The Contribution of Density Functional Theory to the Atomistic Knowledge of Electrochromic Processes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Determination
2.2. Excitation Energies
2.3. Redox Potentials
2.4. Electronic Properties
3. Materials and Methods
4. Conclusions
- −
- A reliable prediction of the molecular structures with errors comparable to that coming from solid-state X-ray measurements. In addition, DFT computations allow one to determine the structures of systems with unstable oxidation states that are, consequently, difficult to measure experimentally in laboratory conditions;
- −
- The reproduction of the excitation energies in all the molecular oxidation states is close to the experimental counterparts, with an error of about 0.2–0.3 eV. It is possible to assign the transitions and analyze the orbital origin and possible charge transfer processes;
- −
- The redox potentials can be easily obtained with results very close to the experimental data;
- −
- Spin charge distribution, molecular electrostatic potentials, charge distribution, and orbital picture substantially contribute to the interpretation of experimental data and shed light on their atomistic mechanisms.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platt, J.R. Electrochromism, a possible change in color producible in dyes by an electric field. J. Chem. Phys. 1961, 34, 862–864. [Google Scholar] [CrossRef]
- Granqvist, C.G. Oxide electrochromics: An introduction to devices and materials. Sol. Energy Mater. Sol. Cells 2012, 99, 1–13. [Google Scholar] [CrossRef]
- Granqvist, C.-G. Electrochromic materials: Out of a niche. Nat. Mater. 2006, 5, 89−90. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, R.J. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147–156. [Google Scholar] [CrossRef]
- Mortimer, R.J. Electrochromic Materials. Annu. Rev. Mater. Res. 2011, 41, 241–268. [Google Scholar] [CrossRef]
- Deb, S.K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 2008, 92, 245–258. [Google Scholar] [CrossRef]
- Cai, G.; Wang, J.; Lee, P.S. Next-Generation Multifunctional Electrochromic Devices. Acc. Chem. Res. 2016, 49, 469–1476. [Google Scholar] [CrossRef]
- Runnerstrom, E.L.; Llordés, A.; Lounis, S.D.; Milliron, D.J. Nanostructured electrochromic smart windows: Traditional materials and nir-selective plasmonic nanocrystals. Chem. Commun. 2014, 50, 10555–10572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564, 1–38. [Google Scholar] [CrossRef]
- Lampert, C.M. Chromogenic smart materials. Mater. Today 2004, 7, 28–35. [Google Scholar] [CrossRef]
- Mortimer, R.J. Switching colors with electricity: Electrochromic materials can be used in glare reduction, energy conservation and chameleonic fabrics. Am. Sci. 2013, 101, 38–46. [Google Scholar] [CrossRef]
- Varaprasad, D.V.; Habibi, H.; McCabe, I.A.; Lynam, N.R. Electrochromic Mirrors and Devices. European Patent EP0758929B1, 6 August 1997. [Google Scholar]
- Mortimer, R.J.; Dyer, A.L.; Reynolds, J.R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Beneduci, A.; Cospito, S.; La Deda, M.; Veltri, L.; Chidichimo, G. Electrofluorochromism in π-conjugated ionic liquid crystals. Nat. Commun. 2014, 5, 3105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhwa, K.; Nuryyeva, S.; Fahrenbach, A.C.; Elhabiri, M.; Platas-Iglesias, C.; Trabolsi, A. Intramolecular redox-induced dimerization in a viologen dendrimer. J. Mater. Chem. C 2013, 1, 2302–2307. [Google Scholar] [CrossRef]
