analogues. Turk. J. Pharm. Sci. 2020, 17, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Deceuninck, Y.; Bichon, E.; Gény, T.; Veyrand, B.; Grandin, F.; Viguié, C.; Marchand, P.; Le Bizec, B. Quantitative Method for Conjugated Metabolites of Bisphenol A and Bisphenol S Determination in Food of Animal Origin by Ultra High Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2019, 1601, 232–242. [Google Scholar] [CrossRef]
- Pelch, K.; Wignall, J.A.; Goldstone, A.E.; Ross, P.K.; Blain, R.B.; Shapiro, A.J.; Holmgren, S.D.; Hsieh, J.H.; Svoboda, D.; Auerbach, S.S.; et al. A Scoping Review of the Health and Toxicological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives. Toxicology 2019, 424, 152235. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Regulation (EU) No 10/2011 of 14 January 2011. 2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:012:0001:0089:EN:PDF (accessed on 14 June 2021).
- Williams, M.J.; Cao, H.; Lindkvist, T.; Mothes, T.J.; Schiöth, H.B. Exposure to the Environmental Pollutant Bisphenol A Diglycidyl Ether (BADGE) Causes Cell over-Proliferation in Drosophila. Environ. Sci. Pollut. Res. 2020, 27, 25261–25270. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, N.; Kubica, P.; Kudłak, B.; Namieśnik, J.; Wasik, A. Stabilities of Bisphenol A Diglycidyl Ether, Bisphenol F Diglycidyl Ether, and Their Derivatives under Controlled Conditions Analyzed Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 6387–6398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.B.; Lee, S.; Lee, J.E.; Choi, J.C.; Park, S.J.; Kang, Y. LC-MS/MS Analysis of BADGE, NOGEs, and Their Derivatives Migrated from Food and Beverage Metal Cans. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 1974–1984. [Google Scholar] [CrossRef]
- EC Commission Regulation (EC). No 1895/2005 of 18 November 2005 on the Restriction of Use of Certain Epoxy Derivatives in Materials and Articles Intended to Come into Contact with Food. Off. J. Eur. Union 2005, L302, 28–32. [Google Scholar]
- CLARITY-BPA Program. Available online: https://ntp.niehs.nih.gov/whatwestudy/topics/bpa/index.html (accessed on 14 June 2021).
- Yang, R.; Niu, Y.; Wang, B.; Zhang, J.; Shao, B. Determination of Nine Bisphenol-Diglycidyl Ethers in Human Breast Milk by Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 9810–9818. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; He, Y.; Lei, Z.; Gao, C.; Xie, Q.; Tong, P.; Lin, Z. Preparation of Core-Shell Structured Magnetic Covalent Organic Framework Nanocomposites for Magnetic Solid-Phase Extraction of Bisphenols from Human Serum Sample. Talanta 2018, 181, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, A.L.; Thompson, K.; Eaglesham, G.; Vijayasarathy, S.; Mueller, J.F.; Sly, P.D.; Gomez, M.J. Rapid, Automated Online SPE-LC-QTRAP-MS/MS Method for the Simultaneous Analysis of 14 Phthalate Metabolites and 5 Bisphenol Analogues in Human Urine. Talanta 2016, 151, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Khmiri, I.; Côté, J.; Mantha, M.; Khemiri, R.; Lacroix, M.; Gely, C.; Toutain, P.L.; Picard-Hagen, N.; Gayrard, V.; Bouchard, M. Toxicokinetics of Bisphenol-S and Its Glucuronide in Plasma and Urine Following Oral and Dermal Exposure in Volunteers for the Interpretation of Biomonitoring Data. Environ. Int. 2020, 138, 105644. [Google Scholar] [CrossRef]
