Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Docking of the Cyanobacterial Proteins with the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein
2.2. Molecular Docking of the Cyanobacterial Proteins with the SARS-CoV-2 Mpro
2.3. Molecular Docking of the Cyanobacterial Proteins with the SARS-CoV-2 PLpro
2.4. Analysis of Molecular Dynamics Simulations of the Protein–Protein Complexes
2.5. Intermolecular Hydrogen Bonds in the Protein–Protein Complexes
2.6. Analysis of MM-PBSA Free Energies of Binding of the Protein–Protein Complexes
3. Materials and Methods
3.1. Molecular Docking of the Cyanobacterial Proteins with the SARS-CoV-2 Proteins
3.2. Molecular Dynamics Simulations
3.3. Estimation of Free Energies of Binding Employing Molecular Mechanics-Poisson–Boltzmann Surface Area (MM-PBSA) Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 2020, 19, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, J.; Ye, G.; Shi, K.; Wan, S.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Webber, H.; Schroeder, S.; Krüger, N.; Herrler, S.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, V.; Penmetsa, P.; Li, X.; Dhondia, F.; Dhondia, S.; Parrish, A. COVID-19 effects on shared-biking in New York, Boston, and Chicago. Transp. Res. Interdiscip. Perspect. 2021, 9, 100282. [Google Scholar]
- Zhao, M.M.; Yang, W.L.; Yang, F.Y.; Zhang, L.; Huang, W.J.; Hou, W.; Fan, C.F.; Jin, R.H.; Feng, Y.M.; Wang, Y.C.; et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target. Ther. 2021, 6, 134. [Google Scholar] [CrossRef] [PubMed]
- Matheson, N.J.; Lehner, P.J. How does SARS-CoV-2 cause COVID-19. Science 2020, 369, 510–511. [Google Scholar] [CrossRef]
- Papa, G.; Mallery, D.L.; Albecka, A.; Welch, L.G.; Cattin-Ortola, J.; Luptak j Paul, D.; McMahon, H.T.; Goodfellow, I.G.; Carter, A.; Munro, S.; et al. Furin cleavage of SARS-CoV-2 spike promotes but is not essential for infection and cell-cell fusion. PLoS Pathog. 2021, 17, e1009246. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Zhang, M.; Wang, H.; Zhao, Q.; Liu, J. Updated approaches against SARS-CoV-2. Antimicrob. Agents Chemother. 2020, 64, e00483-20. [Google Scholar] [CrossRef] [Green Version]
- Maiese, A.; Manettim, A.C.; La Russa, R.; Di Paolo, M.; Turillazzi, E.; Frati, P.; Fineschi, V. Autopsy findings in COVID-19-related deaths: A literature review. Forensic Sci. Med. Pathol. 2021, 17, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Arrossi, V.A.; Farver, C. The pulmonary pathology of COVID-19. Clevel. Clin. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Mirmohammadi, S.; Kianmehr, A.; Arefi, M.; Mahrooz, A. Biochemical parameters and pathogenesis of SARS-CoV-2 infection in vital organs: COVID-19 outbreak in Iran. New Microbes New Infect. 2020, 38, 100792. [Google Scholar] [CrossRef]
- Quagliariello, V.; Bonelli, A.; Caronna, A.; Lombari, M.C.; Conforti, G.; Libutti, M.; Iaffaioli, R.V.; Berretta, M.; Botti, G.; Maurea, N. SARS-CoV-2 infection: NLRP3 inflammasome, as plausible target to prevent cardiopulmonary complications? Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9169–9171. [Google Scholar] [PubMed]
- Quagliarello, V.; Bonelli, A.; Caronna, A.; Conforti, G.; Lovine, M.; Carbone, A.; Berretta, M.; Botti, G.; Maurea, N. SARS-CoV-2 infection and cordioncology: From cardiometabolic risk factors to outcomes in cancer patients. Cancers 2020, 12, 3316. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2020, 19, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, C.; Qiao, C.; Hu, Y.; Yuen, K.-Y.; et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020, 181, 894–904. [Google Scholar] [CrossRef] [PubMed]