- Nguyen, Q.V.; Martin, P.; Frath, D.; Della Rocca, M.L.; Lafolet, F.; Bellinck, S.; Lafarge, P.; Lacroix, J.C. Highly Efficient Long-Range Electron Transport in a Viologen-Based Molecular Junction. J. Am. Chem. Soc. 2018, 140, 10131–10134. [Google Scholar] [CrossRef]
- Yu, W.J.; Liao, L.; Chae, S.H.; Lee, Y.H.; Duan, X.F. Toward Tunable Band Gap and Tunable Dirac Point in Bilayer Graphene with Molecular Doping. Nano Lett. 2011, 11, 4759–4763. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Rodriguez-Cordoba, W.E.; Liu, Z.; Zhu, H.; Lian, T. Beyond Band Alignment: Hole Localization Driven Formation of Three Spatially Separated Long-Lived Exciton States in CdSe/CdS Nanorods. ACS Nano 2013, 7, 7173–7185. [Google Scholar] [CrossRef]
- Maufroy, A.; Favereau, L.; Anne, F.B.; Pellegrin, Y.; Blart, E.; Hissler, M.; Jacquemin, D.; Odobel, F. Diketopyrrolopyrrole-zinc porphyrin, a tuned panchromatic association for dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 7572–7575. [Google Scholar]
- Suzuka, M.; Hara, S.; Sekiguchi, T.; Oyaizu, K.; Nishide, H. Polyviologen as the charge-storage electrode of an aqueous electrolyte- and organic-based dye-sensitized solar cell. Polymer 2015, 68, 353–357. [Google Scholar] [CrossRef]
- Beaupre, S.; Breton, A.C.; Dumas, J.; Leclerc, M. Multicolored electrochromic cells base on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater. 2009, 21, 1504–1513. [Google Scholar] [CrossRef]
- Sonmez, G.; Sonmez, H.B. Polymeric electrochromics for data storage. J. Mater. Chem. 2006, 16, 2473–2477. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Y.; Gao, S.; Zhang, B.; Li, R.W.; Zhuang, X.D. Recent Advances in Resistive Switching Materials and Devices: From Memories to Memristors. Eng. Sci. 2018, 4, 4–43. [Google Scholar]
- Yang, P.; Sun, P.; Mai, W. Electrochromic energy storage devices. Mater. Today 2016, 19, 394–402. [Google Scholar] [CrossRef]
- Tong, Z.; Tian, Y.; Zhang, H.; Li, X.; Ji, J.; Qu, H. Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Sci. China Chem. 2017, 60, 13–37. [Google Scholar] [CrossRef]
- Cantekin, S.; Markvoort, A.J.; Elemans, J.A.A.W.; Rowan, A.E.; Nolte, R.J.M. Allosterically Controlled Threading of Polymers through Macrocyclic Dimers. J. Am. Chem. Soc. 2015, 137, 3915–3923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janoschka, T.; Martin, N.; Hager, M.D.; Schubert, U.S. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. Angew. Chem. Int. Ed. 2016, 55, 14427–14430. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; DeBruler, C.; Rhodes, Z.; Liu, T.L. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. J. Am. Chem. Soc. 2017, 139, 1207–1214. [Google Scholar] [CrossRef]
- Luo, J.; Hu, B.; Debruler, C.; Liu, T.L. A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. Angew. Chem. Int. Ed. 2018, 57, 231–235. [Google Scholar] [CrossRef]
- De Bruler, C.; Hu, B.; Moss, J.; Luo, J.; Liu, T.L. A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage. ACS Energy Lett. 2018, 3, 663–668. [Google Scholar] [CrossRef]
- Wang, L.; Sun, S.; He, Y.; He, N.; Zhang, F.; Yao, Y.; Zhang, B.; Zhuang, X.; Chen, Y. Viologen-bridged polyaniline based multifunctional heterofilms for all-solid-state supercapacitors and memory devices. Eur. Polym. J. 2018, 98, 125–136. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Yang, W. Direct preparation of monodisperse core-shell microspheres with surface antibacterial property by using bicationic viologen surfmer. Polymer 2012, 53, 2190–2196. [Google Scholar] [CrossRef]