- Foster, W.G.; Kubwabo, C.; Kosarac, I.; Gregorovich, S.; Aryal, G.; Coleman, K. Free Bisphenol A (BPA), BPA-Glucuronide (BPA-G), and Total BPA Concentrations in Maternal Serum and Urine during Pregnancy and Umbilical Cord Blood at Delivery. Emerg. Contam. 2019, 5, 279–287. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Tuzimski, T.; Szubartowski, S. Method Development for Selected Bisphenols Analysis in Sweetened Condensed Milk from a Can and Breast Milk Samples by HPLC–DAD and HPLC-QQQ-MS: Comparison of Sorbents (Z-Sep, Z-Sep Plus, PSA, C18, Chitin and EMR-Lipid) for Clean-up of QueChers Extract. Molecules 2019, 24, 2093. [Google Scholar] [CrossRef] [Green Version]
- Tuzimski, T.; Szubartowski, S.; Gadzała-Kopciuch, R.; Miturski, A.; Wójtowicz-Marzec, M.; Kwaśniewski, W.; Buszewski, B. Comparison of DAD and FLD Detection for Identification of Selected Bisphenols in Human Breast Milk Samples and Their Quantitative Analysis by LC-MS/MS. J. AOAC Int. 2020, 103, 1029–1042. [Google Scholar] [CrossRef]
- Czarczyńska-Goślińska, B.; Grześkowiak, T.; Frankowski, R.; Lulek, J.; Pieczak, J.; Zgoła-Grześkowiak, A. Determination of Bisphenols and Parabens in Breast Milk and Dietary Risk Assessment for Polish Breastfed Infants. J. Food Compos. Anal. 2021, 98, 103839. [Google Scholar] [CrossRef]
- Dualde, P.; Pardo, O.; Fernández, S.F.; Pastor, A.; Yusà, V. Determination of Four Parabens and Bisphenols A, F and S in Human Breast Milk Using QuEChERS and Liquid Chromatography Coupled to Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1114–1115, 154–166. [Google Scholar] [CrossRef]
- Xiong, L.; Yan, P.; Chu, M.; Gao, Y.Q.; Li, W.H.; Yang, X.L. A Rapid and Simple HPLC–FLD Screening Method with QuEChERS as the Sample Treatment for the Simultaneous Monitoring of Nine Bisphenols in Milk. Food Chem. 2018, 244, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Xia, M.; Lu, H.; Shi, H.; Sun, D.; Hou, B.; Jia, L.; Li, D. Deep Eutectic Solvent-Based Liquid-Liquid Microextraction for the HPLC-DAD Analysis of Bisphenol A in Edible Oils. J. Mol. Liq. 2020, 306, 112881. [Google Scholar] [CrossRef]
- Nur’, M.; Rozaini, H.; Yahaya, N.; Saad, B.; Kamaruzaman, S.; Suhaila, N.; Hanapi, M. Rapid Ultrasound Assisted Emulsification Micro-Solid Phase Extraction Based on Molecularly Imprinted Polymer for HPLC-DAD Determination of Bisphenol A in Aqueous Matrices. Talanta 2017, 171, 242–249. [Google Scholar] [CrossRef]
- Guo, M.; He, M.; Zhong, J.; He, Q.; Ismail, B.B.; Chen, G.; Liu, D. High-Performance Liquid Chromatography (HPLC)-Fluorescence Method for Determination of Bisphenol A Diglycidyl Ether (BADGE) and Its Derivatives in Canned Foods. Sci. Total Environ. 2020, 710, 134975. [Google Scholar] [CrossRef]
- Zhou, Q.; Jin, Z.; Li, J.; Wang, B.; Wei, X.; Chen, J. A Novel Air-Assisted Liquid-Liquid Microextraction Based on in-Situ Phase Separation for the HPLC Determination of Bisphenols Migration from Disposable Lunch Boxes to Contacting Water. Talanta 2018, 189, 116–121. [Google Scholar] [CrossRef]
- Qu, J.; Li, Y.; Gao, M.; Tan, C.; Li, J.; Wang, X.; Wang, H. Development and Optimization of a Thiol Imidazolium-Based Ionic Liquid for Ultrasonic Assisted Liquid-Liquid Microextraction Combined with HPLC-FLD for Determination of Bisphenols in Milk and Juice Samples. LWT 2019, 111, 653–662. [Google Scholar] [CrossRef]