- The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19—Preliminary report. N. Engl. J. Med. 2020, 384, 693–704. [Google Scholar]
- Gautret, P.; Lagier, J.C.; Parola, P.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, D.; Roy, A.; Kar, P.; Mutanda, T.; Anandraj, A. Cyanobacterial metabolites as promising drug leads against the Mpro and PLpro of SARS-CoV-2: An in silico analysis. J. Biomol. Struct. Dyn. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lagassé, H.A.D.; Alexaki, A.; Simhadri, V.L.; Katagiri, N.H.; Jankowski, W.; Sauna, Z.E.; Sarfaty, C.K. Recent advances in (therapeutic protein) drug development. F1000Research 2017, 6, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Patten, S.; He, M.; Altiti, A.; Cheng, K.F.; Ghanem, M.H.; Al-Abed, Y. Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. Future Med. Chem. 2020, 12, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhu, Y.; Liu, M.; Lan, Q.; Xu, W.; Wu, Y.; Ying, T.; Liu, S.; Shi, Z.; Jiang, S.; et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol. 2020, 17, 765–767. [Google Scholar] [CrossRef]
- Zhang, G.; Pomplun, S.; Loftis, A.A.; Loas, A.; Pentelute, B.L. The first-in-class peptide binder to the SARS-CoV-2 spike protein. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Yu, D.; Yan, H.; Chong, H.; He, Y. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol. 2020, 94, e00635-20. [Google Scholar] [CrossRef]
- Kar, P.; Sharma, N.R.; Bhupender, S.; Sen, A.; Roy, A. Natural compounds from Clerodendrum spp. As possible therapeutic candidates against SARS-CoV-2: An in silico investigation. J. Biomol. Struct. Dyn. 2020, 1–12. [Google Scholar] [CrossRef]
- Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacological treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020, 323, 1824–1836. [Google Scholar]
- Dey, B.; Lerner, D.L.; Lusso, P.; Boyd, M.R.; Elder, J.H.; Berger, E.A. Multiple antiviral activities of Cyanovirin-N: Blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J. Virol. 2000, 74, 4562–4569. [Google Scholar] [CrossRef]
- Mcfeeters, R.L.; Xiong, C.; O’Keefe, B.R.; Bokesch, H.R.; McMahon, J.B.; Ratner, D.M.; Castelli, R.; Seeberger, P.H.; Byrd, R.A. The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. J. Mol. Biol. 2007, 369, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Murugan, T.; Radhamadhavan. Screening for antifungal and antiviral activity of C-phycocyanin from Spirulina platensis. J. Pharm. Res. 2011, 4, 4161–4163. [Google Scholar]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 2020, 19, 410–417. [Google Scholar]
- Bhattacharya, R.; Gupta, A.M.; Mitra, S.; Mandal, S.; Biswas, S.R. A natural food preservative peptide nisin can interact with the SARS-CoV-2 spike protein receptor human ACE2. Virology 2021, 552, 107–111. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 2013, 4, 1443–1467. [Google Scholar] [CrossRef] [Green Version]
- Boyd, M.R.; Gustafson, K.R.; Shoemaker, R.H.; McMahon, J.B. Cyanovirin-N, an Anti-HIV Protein, DNA Coding Sequences Therefor, and Uses Thereof. Canada Patent Number CA2219105A1. 1995. Available online: https://patents.google.com/patent/CA2219105A1/en (accessed on 12 December 2020).
- Bolmstedt, A.J.; O’Keefe, B.R.; Shenoy, S.R.; McMahon, J.B.; Boyd, M.R. Cyanovirin-N defines a new class of antiviral agent targeting N-Linked, high-mannose glycans in olidosaccharide-specific manner. Mol. Pharmacol. 2001, 59, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, L.G.; O’Keefe, B.R.; Bray, M.; Sanchez, A.; Gronenborn, A.M.; Boyd, M.R. Cyanovirin-N binds to the viral surface glycoprotein, GP1,2 and inhibits infectivity of Ebola Virus. Antivir. Res. 2003, 58, 47–56. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, H.; Wang, H. Glycans of SARS-CoV-2 spike protein in virus infection and antibody production. Front. Mol. Biosci. 2021, 8, 53. [Google Scholar] [CrossRef]
