Chloropyridinyl Esters of Nonsteroidal Anti-Inflammatory Agents and Related Derivatives as Potent SARS-CoV-2 3CL Protease Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
3. Materials and Methods
3.1. Chemistry
- Synthesis of 6-chloropyridin-2-yl 2-acetoxybenzoate (6a). To a stirred solution of 2-acetoxybenzoic acid (150 mg, 0.83 mmol) in DCM (3 mL), 5-chloropyridin-3-ol (129.4 mg, 0.10 mmol), EDC (240 mg, 1.25 mmol) and DMAP (102 mg, 0.83 mmol) were added. The resulting reaction mixture was stirred at 23 °C for 10 h. After this period, the reaction mixture was washed with saturated aqueous NaHCO3. The organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure to give a crude residue. The residue was purified via silica gel column chromatography (30% ethyl acetate in hexanes) to afford the title ester 6a (30 mg, 12%) as an amorphous solid. 1H NMR (400 MHz, CDCl3) δ 8.51 (d, J = 2.1 Hz, 1H), 8.42 (d, J = 2.4 Hz, 1H), 8.20 (dd, J = 7.9, 1.7 Hz, 1H), 7.68 (ddd, J = 8.1, 7.5, 1.7 Hz, 1H), 7.64 (t, J = 2.2 Hz, 1H), 7.41 (td, J = 7.7, 1.2 Hz, 1H), 7.20 (dd, J = 8.1, 1.2 Hz, 1H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 169.5, 161.9, 151.4, 146.1, 145.7, 141.3, 135.2, 132.0, 129.6, 129.4, 126.2, 124.1, 121.3, 20.9; LRMS-ESI (m/z): 292.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C14H11ClNO4 292.03711; found 292.03630.
- 5-chloropyridin-3-yl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (8a). Commercially available (S)-2-(6-methoxynaphthalen-2-yl)propanoic acid (50 mg, 0.22 mmol) was esterified with 5-chloropyridin-3-ol (34 mg, 0.26 mmol) by following the procedure for ester 6a to provide the title ester 8a (36 mg, 49%) as an amorphous solid. 1H NMR (400 MHz, CDCl3) δ 8.42–8.40 (m, 1H), 8.25–8.23 (m, 1H), 7.78–7.72 (m, 3H), 7.48–7.41 (m, 2H), 7.20–7.13 (m, 2H), 4.11 (q, J = 7.1 Hz, 1H), 3.93 (s, 3H), 1.70 (d, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 172.25, 157.8, 147.2, 145.6, 140.9, 134.1, 133.8, 131.6, 129.2, 128.8, 127.5, 126.1, 125.7, 119.2, 105.5, 55.2, 45.4, 18.2; LRMS-ESI (m/z): 342.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C19H17ClNO3 342.08915; found 342.08907.
- 5-chloropyridin-3-yl (R)-2-(6-methoxynaphthalen-2-yl)propanoate (9a). Commercially available (R)-2-(6-methoxynaphthalen-2-yl)propanoic acid (60 mg, 0.26 mmol) was esterified with 5-chloropyridin-3-ol (40 mg, 0.31 mmol) by following the procedure for ester 6a to provide the title ester 9a (45 mg, 50%) as an amorphous solid. 1H NMR (400 MHz, CDCl3) δ 8.42 (d, J = 2.1 Hz, 1H), 8.24 (d, J = 2.3 Hz, 1H), 7.79–7.72 (m, 3H), 7.49–7.42 (m, 2H), 7.18 (dd, J = 8.9, 2.5 Hz, 1H), 7.14 (d, J = 2.5 Hz, 1H), 4.12 (q, J = 7.1 Hz, 1H), 3.92 (s, 3H), 1.70 (d, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 172.2, 157.8, 147.2, 145.8, 141.1, 134.2, 133.9, 131.5, 129.2, 129.1, 128.9, 127.5, 126.1, 125.7, 119.3, 105.5, 55.2, 45.4, 18.3; LRMS-ESI (m/z): 342.1 [M + H]+.
