Self-Powered Sensors: New Opportunities and Challenges from Two-Dimensional Nanomaterials
Abstract
:1. Introduction
2. Self-Powered Sensors
2.1. Self-Powered Photodetectors
2.2. Self-Powered Piezoelectric Devices
2.3. Self-Powered Triboelectric Devices
2.4. Self-Powered Thermoelectric Devices
2.5. Self-Powered Sensor Integration
2.6. Self-Powered Neuromorphic Applications
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ornelas, C.D.; Bowman, A.; Walmsley, T.S.; Wang, T.; Andrews, K.; Zhou, Z.; Xu, Y.-Q. Ultrafast Photocurrent Response and High Detectivity in Two-Dimensional MoSe2-based Heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 46476–46482. [Google Scholar] [CrossRef]
- Hong, S.; Zagni, N.; Choo, S.; Liu, N.; Baek, S.-H.; Bala, A.; Yoo, H.; Kang, B.H.; Kim, H.J.; Yun, H.-J.; et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 2021, 12, 3559. [Google Scholar] [CrossRef] [PubMed]
- Jansen-van Vuuren, R.D.; Nunzi, J.-M.; Givigi, S.N. Frontiers in Photosensor Materials and Designs for New Image Sensor Applications. IEEE Sens. J. 2020, 21, 10. [Google Scholar] [CrossRef]
- Kim, S.; Hong, S.; Yoo, H. Location-dependent multi-parameter detection behaviors using hetero-interfaced organic anti-ambipolar phototransistors. Sens. Actuators A Phys. 2021, 330, 112888. [Google Scholar] [CrossRef]
- Wang, Z.; Zhi, M.; Xu, M.; Guo, C.; Man, Z.; Zhang, Z.; Qiang, L.; Lv, Y.; Zhao, W.; Yan, J.; et al. Ultrasensitive NO2 gas sensor based on Sb-doped SnO2 covered ZnO nano-heterojunction. J. Mater. Sci. 2021, 56, 7348–7356. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, L.; Liu, B.; Bai, P.; Chenjie, W.; Jiake, X.; Wang, H. Highly Selective Gas Sensor Based on Hydrophobic Silica Decorated with Trimethoxyoctadecylsilane. ACS Appl. Mater. Interfaces 2020, 13, 1956–1966. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Tsuchiya, T. Ultrathin Highly Flexible Featherweight Ceramic Temperature Sensor Arrays. ACS Appl. Mater. Interfaces 2020, 12, 36600–36608. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Luo, J.; Liu, S.; Chen, Y.; Huang, B.; Liao, C.; Wang, Y. A Probe-Shaped Sensor with FBG and Fiber-Tip Bubble for Pressure and Temperature Sensing. Photonic Sens. 2021, 1–7. [Google Scholar] [CrossRef]
- Song, X.; Liu, H.; Fang, Y.; Zhao, C.; Ziqiang, Q.; Qiu, W.; Tu, L.-C. An Integrated Gold-Film Temperature Sensor for In Situ Temperature Measurement of a High-Precision MEMS Accelerometer. Sensors 2020, 20, 3652. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W.; Yu, J.; Wang, Y.; Zhu, J.; Hu, Z. Mechanical strong stretchable conductive multi-stimuli-responsive nanocomposite double network hydrogel as biosensor and actuator. J. Biomater. Sci. Polym. Ed. 2020, 31, 1–23. [Google Scholar] [CrossRef]
- Molinnus, D.; Beging, S.; Lowis, C.; Schöning, M.J. Towards a Multi-Enzyme Capacitive Field-Effect Biosensor by Comparative Study of Drop-Coating and Nano-Spotting Technique. Sensors 2020, 20, 4924. [Google Scholar] [CrossRef]
- Zhao, M.-H.; Cui, L.; Sun, B.; Wang, Q.; Zhang, C.-Y. Low-background electrochemical biosensor for one-step detection of base excision repair enzyme. Biosens. Bioelectron. 2019, 150, 111865. [Google Scholar] [CrossRef]
- Cao, Q.; Liang, B.; Yu, C.; Fang, L.; Tu, T.; Wei, J.; Ye, X. High accuracy determination of multi metabolite by an origami-based coulometric electrochemical biosensor. J. Electroanal. Chem. 2020, 873, 114358. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Lu, J.; Shieh, H.-P.D. Influence of Permittivity on the Sensitivity of Porous Elastomer-Based Capacitive Pressure Sensors. IEEE Sens. J. 2018, 18, 1870–1876. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Jin, L.; Chen, Z.; Li, Y.; Li, Q.; Cao, M.; Che, Y.; Yang, J.; Yao, J. A Fast Response-Recovery 3D Graphene Foam Humidity Sensor for User Interaction. Sensors 2018, 18, 4337. [Google Scholar] [CrossRef] [Green Version]