- Rathore, U.; Saha, P.; Kesavardhana, S.; Kumar, A.A.; Datta, R.; Devanarayanan, S.; Das, R.; Mascola, J.R.; Varadarajan, R. Glycosylation of the core of HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity. J. Biol. Chem. 2017, 292, 10197–10219. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.A.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Allen, J.D.; Wrapp, D.; McLellan, J.S.; Crispin, M. Site-specific glycan analysis of the SARS-COV-2 spike. Science 2020, 369, 330–333. [Google Scholar] [CrossRef]
- Marzur-Marzec, H.; Ceglowska, M.; Konkel, R.; Pyrć, K. Antiviral cyanometabolites—A review. Biomolecules 2021, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Arafet, K.; Serrano-Aparicio, N.; Lodola, A.; Mulholland, A.J.; Gonzalez, F.V.; Swiderek, K.; Moliner, V. Mechanism of inhibition of SARS-CoV-2 Mpro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chem. Sci. 2021, 12, 1433–1444. [Google Scholar] [CrossRef]
- Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A.R.; Tascher, G.; et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020, 587, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Rut, W.; Lv, Z.; Zmudzinski, M.; Patchett, S.; Nayak, D.; Snipas, S.J.; El Oualid, F.; Huang, T.T.; Bekes, M.; Drag, M.; et al. Activity profiling and structures of inhibitor-bound SARS-CoV-2-PLpro protease provides a framework for anti-COVID-19 drug design. Sci. Adv. 2020, 16, eabd4596. [Google Scholar] [CrossRef]
- Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M.M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J. Biomol. Struct. Dyn. 2020, 39, 2673–2678. [Google Scholar] [CrossRef]
- Khan, R.J.; Jha, R.K.; Amera, G.M.; Jain, M.; Singh, E.; Pathak, A.; Singh, R.P.; Muthukumaran, J.; Singh, A.K. Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose metyltransferase. J. Biomol. Struct. Dyn. 2020, 39, 2679–2692. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.K.; Vemula, S.; Donde, R.; Gouda, G.; Behera, L.; Vadde, R. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J. Biomol. Struct. Dyn. 2020, 39, 2617–2627. [Google Scholar] [CrossRef] [Green Version]
- Tovchigrechko, A.; Vakser, I.A. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 2006, 34, W310–W314. [Google Scholar] [CrossRef]
- Báez-Santos, Y.M.; St. John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antivir. Res. 2015, 115, 21–38. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vangone, A.; Bonvin, A.M.J.J. PRODIGY: A contact-based predictor of binding affinity in protein-protein complexes. Bio-Protocol 2017, 7, e2124. [Google Scholar] [CrossRef]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995, 8, 127–134. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Zia, K.; Ashraf, S.; Uddin, R.; Ul-Haq, Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J. Biomol. Struct. Dyn. 2020, 39, 2607–2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, V.K.; Singh, R.; Sharma, J.; Rajendran, V.; Purohit, R.; Kumar, S. Identification of bioactive molecules from Tea plant as SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2020, 39, 3449–3458. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Open Source Drug Discovery Consortium; Lynn, A. g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
SARS-CoV-2 Target Protein | Cyanobacterial Protein | Binding Energy Score (kcal/mol) | Interacting Residues of SARS-CoV-2 Protein |
---|---|---|---|
Spike | Cyanovirin-N | −16.8 ± 0.02 | Trp353, Val382, Tyr396, Leu452, Phe464, Phe490, Leu492, Ser349, Tyr351, Gly381, Ser383, Arg466, Glu516, Ile468 |