- 5-chloropyridin-3-yl 2-(4-isobutylphenyl)propanoate (10a). Commercially available 2-(4-isobutylphenyl)propanoic acid (50 mg, 0.24 mmol) was esterified with 5-chloropyridin-3-ol (47 mg, 0.36 mmol) by following the procedure for ester 6a to provide the title ester 10a (35 mg, 46%) as an amorphous solid. 1H NMR (400 MHz, CDCl3) δ 8.43–8.41 (m, 1H), 8.25–8.22 (m, 1H), 7.44 (t, J = 2.2 Hz, 1H), 7.29–7.25 (m, 2H), 7.15 (d, J = 8.1 Hz, 2H), 3.95 (q, J = 7.1 Hz, 1H), 2.47 (d, J = 7.2 Hz, 2H), 1.93–1.81 (m, 1H), 1.61 (d, J = 7.1 Hz, 3H), 0.91 (d, J = 6.6 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 172.3, 147.3, 145.7, 141.1, 141.1, 136.3, 131.6, 129.6, 129.2, 127.1, 45.1, 44.9, 30.1, 22.3, 18.3; LRMS-ESI (m/z): 318.1 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C18H21ClNO2 318.1255; found 318.1251.
- 5-chloropyridin-3-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (11a). Commercially available 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetic acid (50 mg, 0.14 mmol) was esterified with 5-chloropyridin-3-ol (22 mg, 0.17mmol) by following the procedure for ester 6a to provide the title ester 11a (36 mg, 53%) as an amorphous solid. 1H NMR (400 MHz, CDCl3) δ 8.39 (d, J = 53.8 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.56–7.43 (m, 3H), 7.01 (d, J = 2.6 Hz, 1H), 6.87 (d, J = 9.0 Hz, 1H), 6.70 (dd, J = 9.0, 2.5 Hz, 1H), 3.94 (s, 2H), 3.84 (s, 3H), 2.46 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 168.3, 168.2, 156.1, 145.9, 141.0, 139.4, 136.4, 133.6, 131.1, 130.7, 130.1, 129.2, 129.1, 115.0, 111.7, 111.0, 101.1, 55.7, 30.3, 13.3; LRMS-ESI (m/z): 470.1 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C24H19Cl2N2O4 469.07164; found 469.07131.
- 5-chloropyridin-3-yl 2-hydroxybenzoate (12a) and 5-chloropyridin-3-yl 2-((2-hydroxybenzoyl)oxy)benzoate (12b). Commercially available 2-hydroxybenzoic acid (50 mg, 0.36 mmol) was esterified with 5-chloropyridin-3-ol (56.3 mg, 0.43mmol) by following the procedure for ester 6a to provide the title monoester 12a (10 mg, 11%), and diester 12b (13 mg, 10%) as amorphous solid.
- 12a: 1H NMR (400 MHz, CDCl3) δ 10.17 (d, J = 0.5 Hz, 1H), 8.54 (dd, J = 2.0, 0.5 Hz, 1H), 8.48 (dd, J = 2.3, 0.5 Hz, 1H), 8.04 (ddd, J = 8.0, 1.8, 0.5 Hz, 1H), 7.68 (t, J = 2.2 Hz, 1H), 7.58 (dddd, J = 8.4, 7.2, 1.7, 0.5 Hz, 1H), 7.07 (ddd, J = 8.5, 1.1, 0.5 Hz, 1H), 7.03–6.98 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 167.9, 162.4, 146.4, 141.3, 137.2 (×2), 131.9, 130.2, 129.5, 119.7, 118.1, 110.8; LRMS-ESI (m/z): 250.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C12H9ClNO3 250.02655; found 250.02579.
- 12b:1H NMR (400 MHz, CDCl3) δ 10.24 (d, J = 0.4 Hz, 1H), 8.44 (dd, J = 2.1, 0.5 Hz, 1H), 8.32–8.26 (m, 2H), 8.09 (ddd, J = 8.0, 1.8, 0.4 Hz, 1H), 7.76 (ddd, J = 8.2, 7.5, 1.7 Hz, 1H), 7.55–7.48 (m, 3H), 7.35 (dd, J = 8.2, 1.1 Hz, 1H), 7.02 (ddd, J = 8.5, 1.1, 0.4 Hz, 1H), 6.96 (ddd, J = 8.3, 7.3, 1.1 Hz, 1H); 13C NMR (200 MHz, CDCl3) δ 168.7, 162.1, 161.7, 150.5, 146.9, 146.1, 141.1, 136.7, 135.3, 132.4, 131.8, 130.4, 129.4, 126.8, 124.3, 121.7, 119.7, 117.9, 111.5; LRMS-ESI (m/z): 370.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C19H13ClNO5 370.04768; found 370.04688.