- Qiang, L.; Gao, L.; Su, X.; Zhou, F.; Guotao, D. Interfacial self-assembly of CoPc thin films with their high sensing use as NO2 sensors. Mater. Chem. Phys. 2019, 234, 94–101. [Google Scholar] [CrossRef]
- Lin, P.-S.; Shen, T.-W.; Chan, K.-C.; Fang, W. CMOS MEMS Thermoelectric Infrared Sensor with Plasmonic Metamaterial Absorber for Selective Wavelength Absorption and Responsivity Enhancement. IEEE Sens. J. 2020, 20, 11105–11114. [Google Scholar] [CrossRef]
- Son, H.; Cho, H.; Koo, J.; Ji, Y.; Kim, B.; Park, H.-J.; Sim, J.-Y. A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Palacio, F.; Fonollosa, J.; Burgués, J.; Gómez, J.M.; Marco, S. Pulsed-temperature metal oxide gas sensors for microwatt power consumption. IEEE Access 2020, 8, 70938–70946. [Google Scholar] [CrossRef]
- Kalaivaani, P.T.; Krishnamoorthi, R. Design and implementation of low power bio signal sensors for wireless body sensing network applications. Microprocess. Microsyst. 2020, 79, 103271. [Google Scholar] [CrossRef]
- Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Realization of Au-decorated WS2 nanosheets as low power-consumption and selective gas sensors. Sens. Actuators B Chem. 2019, 296, 126659. [Google Scholar] [CrossRef]
- Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core-shell nanowires. Sens. Actuators B Chem. 2018, 267, 597–607. [Google Scholar] [CrossRef]
- Minfeng, T.; Qihui, G.; Wu, X.; Zeng, X.; Zhang, Z.; Yuan, Y. A high-efficiency multidirectional wind energy harvester based on impact effect for self-powered wireless sensors in the grid. Smart Mater. Struct. 2019, 28, 115022. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueño, R.; Chakrabartty, S.; Lajnef, N.; Alavi, A.H. A comprehensive review of self-powered sensors in civil infrastructure: State-of-the-art and future research trends. Eng. Struct. 2021, 234, 111963. [Google Scholar] [CrossRef]
- Li, M.; Jiaxin, C.; Zhong, W.; Luo, M.; Wen, W.; Qing, X.; Ying, L.; Liu, Q.; Liu, K.; Wang, Y.; et al. Large-Area, Wearable, Self-Powered Pressure-Temperature Sensor Based on 3D Thermoelectric Spacer Fabric. ACS Sens. 2020, 5, 2545–2554. [Google Scholar] [CrossRef]
- Cheng, P.; Sun, X.; Sun, M.; Zhang, C.; Guo, H.; Shi, J.; Zhang, Y.; Liu, Y.; Wang, J.; Wen, Z. Self-Powered Active Spherical Triboelectric Sensor for Fluid Velocity Detection. IEEE Trans. Nanotechnol. 2020, 19, 230–235. [Google Scholar] [CrossRef]
- Jiang, M.; Lu, Y.; Zhu, Z.; Jia, W. Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines 2021, 12, 698. [Google Scholar] [CrossRef]
- Ge, R.; Wu, X.; Liang, L.; Hus, S.M.; Gu, Y.; Okogbue, E.; Chou, H.; Shi, J.; Zhang, Y.; Banerjee, S.K.; et al. A Library of Atomically Thin 2D Materials Featuring the Conductive-Point Resistive Switching Phenomenon. Adv. Mater. 2021, 33, 2007792. [Google Scholar] [CrossRef]
- Wang, S.; Ning, H.; Hu, N.; Liu, Y.; Liu, F.; Zou, R.; Huang, K.; Wu, X.; Weng, S.; Alamusi, N. Environmentally-Friendly and Multifunctional Graphene-Silk Fabric Strain Sensor for Human-Motion Detection. Adv. Mater. Interfaces 2019, 7, 1901507. [Google Scholar] [CrossRef]
- Han, D.-D.; Zhang, Y.-L.; Ma, J.-N.; Liu, Y.; Mao, J.-W.; Han, C.-H.; Jiang, K.; Zhao, H.; Zhang, T.; Xu, H.; et al. Sunlight-Reduced Graphene Oxides as Sensitive Moisture Sensors for Smart Device Design. Adv. Mater. Technol. 2017, 2, 1700045. [Google Scholar] [CrossRef]