- Yuan, S.J.; Xu, F.J.; Kang, E.T.; Pehkonen, S.O. Modification of Surface-Oxidized Copper Alloy by Coupling of Viologens for Inhibiting Microbiologically Influenced Corrosion. J. Electrochem. Soc. 2007, 154, C645–C657. [Google Scholar] [CrossRef]
- Asaftei, S.; Huskens, D.; Schols, D. HIV-1 X4 Activities of Polycationic “Viologen” Based Dendrimers by Interaction with the Chemokine Receptor CXCR4: Study of Structure–Activity Relationship. J. Med. Chem. 2012, 55, 10405–10413. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.W.; Wang, S.-X.; Soo, D.X.Y.; Xu, J. Viologen-based electrochromic materials: From small molecules, polymers and composites to their applications. Polymers 2019, 11, 1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, A.N.; Kolesar, J.M.; Hall, S.R.; Saleh, N.-A.; Jones, D.S.; Walter, M.G. Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, J.; Phelan, B.T.; Mauck, C.M.; Stoddart, J.F.; Young, R.M.; Wasielewski, M.R. Probing distance dependent charge-transfer character in excimers of extended viologen cyclophanes using femtosecond vibrational spectroscopy. J. Am. Chem. Soc. 2017, 139, 14265–14276. [Google Scholar] [CrossRef]
- Ho, K.-C.; Lu, H.-C.; Yu, H.-F. Viologens-based electrochromic materials and devices. In Electrochromic Smart Materials—Fabrication and Applications; Xu, J., Chua, M.H., Shah, K.W., Eds.; Royal Society of Chemistry: Cambridge, UK, 2018; pp. 372–405. [Google Scholar]
- Bridges, C.R.; Borys, A.M.; Beland, V.A.; Gaffen, J.R.; Baumgartner, T. Phosphoryl- and phosphonium-bridged viologens as stable two- and three-electron acceptors for organic electrodes. Chem. Sci. 2020, 11, 10483–10487. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zheng, C.; Wang, L.; Lu, C.; Zhang, B.; Chen, Y.; Li, M.; Zhai, G.; Zhuang, X. Viologen-inspired functional materials: Synthetic strategies and applications. J. Mater. Chem. A 2019, 7, 23337–23360. [Google Scholar] [CrossRef]
- Schickedanz, K.; Radtke, J.; Bolte, M.; Lerner, H.-W.; Wagner, M. Facile Route to Quadruply Annulated Borepins. J. Am. Chem. Soc. 2017, 139, 2842–2851. [Google Scholar] [CrossRef] [Green Version]
- Messersmith, R.E.; Tovar, J.D. Assessment of the aromaticity of borepin rings by spectroscopic, crystallographic and computational methods: A historical overview. J. Phys. Org. Chem. 2015, 28, 378–387. [Google Scholar] [CrossRef]
- Messersmith, R.E.; Yadav, S.; Siegler, M.A.; Ottosson, H.; Tovar, J.D. Benzo [b] thiophene Fusion Enhances Local Borepin Aromaticity in Polycyclic Heteroaromatic Compounds. J. Org. Chem. 2017, 82, 13440–13448. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Gopalakrishna, T.Y.; Han, Y.; Phan, H.; Tao, T.; Ni, Y.; Liu, G.; Chi, C. Extended Bis(anthraoxa)quinodimethanes with Nine and Ten Consecutively Fused Six-Membered Rings: Neutral Diradicaloids and Charged Diradical Dianions/Dications. J. Am. Chem. Soc. 2019, 141, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Herng, T.S.; Gopalakrishna, T.Y.; Phan, H.; Lim, Z.L.; Hu, P.; Webster, R.D.; Ding, J.; Chi, C. Extended Bis(benzothia)-quinodimethanes and Their Dications: From Singlet Diradicaloids to Isoelectronic Structures of Long Acenes. Angew. Chem. Int. Ed. 2016, 55, 9316. [Google Scholar] [CrossRef]