- 5-chloropyridin-3-yl 2-hydroxy-3-methylbenzoate (13a) and 5-chloropyridin-3-yl 2-((2-hydroxy-3-methylbenzoyl)oxy)-3-methylbenzoate (13b). Commercially available 2-hydroxy-3-methylbenzoic acid (30 mg, 0.20 mmol) was esterified with 5-chloropyridin-3-ol (31.0 mg, 0.24 mmol) by following the procedure for ester 6a to provide the title monoester 13a (10 mg, 19%), and diester 13b (17 mg, 22%) as amorphous solid.
- 13a: 1H NMR (400 MHz, CDCl3) δ 10.41 (s, 1H), 8.51 (d, J = 27.8 Hz, 2H), 7.89 (d, J = 8.0 Hz, 1H), 7.71–7.63 (m, 1H), 7.44 (d, J = 7.2 Hz, 1H), 6.89 (t, J = 7.7 Hz, 1H), 1.56 (s, 3H).; 13C NMR (200 MHz, CDCl3) δ 168.3, 160.8, 146.2, 141.2, 137.9 (2), 129.7, 127.7, 127.2, 119.1 (2), 110.0, 15.6; LRMS-ESI (m/z): 264.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C13H11ClNO3 264.04220; found 264.04152.
- 13b: 1H NMR (400 MHz, CDCl3) δ 10.55 (s, 1H), 8.42 (s, 1H), 8.30 (s, 1H), 8.13–8.05 (m, 1H), 8.00–7.92 (m, 1H), 7.61 (d, J = 7.5 Hz, 1H), 7.54–7.47 (m, 1H), 7.44–7.33 (m, 2H), 6.86 (t, J = 7.7 Hz, 1H), 2.32 (s, 3H), 2.28 (s, 3H).; 13C NMR (200 MHz, CDCl3) δ 168.8, 162.0, 160.5, 149.1, 145.9, 141.1, 137.5, 136.9, 132.9, 130.1, 129.5, 127.9 (2), 127.0, 126.4 (2), 121.7, 119.1, 110.6, 16.2, 15.6; LRMS-ESI (m/z): 398.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C21H17ClNO5 398.07898; found 398.07824.
- 5-chloropyridin-3-yl 2-hydroxy-4-methylbenzoate (14a) and 5-chloropyridin-3-yl 2-((2-hydroxy-4-methylbenzoyl)oxy)-4-methylbenzoate (14b). Commercially available 2-hydroxy-4-methylbenzoic acid (200 mg, 1.31 mmol) was esterified with 5-chloropyridin-3-ol (204.3 mg, 1.58 mmol) by following the procedure for ester 6a to provide the title monoester 14a (52 mg, 15%), and diester 14b (15 mg, 3%) as amorphous solid.
- 14a: 1H NMR (400 MHz, CDCl3) δ 10.11 (s, 1H), 8.52 (d, J = 2.1 Hz, 1H), 8.46 (d, J = 2.4 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.66 (t, J = 2.2 Hz, 1H), 6.86 (dd, J = 1.8, 0.9 Hz, 1H), 6.83–6.76 (m, 1H), 2.39 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 167.7, 162.3, 148.9, 146.7, 146.2, 141.3, 131.8, 130.0, 129.5, 121.0, 118.1, 108.1, 22.0; LRMS-ESI (m/z): 264.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C13H11ClNO3 264.04220; found 264.04148.
