A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Laser Reduced Graphene Oxide Electrode
2.2. Electrochemical Behavior of Carbaryl on the Laser Reduced Graphene Oxide Grid Electrode
2.3. The Effect of Adsorptive Accumulation Time on the Carbaryl Response on LRGO Grid Electrode
2.4. Analytical Performance
3. Materials and Methods
3.1. Reagents
3.2. Preparation of the Laser Reduced Graphene Oxide Electrode
3.3. Apparatus and Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Derbalah, A.; Ismail, A.; Shaheen, S. On the presence of organophosphorus pesticides in drainage water and its remediation technologies. Environ. Eng. Landsc. Manag. 2016, 15, 1777–1787. [Google Scholar] [CrossRef]
- Bazrafshan, A.A.; Ghaedi, M.; Rafiee, Z.; Hajati, S.; Ostovan, A. Nano-sized molecularly imprinted polymer for selective ultrasound-assisted microextraction of pesticide Carbaryl from water samples: Spectrophotometric determination. J. Colloid Interface Sci. 2017, 498, 313–322. [Google Scholar] [CrossRef]
- Chattoraj, S.; Mondal, N.K.; Das, B.; Roy, P.; Sadhukhan, B. Carbaryl removal from aqueous solution by Lemna major biomass using response surface methodology and artificial neural network. J. Environ. Chem. Eng. 2014, 2, 1920–1928. [Google Scholar] [CrossRef]
- EU Pesticides Database. Available online: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN (accessed on 3 August 2021).
- Wang, M.; Huang, J.; Wang, M.; Zhang, D.; Chen, J. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem. 2014, 151, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, T.; Bagheri, H.; Behbahani, M.; Hajian, A.; Afkhami, A. Modified 3D graphene-Au as a novel sensing layer for direct and sensitive electrochemical determination of carbaryl pesticide in fruit, vegetable, and water samples. Food Anal. Methods 2018, 11, 3005–3014. [Google Scholar] [CrossRef]
- Dorozhko, E.V.; Gashevskay, A.S.; Korotkova, E.I.; Barek, J.; Vyskocil, V.; Eremin, S.A.; Galunin, E.V.; Saqib, M. A copper nanoparticle-based electrochemical immunosensor for carbaryl detection. Talanta 2021, 228, 122174. [Google Scholar] [CrossRef] [PubMed]
- Rujiralai, T.; Cheewasedtham, W.; Jayeoye, T.J.; Kaewsara, S.; Plaisen, S. Hydrolyzed product mediated aggregation of l-cysteine-modified gold nanoparticles as a colorimetric probe for carbamate residues in chilis. Anal. Lett. 2020, 53, 574–588. [Google Scholar] [CrossRef]
- Cesarino, I.; Moraes, F.C.; Lanza, M.R.V.; Machado, S.A.S. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chem. 2012, 135, 873–879. [Google Scholar] [CrossRef]
- Long, Z.; Shen, S.; Lu, Y.; Lan, W.; Chen, J.; Qiu, H.D. Monodisperse core-shell-structured SiO2@Gd2O3:Eu3+@SiO2@MIP nanospheres for specific identification and fluorescent determination of carbaryl in green tea. Anal Bioanal. Chem. 2019, 411, 4221–4229. [Google Scholar] [CrossRef]
- Bilehal, D.C.; Chetti, M.B.; Deepa, G.T.; Khetagoudar, M.C. Multiresidue Pesticide analysis using QuEChERS method in vegetable samples by Ultra-Performance Liquid Chromatography. Anal. Chem. Lett. 2016, 6, 688–696. [Google Scholar] [CrossRef]
- Cavaliere, B.; Monteleone, M.; Naccarato, A.; Sindona, G.; Tagarelli, A. A solid-phase microextraction-gas chromatographic approach combined with triple quadrupole mass spectrometry for the assay of carbamate pesticides in water samples. J. Chromatogr. A 2012, 1257, 149–157. [Google Scholar] [CrossRef]
- Rousis, N.I.; Bade, R.; Bijlsma, L.; Zuccato, E.; Sancho, J.V.; Hernandez, F.; Castiglioni, S. Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environ. Res. 2017, 156, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Wu, Y.; Gou, H. A voltammetric sensor based on GO–MWNTs hybrid nanomaterial-modified electrode for determination of carbendazim in soil and water samples. Ionics 2013, 19, 673–680. [Google Scholar] [CrossRef]
- Moraes, F.C.; Mascaro, L.H.; Machado, S.A.S.; Brett, C.M.A. Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta 2009, 79, 1406–1411. [Google Scholar] [CrossRef]
- Hashemi, P.; Karimian, N.; Khoshsafar, H.; Arduini, F.; Mesri, M.; Afkhami, A.; Bagheri, H. Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: Application to the determination of carbaryl and fenamiphos pesticides. Mater. Sci. Eng. C 2019, 102, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Pop, A.; Manea, F.; Flueras, A.; Schoonman, J. Simultaneous Voltammetric detection of carbaryl and paraquat pesticides on graphene-modified boron-doped diamond electrode. Sensors 2017, 17, 2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, T.A.; Moraes, F.C.; Janegitz, B.C.; Fatibello-Filho, O. Electrochemical biosensors based on nanostructured carbon black: A review. J. Nanomater. 2017, 2017, 4571614. [Google Scholar] [CrossRef] [Green Version]