- Sajid, M.; Kim, H.B.; Lim, J.H.; Choi, K.H. Liquid assisted exfoliation of 2D hBN flakes and their dispersion in PEO to fabricate highly specific and stable linear humidity sensors. J. Mater. Chem. C 2018, 6, 1421–1432. [Google Scholar] [CrossRef]
- Goel, N.; Kumar, M. Recent advances in ultrathin 2D hexagonal boron nitride based gas sensors. J. Mater. Chem. C 2021, 9, 1537–1549. [Google Scholar] [CrossRef]
- Li, B.L.; Wang, J.; Zou, H.L.; Garaj, S.; Lim, C.T.; Xie, J.; Li, N.B.; Leong, D.T. Low-Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors. Adv. Funct. Mater. 2016, 26, 7034–7056. [Google Scholar] [CrossRef]
- Feng, S.; Lin, Z.; Gan, X.; Lv, R.; Terrones, M. Doping two-dimensional materials: Ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horiz. 2017, 2, 72–80. [Google Scholar] [CrossRef]
- Yoo, H.; Hong, S.; Moon, H.; On, S.; Ahn, H.; Lee, H.-K.; Kim, S.; Hong, Y.K.; Kim, J.-J. Chemical Doping Effects on CVD-Grown Multilayer MoSe2 Transistor. Adv. Electron. Mater. 2018, 4, 1700639. [Google Scholar] [CrossRef]
- Hong, S.; Yoo, H. Robust molybdenum diselenide ambipolar transistors with fluoropolymer interfacial layer and their application to complementary inverter circuits. J. Alloys Compd. 2021, 868, 159212. [Google Scholar] [CrossRef]
- Kim, J.; Lee, E.; Bhoyate, S.; An, T.K. Stable and High-Performance Piezoelectric Sensor via CVD Grown WS2. Nanotechnology 2020, 31, 445203. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Andrews, K.; Wang, T.; Bowman, A.; Zhou, Z.; Xu, Y.-Q. Reversible photo-induced doping in WSe2 field effect transistors. Nanoscale 2019, 11, 7358–7363. [Google Scholar] [CrossRef]
- Kuiri, M.; Chakraborty, B.; Paul, A.K.; Das, S.; Sood, A.K.; Das, A. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures. Appl. Phys. Lett. 2016, 108, 063506. [Google Scholar] [CrossRef]
- Hu, R.-X.; Ma, X.-L.; An, C.-H.; Liu, J. Visible-to-near-infrared photodetector based on graphene–MoTe2–graphere heterostructure. Chin. Phys. B 2019, 28, 117802. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, C.; Guo, C.; Yu, Q.; Guo, W.; Lu, W.; Chen, X.; Wang, L.; Zhang, K. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy 2020, 70, 104518. [Google Scholar] [CrossRef]
- Kang, D.-H.; Jeon, M.H.; Jang, S.K.; Choi, W.-Y.; Kim, K.N.; Kim, J.; Lee, S.; Yeom, G.Y.; Park, J.-H. Self-Assembled Layer (SAL)-Based Doping on Black Phosphorus (BP) Transistor and Photodetector. ACS Photonics 2017, 4, 1822–1830. [Google Scholar] [CrossRef]
- Han, S.; Zhang, H.; Lu, Y.; Xu, W.; Fang, M.; Liu, W.; Cao, P.; Zhu, D. Self-Powered Au/MgZnO/Nanolayered Ga-Doped ZnO/In Metal–Insulator–Semiconductor UV Detector with High Internal Gain at Deep UV Light under Low Voltage. ACS Appl. Nano Mater. 2019, 3, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Foisal, A.R.M.; Qamar, A.; Nguyen, T.; Dinh, T.; Phan, H.-P.; Nguyen, H.; Duran, P.G.; Streed, E.; Dao, D.V. Ultra-sensitive self-powered position-sensitive detector based on horizontally-aligned double 3C-SiC/Si heterostructures. Nano Energy 2021, 79, 105494. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, B.; Nie, J.; Zhang, H.; Ouyang, X.; Liu, J.; Liu, Y. Self-powered X-ray detector based on methylammonium lead tribromide single crystals. J. Alloys Compd. 2021, 859, 157826. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Xu, L.; Zhang, H.; Yang, Y.; Wang, Z.L. Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 2020, 6, eabb9083. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, T.; Wang, Z.L. Self-Powered Sensors and Systems Based on Nanogenerators. Sensors 2020, 20, 2925. [Google Scholar] [CrossRef] [PubMed]