- 14b: 1H NMR (400 MHz, CDCl3) δ 10.21 (s, 1H), 8.42 (d, J = 2.1 Hz, 1H), 8.30 (d, J = 2.3 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.51 (t, J = 2.2 Hz, 1H), 7.28 (ddd, J = 8.1, 1.7, 0.8 Hz, 1H), 7.14 (d, J = 0.8 Hz, 1H), 6.82 (dd, J = 1.8, 0.9 Hz, 1H), 6.76 (ddd, J = 8.1, 1.6, 0.6 Hz, 1H), 2.50 (s, 3H), 2.36 (s, 3H); 13C NMR (200 MHz, CDCl3) δ 168.8, 162.0, 161.8, 150.5, 148.3, 147.0, 147.0, 145.9, 141.1, 132.3, 131.7, 130.2, 129.5, 127.6, 124.8, 121.0, 118.8, 117.9, 109.0, 21.9, 21.6; LRMS-ESI (m/z): 398.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C21H17ClNO5 398.07898; found 398.07865.
- 5-chloropyridin-3-yl 2-hydroxy-5-methylbenzoate (15a) and 5-chloropyridin-3-yl 2-((2-hydroxy-5-methylbenzoyl)oxy)-5-methylbenzoate (15b) and 6-chloropyridin-2-yl 2-((2-((2-hydroxy-5-methylbenzoyl)oxy)-5-methylbenzoyl)oxy)-5-methylbenzoate (15c). Commercially available 2-hydroxy-5-methylbenzoic acid (200 mg, 1.31 mmol) was esterified with 5-chloropyridin-3-ol (204.3 mg, 1.58 mmol) by following the procedure for ester 6a to provide the title monoester 15a (72 mg, 21%), diester 15b (29 mg, 5%), and triester 15c (11 mg, 5%) as amorphous solid.
- 15a: 1H NMR (400 MHz, CDCl3) δ 9.97 (s, 1H), 8.49 (dd, J = 24.3, 2.3 Hz, 2H), 7.81 (d, J = 2.4 Hz, 1H), 7.66 (t, J = 2.2 Hz, 1H), 7.37 (dd, J = 8.6, 2.3 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 2.33 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 167.8, 160.3, 146.7, 146.3, 141.3, 138.2, 131.8, 129.7, 129.5, 129.0, 117.8, 110.3, 20.3; LRMS-ESI (m/z): 264.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C13H11ClNO3 264.04220; found 264.04128.
- 15b:1H NMR (400 MHz, CDCl3) δ 10.09 (s, 1H), 8.43 (s, 1H), 8.31 (s, 1H), 8.05 (d, J = 2.4 Hz, 1H), 7.87 (d, J = 2.4 Hz, 1H), 7.53 (dt, J = 4.4, 2.0 Hz, 2H), 7.35–7.19 (m, 2H), 6.91 (d, J = 8.5 Hz, 1H), 2.48 (s, 3H), 2.30 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 168.9, 161.9, 160.0, 148.2, 145.9, 141.0, 137.7, 136.8 (2), 135.92, 132.66, 129.92, 129.53, 128.80, 123.91, 121.18, 117.59 (2), 111.02, 20.77, 20.32.; LRMS-ESI (m/z): 398.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C21H17ClNO5 398.07898; found 398.07802.
- 15c:1H NMR (400 MHz, CDCl3) δ 10.10 (d, J = 7.8 Hz, 1H), 8.44 (t, J = 3.3 Hz, 1H), 8.32 (d, J = 2.6 Hz, 1H), 8.09 (dd, J = 2.3, 0.8 Hz, 1H), 7.96 (dd, J = 2.2, 0.9 Hz, 1H), 7.84 (dd, J = 2.2, 1.0 Hz, 1H), 7.57–7.51 (m, 2H), 7.46 (dddd, J = 11.6, 8.3, 2.3, 0.8 Hz, 2H), 7.16 (d, J = 8.2 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 6.87 (d, J = 8.5 Hz, 1H), 2.43 (s, 3H), 2.41 (s, 3H), 2.25 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 168.8, 162.9, 159.8, 148.6, 148.2, 145.8, 137.3 (2), 136.6, 136.4, 135.9, 135.4 (2), 132.6, 132.5 (2), 130.1 (2), 129.7, 128.6, 123.8, 123.7, 121.1, 117.3 (2), 111.3, 20.8, 20.7, 20.3; LRMS-ESI (m/z): 532.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C29H23ClNO7 532.11576; found 532.11478.