- Hassan, M.; Alshana, U. Switchable-Hydrophilicity Solvent Liquid-Liquid Microextraction of Non-Steroidal Anti-Inflammatory Drugs from Biological Fluids Prior to HPLC-DAD Determination. J. Pharm. Biomed. Anal. 2019, 174, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Song, Y.; Dong, Z.; Shi, Y.; Fan, J. Hydrophobic Deep Eutectic Solvents as Extractants for the Determination of Bisphenols from Food-Contacted Plastics by High Performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr. A 2020, 1621, 461087. [Google Scholar] [CrossRef] [PubMed]
- Lestido-Cardama, A.; Loureiro, P.V.; Sendón, R.; Losada, P.; Rodríguez, A.; Quirós, B. De Application of Chromatographic Analysis for Detecting Components from Polymeric Can Coatings and Further Determination in Beverage Samples. J. Chromatogr. A 2021, 1638, 461886. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology, Note For Guidance on Validation of Analytical Procedures: Text and Methodology (CPMP/ICH/381/95); European Medicines Agency: London, UK, 1995. [Google Scholar]
- Tuzimski, T.; Rejczak, T. A QuEChERS-based sample preparation method for the analysis of 5-nitroimidazoles in bovine milk by HPLC-DAD. J. AOAC Int. 2017, 100, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Rejczak, T.; Tuzimski, T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem. 2015, 13, 980–1010. [Google Scholar] [CrossRef]
- Tuzimski, T.; Rejczak, T. Determination of pesticides in sunflower seeds by high-performance liquid chromatography coupled with a diode array detector. J. AOAC Int. 2014, 97, 1012–1020. [Google Scholar] [CrossRef]
- Tuzimski, T.; Rejczak, T. Application of HPLC-DAD after SPE/QuEChERS with ZrO2-based sorbent in d-SPE clean-up step for pesticide analysis in edible oils. Food Chem. 2016, 190, 71–79. [Google Scholar] [CrossRef]
- Rejczak, T.; Tuzimski, T. QuEChERS-based extraction with dispersive solid phase extraction clean-up using PSA and ZrO2-based sorbents for determination of pesticides in bovine milk samples by HPLC-DAD. Food Chem. 2017, 217, 225–233. [Google Scholar] [CrossRef]
- Rejczak, T.; Tuzimski, T. Method development for sulfonylurea herbicides analysis in rapeseed oil samples by HPLC–DAD: Comparison of zirconium-based sorbents and EMR-Lipid for Clean-up of QuEChERS extract. Food Anal. Methods 2017, 10, 3666–3679. [Google Scholar] [CrossRef] [Green Version]
No. | Bisphenol | IUPAC Name | Chemical Structure | Molecular Weight 1 (g/mol) | Log P 1 | Proton Donors 1 | Proton Acceptors 1 |
---|---|---|---|---|---|---|---|
1 | BADGE∙2H2O | 2,2-bis[4-(2,3-hydroxypropoxy)phenyl]propane | 376.4 | 2.1 | 4 | 6 | |
2 | BPF | 4-[(4-hydroxyphenyl)methyl]phenol | 200.23 | 2.9 | 2 | 2 | |
3 | BPE | 4-[1-(4-hydroxyphenyl)ethyl]phenol | 214.26 | 3.9 | 2 | 2 | |
4 | BADGE∙H2O | 3-[4-[2-[4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenoxy]propane-1,2-diol | 358.4 | 3.1 | 2 | 5 | |
5 | BPB | 4-[2-(4-hydroxyphenyl)butan-2-yl]phenol | 242.31 | 3.9 | 2 | 2 | |
6 | BADGE∙2HCl | 1-chloro-3-[4-[2-[4-(3-chloro-2-hydroxypropoxy)phenyl]propan-2-yl]phenoxy]propan-2-ol | 413.3 | 4.6 | 2 | 4 | |