- Bowen, C.R.; Kim, H.A.; Weaver, P.M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ping, J.; Ying, Y. Recent Progress in 2D-Nanomaterial-Based Triboelectric Nanogenerators. Adv. Funct. Mater. 2021, 31, 2009994. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Qian, Z.; Jiao, L.; Xie, L. Phase Engineering of Two-Dimensional Transition Metal Dichalcogenides. Chin. J. Chem. 2020, 38, 753–760. [Google Scholar] [CrossRef]
- Chen, H.; Tang, Y.; Jiang, T.; Li, G. Nonlinear Nanophotonics with 2D Transition Metal Dichalcogenides. In Comprehensive Nanoscience and Nanotechnology; Academic Press: Cambridge, MA, USA, 2019; pp. 305–318. [Google Scholar] [CrossRef]
- Ansari, N.; Ghorbani, F. Light absorption optimization in two-dimensional transition metal dichalcogenide van der Waals heterostructures. J. Opt. Soc. Am. B 2018, 35, 1179–1185. [Google Scholar] [CrossRef]
- Ahmed, S.; Yi, J. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors. Nano-Micro Lett. 2017, 9, 50. [Google Scholar] [CrossRef]
- Voshell, A.; Terrones, M.; Rana, M. Thermal and Photo Sensing Capabilities of Mono- and Few-Layer Thick Transition Metal Dichalcogenides. Micromachines 2020, 11, 693. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yin, L.; Cheng, R.; Wang, J.; Wen, Y.; Shifa, T.A.; Wang, F.; Zhang, Y.; Zhan, X.; et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296–6341. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Chen, Y.; Zhang, S.; Jiang, W.; Zhang, X.; Qin, J.; Wang, J.; Li, X.; Pan, Y.; et al. Extremely Low Dark Current MoS2 Photodetector via 2D Halide Perovskite as the Electron Reservoir. Adv. Opt. Mater. 2020, 8, 1901402. [Google Scholar] [CrossRef]
- Peumans, P.; Yakimov, A.; Forrest, S.R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 2003, 93, 3693–3723. [Google Scholar] [CrossRef]
- Baeg, K.J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef]
- Jin, W.; Ye, Y.; Gan, L.; Yu, B.; Wu, P.; Dai, Y.; Meng, H.; Guo, X.; Dai, L. Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem. 2012, 22, 2863–2867. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Ataca, C.; Li, Y.; Chen, H.; Cai, H.; Suslu, A.; Grossman, J.C.; Jiang, C.; Liu, Q.; et al. Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 p–n vdW Heterostructure. ACS Appl. Mater. Interfaces 2016, 8, 2533–2539. [Google Scholar] [CrossRef]
- Wu, D.; Jia, C.; Shi, F.; Zeng, L.; Lin, P.; Dong, L.; Shi, Z.; Tian, Y.; Li, X.; Jie, J. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 2020, 8, 3632–3642. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Z.W.; Qiu, C.; Zhang, Y.-J.; Wu, Z.; Yang, J.-L.; Lu, Y.; Li, J.-F.; Yang, D.; Hao, R.; et al. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale 2018, 10, 8023–8030. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, S.; Lv, Z.; Ma, Z.; Yu, C.; Zhihong, F.; Chan, M. Self-driven WSe2 photodetectors enabled with asymmetrical van der Waals contact interfaces. npj 2D Mater. Appl. 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Kumar, M.; Lim, J.; Kang, H.; Kim, S.; Seo, H. Photon-triggered self-powered all electronics with graphene-silicon hybrid device. Nano Energy 2021, 82, 105668. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, T.; Zhang, M.; Bowen, C.R.; Yang, Y. Recent Progress in Hybridized Nanogenerators for Energy Scavenging. iScience 2020, 23, 101689. [Google Scholar] [CrossRef]
- Pan, C.; Zhai, J.; Wang, Z.L. Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires. Chem. Rev. 2019, 119, 9303–9359. [Google Scholar] [CrossRef]