- 5-chloropyridin-3-yl 2-hydroxy-6-methylbenzoate (16a) and 5-chloropyridin-3-yl 2-((2-hydroxy-6-methylbenzoyl)oxy)-6-methylbenzoate (16b). Commercially available 2-hydroxy-6-methylbenzoic acid (70 mg, 0.46 mmol) was esterified with 5-chloropyridin-3-ol (72 mg, 0.55 mmol) by following the procedure for ester 6a to provide the title monoester 16a (14 mg, 12%), and diester 16b (15 mg, 8%) as amorphous solid.
- 16a: 1H NMR (400 MHz, CDCl3) δ 10.67 (s, 1H), 8.55 (d, J = 2.1 Hz, 1H), 8.46 (d, J = 2.4 Hz, 1H), 7.67 (t, J = 2.2 Hz, 1H), 7.39 (dd, J = 8.4, 7.5 Hz, 1H), 6.92 (ddd, J = 8.4, 1.3, 0.6 Hz, 1H), 6.84–6.81 (m, 1H), 2.69 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 169.4, 163.7, 146.4 (2), 141.4, 141.2, 135.7, 131.9, 129.6, 123.5, 116.1, 110.7, 24.2; LRMS-ESI (m/z): 264.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C13H11ClNO3 264.04220; found 264.04109.
- 16b:1H NMR (400 MHz, CDCl3) δ 10.78 (s, 1H), 8.42 (d, J = 2.1 Hz, 1H), 8.21 (d, J = 2.4 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 7.40–7.27 (m, 3H), 7.16 (ddd, J = 8.2, 1.1, 0.6 Hz, 1H), 6.91–6.86 (m, 1H), 6.79 (ddd, J = 7.5, 1.3, 0.7 Hz, 1H), 2.66 (s, 3H), 2.59 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.1, 163.6, 163.4, 148.0, 146.1, 141.4, 140.7, 139.5, 135.5, 132.2, 129.1, 129.1, 124.3, 123.4 (2), 120.7 (2), 116.0, 111.0, 24.1, 20.5; LRMS-ESI (m/z): 398.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C21H17ClNO5 398.07898; found 398.07808.
- 5-chloropyridin-3-yl 2-fluoro-6-hydroxybenzoate (17a). Commercially available 2-fluoro-6-hydroxybenzoic acid (50 mg, 0.32 mmol) was esterified with 5-chloropyridin-3-ol (50 mg, 0.38 mmol) by following the procedure for ester 6a to provide the title ester 17a (11 mg, 13%) as an amorphous solid. 1H NMR (400 MHz, CDCl3) δ 10.64 (s, 1H), 8.52 (dd, J = 21.6, 2.2 Hz, 2H), 7.68 (t, J = 2.2 Hz, 1H), 7.50 (td, J = 8.4, 6.0 Hz, 1H), 6.87 (dt, J = 8.5, 1.1 Hz, 1H), 6.72 (ddd, J = 11.0, 8.3, 1.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 163.5, 146.5, 146.4, 141.2, 137.0, 136.8, 131.8, 129.5, 113.8, 107.5, 107.3, 101.4; LRMS-ESI (m/z): 268.0 [M + H]+.
- 5-chloropyridin-3-yl 3-acetamidobenzoate (18a). Commercially available 3-acetamidobenzoic acid (50 mg, 0.28 mmol) was esterified with 5-chloropyridin-3-ol (43.4 mg, 0.33 mmol) by following the procedure for ester 6a to provide the title ester 18a (21 mg, 26%) as an amorphous solid. 1H NMR (400 MHz, CDCl3) δ 8.50 (d, J = 2.1 Hz, 1H), 8.45 (d, J = 2.3 Hz, 1H), 8.20 (t, J = 2.0 Hz, 1H), 7.96 (dd, J = 8.2, 2.1 Hz, 1H), 7.91 (dt, J = 7.9, 1.4 Hz, 1H), 7.66 (t, J = 2.2 Hz, 1H), 7.58 (s, 1H), 7.48 (t, J = 8.0 Hz, 1H), 2.21 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 169.6, 164.1, 145.6, 141.1, 138.9, 131.9, 129.8 (2), 129.3, 128.6, 125.5 (2), 121.1, 23.9; LRMS-ESI (m/z): 291.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C14H12ClN2O3 291.05310; found 291.05263.