7 | BADGE | 2-[[4-[2-[4-(Oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenoxy]methyl]oxirane | 340.40 | 4.0 | 0 | 4 |
No. | Bisphenol | Retention Time, tr, Min | Concentration Range (ng mL−1) | λ (nm) | Linear Regression | Coefficient of Determination (R2) | LOD (ng mL −1) | LOQ (ng mL −1) |
---|---|---|---|---|---|---|---|---|
1 | BADGE∙2H2O | ~7.25 | 10–500 | 225 | y = 0.9741x + 5.0885 | R2 = 0.9988 | 8.59 | 26.03 |
230 | y = 1.4517x + 4.6832 | R2 = 0.9989 | 8.05 | 24.38 | ||||
235 | y = 1.7949x + 3.242 | R2 = 0.9995 | 5.28 | 16.00 | ||||
240 | y = 1.5781x + 9.9644 | R2 = 0.9991 | 7.37 | 22.35 | ||||
2 | BPF | ~9.30 | 10–500 | 225 | y = 0.5699x − 1.6479 | R2 = 0.9989 | 8.27 | 25.07 |
230 | y = 0.8048x − 1.357 | R2 = 0.9993 | 6.44 | 19.50 | ||||
235 | y = 0.992x + 4.1204 | R2 = 0.9978 | 11.51 | 34.89 | ||||
240 | y = 0.9516x + 2.286 | R2 = 0.9998 | 3.77 | 11.42 | ||||
3 | BPE | ~9.85 | 10–500 | 225 | y = 0.3955x − 1.6879 | R2 = 0.9994 | 7.15 | 21.66 |
230 | y = 0.5889x − 1.3777 | R2 = 0.9991 | 8.31 | 25.20 | ||||
235 | y = 0.7349x − 2.5296 | R2 = 0.9998 | 3.56 | 10.79 | ||||
240 | y = 0.7022x − 2.5784 | R2 = 0.9998 | 4.42 | 13.39 | ||||
4 | BADGE∙H2O | ~10.45 | 10–500 | 225 | y = 1.1016x − 7.841 | R2 = 0.9997 | 4.87 | 14.77 |
230 | y = 1.6107x − 10.732 | R2 = 0.9998 | 4.37 | 13.23 | ||||
235 | y = 1.894x − 9.433 | R2 = 0.9996 | 5.48 | 16.60 | ||||
240 | y = 1.7384x − 10.49 | R2 = 0.9998 | 4.42 | 13.41 | ||||
5 | BPB | ~11.20 | 10–500 | 225 | y = 0.6156x + 3.7901 | R2 = 0.9984 | 9.89 | 29.98 |
230 | y = 0.8606x + 3.2632 | R2 = 0.9982 | 10.59 | 32.09 | ||||
235 | y = 1.0132x + 5.9297 | R2 = 0.9996 | 4.65 | 14.10 | ||||
240 | y = 0.9414x + 4.3649 | R2 = 0.9987 | 9.03 | 27.35 | ||||
6 | BADGE∙2HCl | ~12.95 | 10–500 | 225 | y = 0.7846x − 4.9256 | R2 = 0.997 | 18.04 | 54.68 |
230 | y = 1.1371x − 5.2341 | R2 = 0.9978 | 15.52 | 47.04 | ||||
235 | y = 1.2953x + 1.0193 | R2 = 0.9989 | 10.93 | 33.13 | ||||
240 | y = 1.2299x + 0.9965 | R2 = 0.9991 | 9.86 | 29.89 | ||||
7 | BADGE | ~13.65 | 10–500 | 225 | y = 0.6249x − 5.8007 | R2 = 0.991 | 22.15 | 67.12 |
230 | y = 1.1797x − 24.386 | R2 = 0.9824 | 20.33 | 61.62 | ||||
235 | y = 1.4312x − 25.859 | R2 = 0.9858 | 19.90 | 60.30 | ||||
240 | y = 1.3158x − 20.146 | R2 = 0.9892 | 15.45 | 46.83 |
No. | Bisphenol | Retention Time (Min) | Concentration Range (ng mL−1) | λ (nm) | Linear Regression | Coefficient of Determination (R2) | mLOD (ng mL−1) | mLOQ (ng mL−1) |
---|---|---|---|---|---|---|---|---|
1 | BADGE∙2H2O | ~7.25 | 50–500 | 240 | y = 0.901x + 21.716 | R2 = 0.9905 | 56.72 | 171.89 |
2 | BPF | ~9.3 | 50–500 | 240 | y = 0.518x − 9.5053 | R2 = 0.9857 | 69.82 | 211.58 |
3 | BPE | ~9.85 | 50–500 | 240 | y = 0.4142x − 9.8027 | R2 = 0.9873 | 65.63 | 198.88 |
4 | BADGE∙H2O | ~10.45 | 50–500 | 240 | y = 0.4695x − 3.6844 | R2 = 0.9824 | 77.59 | 235.11 |
5 | BPB | ~11.20 | 50–500 | 240 | y = 0.4459x − 12.885 | R2 = 0.9824 | 77.55 | 234.99 |
6 | BADGE∙2HCl | ~12.95 | 50–500 | 240 | y = 0.3002x + 6.5983 | R2 = 0.9901 | 57.80 | 175.14 |
7 | BADGE | ~13.65 | 50–500 | 240 | y = 0.2315x − 1.2545 | R2 = 0.9889 | 61.37 | 185.96 |
Recoveries Obtained for Fortification at 100 ng/mL Sample after the Procedure Shown in Figure 1. | ||||||||||||||||