- Fan, F.; Wu, W. Emerging Devices Based on Two-Dimensional Monolayer Materials for Energy Harvesting. Research 2019, 2019, 7367828. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Bhatia, R.; Kim, T.-H.; Seol, D.; Kim, J.H.; Kim, H.; Seung, W.; Kim, Y.; Lee, Y.H.; Kim, S.-W. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 2016, 22, 483–489. [Google Scholar] [CrossRef]
- Kuang, H.; Li, Y.; Huang, S.; Shi, L.; Zhou, Z.; Gao, C.; Zeng, X.; Pandey, R.; Wang, X.; Dong, S.; et al. Piezoelectric boron nitride nanosheets for high performance energy harvesting devices. Nano Energy 2021, 80, 105561. [Google Scholar] [CrossRef]
- Dai, M.; Zheng, W.; Zhang, X.; Wang, S.; Lin, J.; Li, K.; Hu, Y.; Sun, E.; Zhang, J.; Qiu, Y.; et al. Enhanced Piezoelectric Effect Derived from Grain Boundary in MoS2 Monolayers. Nano Lett. 2019, 20, 201–207. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458. [Google Scholar] [CrossRef]
- Park, S.; Park, J.; Kim, Y.-G.; Bae, S.; Kim, T.-W.; Park, K.-I.; Hong, B.H.; Jeong, C.K.; Lee, S.-K. Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 2020, 78, 105266. [Google Scholar] [CrossRef]
- Seol, M.; Kim, S.; Cho, Y.; Byun, K.-E.; Kim, H.; Kim, J.; Kim, S.K.; Kim, S.-W.; Shin, H.-J.; Park, S. Triboelectric Series of 2D Layered Materials. Adv. Mater. 2018, 30, 1801210. [Google Scholar] [CrossRef]
- Oh, J.Y.; Lee, J.H.; Han, S.W.; Chae, S.S.; Bae, E.J.; Kang, Y.H.; Choi, W.J.; Cho, S.Y.; Lee, J.O.; Baik, H.K.; et al. Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ. Sci. 2016, 9, 1696–1705. [Google Scholar] [CrossRef]
- Jeong, Y.; Shin, D.; Park, J.; Park, J.; Yi, Y.; Im, S. Integrated advantages from perovskite photovoltaic cell and 2D MoTe2 transistor towards self-power energy harvesting and photosensing. Nano Energy 2019, 63, 103833. [Google Scholar] [CrossRef]
- Sun, J.; Chang, Y.; Dong, L.; Zhang, K.; Hua, Q.; Zang, J.-H.; Chen, Q.; Shang, Y.; Pan, C.; Shan, C. MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy 2021, 86, 106077. [Google Scholar] [CrossRef]
- Roy, K.; Jana, S.; Mallick, Z.; Ghosh, S.K.; Dutta, B.; Sarkar, S.; Sinha, C.; Mandal, D. Two-Dimensional MOF Modulated Fiber Nanogenerator for Effective Acoustoelectric Conversion and Human Motion Detection. Langmuir ACS J. Surf. Colloids 2021, 37, 7107–7117. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.; Jang, B.; Kim, S.H.; Sharma, B.K.; Kim, J.-H.; Ahn, J.H. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 2019, 62, 259–267. [Google Scholar] [CrossRef]
- Shi, K.; Jinhua, L.; Xiao, Y.; Liang, G.; Chu, X.; Zhai, Y.; Zhang, B.; Lu, D.; Rosei, F. High-Response, Ultrafast-Speed, and Self-Powered Photodetection Achieved in InP@ZnS-MoS2 Phototransistors with Interdigitated Pt Electrodes. ACS Appl. Mater. Interfaces 2020, 12, 31382–31391. [Google Scholar] [CrossRef]
- Zhou, G.; Ren, Z.; Wang, L.; Wu, J.; Sun, B.; Zhou, A.; Zhang, G.; Zheng, S.; Duan, S.; Song, Q. Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device. Nano Energy 2019, 63, 103793. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Yoo, H. Self-Powered Sensors: New Opportunities and Challenges from Two-Dimensional Nanomaterials. Molecules 2021, 26, 5056. https://doi.org/10.3390/molecules26165056
Lee E, Yoo H. Self-Powered Sensors: New Opportunities and Challenges from Two-Dimensional Nanomaterials. Molecules. 2021; 26(16):5056. https://doi.org/10.3390/molecules26165056
Chicago/Turabian StyleLee, Eunkwang, and Hocheon Yoo. 2021. "Self-Powered Sensors: New Opportunities and Challenges from Two-Dimensional Nanomaterials" Molecules 26, no. 16: 5056. https://doi.org/10.3390/molecules26165056
APA StyleLee, E., & Yoo, H. (2021). Self-Powered Sensors: New Opportunities and Challenges from Two-Dimensional Nanomaterials. Molecules, 26(16), 5056. https://doi.org/10.3390/molecules26165056