- 5-chloropyridin-3-yl 3-acetamido-4-fluorobenzoate (19a). Commercially available 3-acetamido-4-fluorobenzoic acid (50 mg, 0.25 mmol) was esterified with 5-chloropyridin-3-ol (39.4 mg, 0.30 mmol) by following the procedure for ester 6a to provide the title ester 19a (70 mg, 90%) as an amorphous solid. 1H NMR (400 MHz, MeOD) δ 8.88 (dd, J = 7.4, 2.3 Hz, 1H), 8.41 (dd, J = 10.6, 2.2 Hz, 2H), 7.91 (ddd, J = 8.6, 4.8, 2.3 Hz, 1H), 7.72 (s, 1H), 7.22 (dd, J = 10.3, 8.6 Hz, 1H), 2.19 (s, 3H); 13C NMR (100 MHz, MeOD) δ 170.4, 163.3, 147.6, 145.5, 141.0, 132.0, 130.1, 127.6, 127.5, 125.7, 124.4, 115.8, 115.6, 23.2; LRMS-ESI (m/z): 309.0 [M + H]+. HRMS (ESI/LTQ) m/z. [M + H]+ calcd for C14H11ClFN2O3 309.04367; found 309.04413.
3.2. IC50 Value Determination
3.3. Mass Analysis of Enzyme-Inhibitor Complex
3.4. Cells, Viruses, and Antiviral Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Fauci, A.S.; Lane, H.C.; Redfield, R.R. Covid-19—Navigating the uncharted. N. Engl. Med. 2020, 382, 1268–1269. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-19) Situation Report. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 23 September 2021).
- Siemieniuk, R.A.; Bartoszko, J.J.; Ge, L.; Zeraatkar, D.; Izcovich, A.; Kum, E.; Pardo-Hernandez, H.; Qasim, A.; Martinez, J.P.D.; Rochwerg, B.; et al. Drug treatments for covid-19: Living systematic review and network meta-analysis. BMJ 2020, 370, m2980. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.P.; Gupta, V. COVID-19 vaccine: A comprehensive status report. Virus Res. 2020, 288, 198114. [Google Scholar] [CrossRef]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet 2020, 396, 1595–1606. [Google Scholar] [CrossRef]
- Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016, 3, 237–261. [Google Scholar] [CrossRef] [Green Version]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015, 1282, 1–23. [Google Scholar]
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef]
- Forni, D.; Cagliani, R.; Clerici, M.; Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017, 25, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajpoot, S.; Alagumuthu, M.; Baig, M.S. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19. Curr. Res. Struct. Biol. 2021, 3, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K.; Brindisi, M.; Shahabi, D.; Chapman, M.E.; Mesecar, A.D. Drug development and medicinal chemistry efforts toward SARS-coronavirus and Covid-19 therapeutics. ChemMedChem 2020, 15, 907–932. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.-H. An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem. 2016, 59, 6595–6628. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov. Today 2020, 25, 668–688. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Xi, K.; Johnson, M.E.; Baker, S.C.; Mesecar, A.D. Progress in anti-SARS coronavirus chemistry, biology and chemotherapy. Annu. Rep. Med. Chem. 2007, 41, 183–196. [Google Scholar]
- Wu, C.Y.; King, K.Y.; Kuo, C.J.; Fang, J.M.; Wu, Y.T.; Ho, M.Y.; Liao, C.L.; Shie, J.J.; Liang, P.H.; Wong, C.H. Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease. Chem. Biol. 2006, 13, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K.; Gong, G.; Grum-Tokars, V.; Mulhearn, D.C.; Baker, S.C.; Coughlin, M.; Prabhakar, B.S.; Sleeman, K.; Johnson, M.E.; Mesecar, A.D. Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 5684–5688. [Google Scholar] [CrossRef]
- Blanchard, J.E.; Elowe, N.H.; Huitema, C.; Fortin, P.D.; Cechetto, J.D.; Eltis, L.D.; Brown, E.D. High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem. Biol. 2004, 11, 1445–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Pettersson, H.I.; Huitema, C.; Niu, C.; Yin, J.; James, M.N.; Eltis, L.D.; Vederas, J.C. Design, synthesis, and evaluation of inhibitors for severe acute respiratory syndrome 3C-like protease based on phthalhydrazide ketones or heteroaromatic esters. J. Med. Chem. 2007, 50, 1850–1864. [Google Scholar] [CrossRef]