- Salih, F.E.; Achiou, B.; Ouammou, M.; Bennazha, J.; Ouarzane, A.; Younssi, S.A.; El Rhazi, M. Electrochemical sensor based on low silica X zeolite modified carbon paste for carbaryl determination. J. Advert. Res. 2017, 8, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Hu, Q.; Wu, J.; Li, X.; Li, P.; Yu, H.; Li, X.; Lei, F. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sens. Actuators B Chem. 2015, 220, 216–221. [Google Scholar] [CrossRef]
- Della Pelle, F.; Angelini, C.; Sergi, M.; Del Carlo, M.; Pepe, A.; Compagnone, D. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: Application to grain samples. Talanta 2018, 186, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150–7188. [Google Scholar] [CrossRef]
- Yang, Y.; Asiri, A.M.; Du, D.; Lin, Y. Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 2014, 139, 3055. [Google Scholar] [CrossRef]
- Wong, A.; Silva, T.; Caetano, F.; Bergamini, M.; Marcolino-Junior, L.; Fatibello-Filho, O.; Janegitz, B. An overview of pesticide monitoring at environmental samples using carbon nanotubes-based electrochemical sensors. C 2017, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Bahadır, E.B.; Sezgintürk, M.K. Applications of graphene in electrochemical sensing and biosensing. Trends Analyt. Chem. 2016, 76, 1–14. [Google Scholar] [CrossRef]
- Rodriguez, R.D.; Shchadenko, S.; Murastov, G.; Lipovka, A.; Fatkullin, M.; Petrov, I.; Tran, T.; Khalelov, A.; Saqib, M.; Villa, N.E.; et al. Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration. Adv. Funct. Mater. 2021, 31, 2008818. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Dobrota, A.S.; Pašti, I.A.; Mentus, S.V.; Skorodumova, N.V. A general view on the reactivity of the oxygen-functionalized graphene basal plane. Phys. Chem. Chem. Phys. 2016, 18, 6580–6586. [Google Scholar] [CrossRef] [Green Version]
- Compton, R.G.; Banks, C.E. Understanding Voltammetry, 3rd ed.; WSPC: London, UK, 2018. [Google Scholar]
- Garrigues, S.; de la Guardia, M.; Cassella, A.R.; de Campos, R.C.; Santelli, R.E.; Cassella, R.J. Flow injection-FTIR determination of dithiocarbamate pesticides. Analyst 2000, 125, 1829–1833. [Google Scholar] [CrossRef]
- Maliyekkal, S.M.; Sreeprasad, T.S.; Krishnan, D.; Kouser, S.; Mishra, A.K.; Waghmare, U.V.; Pradeep, T. Graphene: A reusable substrate for unprecedented adsorption of pesticides. Small 2013, 9, 273–283. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, H.; Cai, J.; Duan, Y.; Liu, Y. Development of fluorescence sensing material based on CdSe/ZnS quantum dots and molecularly imprinted polymer for the detection of carbaryl in rice and Chinese cabbage. J. Agric. Food Chem. 2015, 63, 4966–4972. [Google Scholar] [CrossRef]
Method | Electrode | Linear Range (µM) | LOD (µM) | Matrix | Reference |
---|---|---|---|---|---|
DPV | CoO/rGO/GCE | 0.50−200 | 0.037 | Fruits | [5] |
SWV | GC/MWCNT/CoPc | 0.30−6.61 | 0.005 | River water | [15] |
DPV | rGO/Cu/CuO-Ag/GCE | 0.05−20.0 | 0.005 | Fruits | [16] |
CV | Graphene-modified boron-doped diamond electrode | 1−6 | 0.07 | Fruits | [17] |
SWV | Graphene oxide-ionic liquid/GCE | 0.10–12.0 | 0.02 | Fruits | [14] |
AdSV | GCE-CoO/reduced graphene oxide | 0.5−200 | 0.021 | Fruits and vegetable | [18] |
DPV | GCE-graphene oxide/ionic liquid | 0.1−12.0 | 0.02 | Fruits | [19] |
CV | GCE modified by MIP decorated by rGO and Au nanoparticles | 1−6 | 0.07 | Apple juice | [20] |
CV | SPE-carbon black nanoparticle | 0.1−100 | 0.048 | Wheat | [21] |
Juice Sample | Carbaryl Added (mg/L) | Carbaryl Found (mg/L) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Apple | 0.25 | 0.26 | 104.0 | 5.4 |
31.25 | 32.82 | 105.0 | 5.0 | |
126.00 | 123.50 | 98.0 | 4.8 | |
Orange | 0.25 | 0.23 | 92.0 | 5.2 |
31.25 | 29.55 | 94.6 | 5.0 | |
126.00 | 124.00 | 98.4 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saqib, M.; Dorozhko, E.V.; Barek, J.; Vyskocil, V.; Korotkova, E.I.; Shabalina, A.V. A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl. Molecules 2021, 26, 5050. https://doi.org/10.3390/molecules26165050
Saqib M, Dorozhko EV, Barek J, Vyskocil V, Korotkova EI, Shabalina AV. A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl. Molecules. 2021; 26(16):5050. https://doi.org/10.3390/molecules26165050
Chicago/Turabian StyleSaqib, Muhammad, Elena V. Dorozhko, Jiri Barek, Vlastimil Vyskocil, Elena I. Korotkova, and Anastasiia V. Shabalina. 2021. "A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl" Molecules 26, no. 16: 5050. https://doi.org/10.3390/molecules26165050
APA StyleSaqib, M., Dorozhko, E. V., Barek, J., Vyskocil, V., Korotkova, E. I., & Shabalina, A. V. (2021). A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl. Molecules, 26(16), 5050. https://doi.org/10.3390/molecules26165050