Bisphenol | Intra-Day Repeatability a | Inter-Day Repeatability b (n = 18) | Intra-Laboratory Reproducibility c | Overall d (n = 30) | ||||||||||||
Name | Day 1 (n = 6) | Day 2 (n = 6) | Day 3 (n = 6) | Analyst 1 (n = 6) | Analyst 2 (n = 6) | Mean (n = 12) | ||||||||||
Recovery % | RSD% | Recovery % | RSD% | Recovery (%) | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | |
BADGE·2H2O | 87.8 | 1% | 88.5 | 2% | 88.2 | 1% | 88.2 | 1.3% | 88.0 | 3% | 88.5 | 2% | 88.3 | 2.5% | 88.2 | 1.8% |
BPF | 78.2 | 3% | 77.5 | 4% | 77.7 | 3% | 77.8 | 3.3% | 77.7 | 1% | 77.5 | 1% | 77.6 | 1.0% | 77.7 | 2.4% |
BPE | 77.8 | 2% | 78.0 | 3% | 77.8 | 3% | 77.9 | 2.7% | 78.2 | 3% | 78.0 | 2% | 78.1 | 2.5% | 78.0 | 2.6% |
BADGE·H2O | 73.3 | 5% | 72.8 | 3% | 72.8 | 1% | 73.0 | 3.0% | 72.7 | 2% | 73.5 | 5% | 73.1 | 3.5% | 73.0 | 3.2% |
BPB | 75.2 | 3% | 74.8 | 6% | 74.7 | 3% | 74.9 | 4.0% | 75.2 | 4% | 74.8 | 3% | 75.0 | 3.5% | 74.9 | 3.8% |
BADGE·2HCl | 64.7 | 9% | 64.5 | 14% | 65.2 | 8% | 64.8 | 10.3% | 65.3 | 9% | 65.8 | 4% | 65.6 | 6.5% | 65.1 | 8.8% |
BADGE | 56.7 | 9% | 57.3 | 7% | 56.8 | 7% | 56.9 | 7.7% | 56.8 | 8% | 56.8 | 10% | 56.8 | 9.0% | 56.9 | 8.2% |
Recoveries Obtained for Fortification at 250 ng/mL Sample after the Procedure Shown in Figure 1. | ||||||||||||||||
Bisphenol | Intra-Day Repeatability a | Inter-Day Repeatability b (n = 18) | Intra-Laboratory Reproducibility c | Overall d (n = 30) | ||||||||||||
Name | Day 1 (n = 6) | Day 2 (n = 6) | Day 3 (n = 6) | Analyst 1 (n = 6) | Analyst 2 (n = 6) | Mean (n = 12) | ||||||||||
Recovery % | RSD% | Recovery % | RSD% | Recovery (%) | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | |
BADGE·2H2O | 86.8 | 3% | 87.7 | 1% | 86.8 | 3% | 87.1 | 2.3% | 87.5 | 1% | 88.3 | 2% | 87.9 | 1.5% | 87.4 | 2.0% |
BPF | 73.0 | 4% | 73.2 | 4% | 72.7 | 7% | 73.0 | 5.0% | 73.7 | 2% | 72.8 | 3% | 73.3 | 2.5% | 73.1 | 4.0% |
BPE | 76.3 | 5% | 75.8 | 4% | 75.8 | 6% | 76.0 | 5.0% | 73.7 | 3% | 75.7 | 4% | 74.7 | 3.5% | 75.5 | 4.4% |
BADGE·H2O | 71.2 | 7% | 71.3 | 6% | 70.7 | 9% | 71.1 | 7.3% | 71.3 | 2% | 71.7 | 4% | 71.5 | 3.0% | 71.2 | 5.6% |
BPB | 72.2 | 10% | 72.8 | 4% | 73.7 | 5% | 72.9 | 6.3% | 72.8 | 4% | 73.0 | 5% | 72.9 | 4.5% | 72.9 | 5.6% |
BADGE·2HCl | 67.3 | 9% | 67.2 | 11% | 66.7 | 8% | 67.1 | 9.3% | 66.8 | 11% | 66.7 | 8% | 66.8 | 9.5% | 66.9 | 9.4% |
BADGE | 58.2 | 7% | 57.8 | 4% | 58.2 | 6% | 58.1 | 5.7% | 57.8 | 10% | 57.3 | 14% | 57.6 | 12.0% | 57.9 | 8.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuzimski, T.; Szubartowski, S. Application of d-SPE before SPE and HPLC-FLD to Analyze Bisphenols in Human Breast Milk Samples. Molecules 2021, 26, 4930. https://doi.org/10.3390/molecules26164930
Tuzimski T, Szubartowski S. Application of d-SPE before SPE and HPLC-FLD to Analyze Bisphenols in Human Breast Milk Samples. Molecules. 2021; 26(16):4930. https://doi.org/10.3390/molecules26164930
Chicago/Turabian StyleTuzimski, Tomasz, and Szymon Szubartowski. 2021. "Application of d-SPE before SPE and HPLC-FLD to Analyze Bisphenols in Human Breast Milk Samples" Molecules 26, no. 16: 4930. https://doi.org/10.3390/molecules26164930
APA StyleTuzimski, T., & Szubartowski, S. (2021). Application of d-SPE before SPE and HPLC-FLD to Analyze Bisphenols in Human Breast Milk Samples. Molecules, 26(16), 4930. https://doi.org/10.3390/molecules26164930