- Hattori, S.-i.; Higshi-Kuwata, N.; Raghavaiah, J.; Das, D.; Bulut, H.; Davis, D.A.; Takamatsu, Y.; Matsuda, K.; Takamune, N.; Kishimoto, N.; et al. GRL-0920, an indole chloropyridinyl ester, completely blocks SARS-CoV-2 infection. MBio 2020, 11, e01833-20. [Google Scholar] [CrossRef]
- Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; López, J.R.A.; Cattelan, A.M.; Viladomiu, A.S.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19. A randomized clinical trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- McCreary, E.K.; Angus, D.C. Efficacy of remdesivir in COVID-19. JAMA 2020, 324, 1041–1042. [Google Scholar] [CrossRef] [PubMed]
- Hattori, S.-I.; Higashi-Kuwata, N.; Hayashi, H.; Allu, S.R.; Raghavaiah, J.; Bulut, H.; Das, D.; Anson, B.J.; Lendy, E.K.; Takamatsu, Y.; et al. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 2021, 12, 668. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Raghavaiah, J.; Shahabi, D.; Yadav, M.; Anson, B.J.; Lendy, E.K.; Hattori, S.-I.; Higashi-Kuwata, N.; Mitsuya, H.; Mesecar, A.D. Indole Chloropyridinyl Ester-Derived SARS-CoV-2 3CLpro Inhibitors: Enzyme inhibition, Antiviral Efficacy, Structure-Activity and X-ray Structural Studies. J. Med. Chem. 2021, in press. [Google Scholar] [CrossRef]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Peesa, J.P.; Yalavarthi, P.R.; Rasheed, A.; Mandava, V.B.R. A perspective review on role of novel NSAID prodrugs in the management of acute inflammation. J. Acute Dis. 2016, 5, 364–381. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; StJohn, S.E.; Osswald, H.L.; O’Brien, A.; Banach, B.S.; Sleeman, K.; Ghosh, A.K.; Mesecar, A.D.; Baker, S.C. Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance. J. Virol. 2014, 88, 11886–11898. [Google Scholar] [CrossRef] [Green Version]
- Zeller, M. Single-Crystal X-Ray Analysis was Performed in Our X-ray Crystallography Laboratory; Department of Chemistry, Purdue University: West Lafayette, IN, USA.
- CCDC 2105273 Contains the Supplementary Crystallographic Data for Compound 16b. This Data Can be Obtained Free of Charge from The Cambridge Crystallographic Data Centre via. Available online: www.ccdc.cam.ac.uk/data_request/cif (accessed on 23 September 2021).
- Anson, B.J.; Chapman, M.E.; Lendy, E.K.; Pshenychnyi, S.; D’Aquila, R.T.; Satchell, K.J.F.; Mesecar, A.D. Broad-spectrum inhibition of coronavirus main and papain-like proteases by HCV drugs. Res. Sq. 2020. preprint. [Google Scholar] [CrossRef]
- Grum-Tokars, V.; Ratia, K.; Begaye, A.; Baker, S.C.; Mesecar, A.D. Evaluating the 3C-like protease activity of SARS-Coronavirus: Recommendations for standardized assays for drug discovery. Virus. Res. 2008, 133, 63–73. [Google Scholar] [CrossRef]
- Hoffman, R.L.; Kania, R.S.; Brothers, M.A.; Davies, J.F.; Ferre, R.A.; Gajiwala, K.S.; He, M.; Hogan, R.J.; Kozminski, K.; Li, L.Y.; et al. Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. J. Med. Chem. 2020, 63, 12725–12747. [Google Scholar] [CrossRef] [PubMed]
- de Vries, M.; Mohamed, A.S.; Prescott, R.A.; Valero-Jimenez, A.M.; Desvignes, L.; O’Connor, R.; Steppan, C.; Devlin, J.C.; Ivanova, E.; Herrera, A.; et al. A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19. J. Virol. 2021, 95, e01819-20. [Google Scholar] [CrossRef] [PubMed]
- Kalgutkar, A.S.; Frederick, K.S.; Chupka, J.; Feng, B.; Kempshall, S.; Mireles, R.J.; Fenner, K.S.; Trouman, M.D. N-(3,4-dimethoxyphenethyl)-4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2[1H]-yl)-6,7-dimethoxyquinazolin-2-amine (CP-100,356) as a “chemical knock-out equivalent” to assess the impact of efflux transporters on oral drug absorption in the rat. J. Pharm. Sci. 2009, 98, 4914–4927. [Google Scholar] [CrossRef] [PubMed]
- Bruker (2016). Apex3 v2016.9-0, Saint V8.34A, SAINT V8.37A; Bruker AXS Inc.: Madison, WI, USA, 2013/2014. [Google Scholar]
- SHELXTL Suite of Programs, Version 6.14, 2000–2003, Bruker Advanced X-ray Solutions; Bruker AXS Inc.: Madison, WI, USA, 2000–2003.
- Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G. Acta. Crystallogr. Sect. C. Struct. Chem. 2015, 71, 3. [CrossRef]
No. | Compound Structure | SARS CoV-2 3CLpro IC50 (µM) | SARS-CoV-2 EC50 (µM) a |
---|---|---|---|
1 | 0.36 | >100 | |
2 | 0.67 | >100 | |
3 | 0.16 | >100 | |
4 | 0.81 | >100 | |
5 | 5.32 | 30.2 |
No. | Compound Structure | SARS CoV-2 3CLpro IC50 (µM) | SARS-CoV-2 EC50 (µM) a |
---|---|---|---|
1 | 3.47 | >100 | |
2 | 17.1 | 63.7 | |
3 | 0.65 | >100 | |
4 | 4.9 | 23.8 | |
5 | 0.54 | >100 | |
6 | 1.4 | >100 | |
7 | 0.39 | 46.3 | |
8 | 0.74 | 48.3 | |
9 | 3.73 | >100 | |
10 | 4.26 | >100 | |
11 | 15.4 | >100 | |
12 | 107.8 | >100 | |
13 | 1.11 | >100 | |
14 | 1.51 | >100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, A.K.; Shahabi, D.; Yadav, M.; Kovela, S.; Anson, B.J.; Lendy, E.K.; Bonham, C.; Sirohi, D.; Brito-Sierra, C.A.; Hattori, S.-i.; et al. Chloropyridinyl Esters of Nonsteroidal Anti-Inflammatory Agents and Related Derivatives as Potent SARS-CoV-2 3CL Protease Inhibitors. Molecules 2021, 26, 5782. https://doi.org/10.3390/molecules26195782
Ghosh AK, Shahabi D, Yadav M, Kovela S, Anson BJ, Lendy EK, Bonham C, Sirohi D, Brito-Sierra CA, Hattori S-i, et al. Chloropyridinyl Esters of Nonsteroidal Anti-Inflammatory Agents and Related Derivatives as Potent SARS-CoV-2 3CL Protease Inhibitors. Molecules. 2021; 26(19):5782. https://doi.org/10.3390/molecules26195782
Chicago/Turabian StyleGhosh, Arun K., Dana Shahabi, Monika Yadav, Satish Kovela, Brandon J. Anson, Emma K. Lendy, Connie Bonham, Devika Sirohi, Carlos A. Brito-Sierra, Shin-ichiro Hattori, and et al. 2021. "Chloropyridinyl Esters of Nonsteroidal Anti-Inflammatory Agents and Related Derivatives as Potent SARS-CoV-2 3CL Protease Inhibitors" Molecules 26, no. 19: 5782. https://doi.org/10.3390/molecules26195782
APA StyleGhosh, A. K., Shahabi, D., Yadav, M., Kovela, S., Anson, B. J., Lendy, E. K., Bonham, C., Sirohi, D., Brito-Sierra, C. A., Hattori, S. -i., Kuhn, R., Mitsuya, H., & Mesecar, A. D. (2021). Chloropyridinyl Esters of Nonsteroidal Anti-Inflammatory Agents and Related Derivatives as Potent SARS-CoV-2 3CL Protease Inhibitors. Molecules, 26(19), 5782. https://doi.org/10.3390/molecules26195782