Scytovirin | −12.8 ± 0.01 | Ala348, Ala352, Ile468, Thr345, Arg346, Arg357, Thr470 | |
Phycocyanin | −15.1 ± 0.03 | Tyr380, Phe429, Gly381, Arg408, Asp428, Leu517 | |
Mpro | Cyanovirin-N | −12.3 ± 0.03 | Thr21, Gly23, Thr24, Thr26, His41, Met49, Asn119, Cys145, Leu50, Arg188, Gln189, Thr190, Ala191, |
Scytovirin | −9.3 ± 0.02 | His41, Cys44, Thr45, Met49, Leu50, Cys145, Pro168, Thr25, Ser40, Asn142, Glu166 | |
Phycocyanin | −11.0 ± 0.03 | Thr45, Met49, His164, Met165, Pro168, Thr190, Ala191, Thr24, His41, Asn142, Cys145 | |
PLpro | Cyanovirin-N | −13.4 ± 0.02 | Phe69, His73, Thr158, His175, Leu199, Asn156, Lys157, Arg166, Gln174, Met208 |
Scytovirin | −10.9 ± 0.01 | His255, Thr257, Thr259, Tyr305, Tyr310, Thr313, Gln121, Lys279, Glu307, Ser309 | |
Phycocyanin | −12.6 ± 0.02 | Leu190, Thr197, Val202, Met208, Thr210, Val220, Ile222, Thr225, Ala246, Ser170, Lys232 |
Complexes | Time (ns) | Van der Waals Energy (kcal/mol) | SASA Energy (kcal/mol) | Electrostatic Energy (kcal/mol) | Polar Solvation Energy (kcal/mol) | Binding Energy (kcal/mol) |
---|---|---|---|---|---|---|
Cyanovirin-N-SARS-CoV-2 spike complex | 20 | −81.42 ± 2.56 | −7.35 ± 0.53 | −17.43 ± 0.57 | 33.14 ± 1.47 | −73.06 ± 2.19 |
40 | −87.73 ± 2.33 | −7.73 ± 0.42 | −18.04 ± 0.41 | 34.60 ± 1.32 | −78.90 ± 1.84 | |
60 | −90.52 ± 2.21 | −7.97 ± 0.33 | −18.61 ± 0.32 | 35.56 ± 1.21 | −81.54 ± 1.65 | |
80 | −91.90 ± 2.11 | −8.10 ± 0.27 | −19.02 ± 0.24 | 36.25 ± 1.12 | −82.77 ± 1.50 | |
100 | −93.44 ± 1.79 | −8.22 ± 0.19 | −19.23 ± 0.19 | 36.94 ± 1.01 | −83.95 ± 1.16 | |
120 | −94.52 ± 1.67 | −8.30 ± 0.12 | −19.49 ± 0.08 | 37.45 ± 0.79 | −84.86 ± 1.08 | |
Cyanovirin-N-SARS-CoV-2 protease Mpro complex | 20 | −59.61 ± 2.55 | −5.38 ± 0.51 | −12.76 ± 0.62 | 24.26 ± 1.39 | −53.49 ± 2.29 |
40 | −64.23 ± 2.31 | −5.66 ± 0.41 | −13.21 ± 0.55 | 25.33 ± 1.22 | −57.77 ± 2.05 | |
60 | −66.27 ± 2.27 | −5.83 ± 0.35 | −13.62 ± 0.42 | 26.04 ± 1.19 | −59.68 ± 1.85 | |
80 | −67.29 ± 2.19 | −5.93 ± 0.29 | −13.93 ± 0.31 | 26.54 ± 1.02 | −60.61 ± 1.77 | |
100 | −68.41 ± 1.92 | −6.02 ± 0.22 | −14.08 ± 0.27 | 27.04 ± 0.95 | −61.47 ± 1.46 | |
120 | −69.20 ± 1.73 | −6.08 ± 0.12 | −14.27 ± 0.13 | 27.42 ± 0.84 | −62.13 ± 1.14 | |
Cyanovirin-N-SARS-CoV-2 PLpro complex | 20 | −64.95 ± 2.59 | −5.87 ± 0.69 | −13.90 ± 0.61 | 26.43 ± 1.39 | −58.29 ± 2.50 |
40 | −69.97 ± 2.42 | −6.17 ± 0.57 | −14.39 ± 0.52 | 27.60 ± 1.31 | −62.93 ± 2.20 | |
60 | −72.20 ± 2.31 | −6.36 ± 0.42 | −14.84 ± 0.43 | 28.37 ± 1.23 | −65.03 ± 1.93 | |
80 | −73.30 ± 2.18 | −6.46 ± 0.33 | −15.17 ± 0.32 | 28.92 ± 1.16 | −66.01 ± 1.67 | |
100 | −74.53 ± 1.74 | −6.55 ± 0.21 | −15.34 ± 0.23 | 29.46 ± 1.04 | −66.96 ± 1.14 | |
120 | −75.39 ± 1.59 | −6.62 ± 0.15 | −15.55 ± 0.18 | 29.87 ± 0.82 | −67.69 ± 1.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naidoo, D.; Kar, P.; Roy, A.; Mutanda, T.; Bwapwa, J.; Sen, A.; Anandraj, A. Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations. Molecules 2021, 26, 5114. https://doi.org/10.3390/molecules26175114
Naidoo D, Kar P, Roy A, Mutanda T, Bwapwa J, Sen A, Anandraj A. Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations. Molecules. 2021; 26(17):5114. https://doi.org/10.3390/molecules26175114
Chicago/Turabian StyleNaidoo, Devashan, Pallab Kar, Ayan Roy, Taurai Mutanda, Joseph Bwapwa, Arnab Sen, and Akash Anandraj. 2021. "Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations" Molecules 26, no. 17: 5114. https://doi.org/10.3390/molecules26175114
APA StyleNaidoo, D., Kar, P., Roy, A., Mutanda, T., Bwapwa, J., Sen, A., & Anandraj, A. (2021). Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations. Molecules, 26(17), 5114. https://doi.org/10.3390/molecules26175114