- Hunt, C.; Peterson, M.; Anderson, C.; Chang, T.; Wu, G.; Scheiner, S.; Ménard, G. Switchable Aromaticity in an Isostructural Mn Phthalocyanine Series Isolated in Five Separate Redox States. J. Am. Chem. Soc. 2019, 141, 2604–2613. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.X.; Zhou, J.L.; Zheng, J.M.; Xu, C.Y. Improved stability of electrochromic devices using Ti-doped V2O5 film. Electrochim. Acta 2015, 166, 277–284. [Google Scholar] [CrossRef]
- Wu, W.; Wang, M.; Ma, J.; Cao, Y.; Deng, Y. Electrochromic metal oxides: Recent progress and prospect. Adv. Electron. Mater. 2018, 4, 1800185. [Google Scholar] [CrossRef]
- Gong, C.; Yang, J.; Cao, L.; Gao, Y. Self-Doped Oligoaniline Electrochromic Devices: Fabrication and Effect of the Oligoaniline Molecular Architecture. ChemElectroChem 2017, 4, 521–532. [Google Scholar] [CrossRef]
- Cao, L.; Gong, C.; Yang, J. Conducting tetraaniline derivatives with fast switching time, enhanced contrast and coloration efficiency. Electrochim. Acta 2016, 192, 422–430. [Google Scholar] [CrossRef]
- Tsuneyasu, S.; Ichikawa, T.; Nakamura, K.; Kobayashi, N. Electrochemical Stability of Diphenylanthracene and Its Effect on Alternating-Current-Driven Blue-Ligh Electrochemiluminescence Properties. ChemElectroChem 2017, 4, 1731–1735. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Friedrich, A.; Krummenacher, I.; Eichhorn, A.; Braunschweig, H.; Moos, M.; Hahn, S.; Geyer, F.L.; Tverskoy, O.; Han, J.; et al. Preparation, Properties, and Structures of the Radical Anions and Dianions of Azapentacenes. J. Am. Chem. Soc. 2017, 139, 15968–15976. [Google Scholar] [CrossRef]
- Asai, K.; Fukazawa, A.; Yamaguchi, S. A Near-Infrared Dye That Undergoes Multiple Interconversions through Acid–Base Equilibrium and Reversible Redox Processes. Angew. Chem. Int. Ed. 2017, 56, 6848–6852. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Chen, Y.Z. Electroactive and ambipolar electrochromic polyimides from arylene diimides with triphenylamine N-substituents. Dye. Pigment. 2017, 144, 173–183. [Google Scholar] [CrossRef]
- Taylor, J.O.; Pižl, M.; Kloz, M.; Rebarz, M.; McCusker, C.E.; McCusker, J.K.; Záliš, S.; Hartl, F.; Vlček, A. Optical and Infrared Spectroelectrochemical Studies of CNSubstituted Bipyridyl Complexes of Ruthenium (II). Inorg. Chem. 2021, 60, 3514–3523. [Google Scholar] [CrossRef]
- Waldie, K.M.; Ramakrishnan, S.; Kim, S.-K.; Maclaren, J.K.; Chidsey, C.E.D.; Waymouth, R.M. Multielectron Transfer at Cobalt: Influence of the Phenylazopyridine Ligand. J. Am. Chem. Soc. 2017, 139, 4540–4550. [Google Scholar] [CrossRef] [PubMed]
- De Simone, B.C.; Marino, T.; Russo, N. TDDFT investigation on methylviologen, 3,7-diazabenzophosphole, and helical helquat electrochromic systems. Theor. Chem. Acc. 2016, 135, 118. [Google Scholar] [CrossRef]
- De Simone, B.C.; Mazzone, G.; Marino, T.; Russo, N.; Toscano, M. Time-Dependent Density Functional Computations of the Spectrochemical Properties of Dithiolodithiole and Thiophene Electrochromic Systems. Materials 2017, 10, 981. [Google Scholar] [CrossRef] [Green Version]
- De Simone, B.C.; Marino, T.; Prejanò, M.; Russo, N. Can fused thiophene−pyrrole-containing rings act as possible new electrochromic dyes? A computational prediction. Theor. Chem. Acc. 2016, 135, 238. [Google Scholar] [CrossRef]
- De Simone, B.C.; Mazzone, G.; Marino, M.; Russo, N.; Toscano, M. On the Electrochromic Properties of Borepins: A Computational Prediction. ACS Omega 2018, 3, 9556–9563. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Rainwater, L.E.; Green, A.R.; Tomlinson, A.L. Modeling electrochromic poly-dioxythiophene-containing materials through TDDFT. Phys. Chem. Chem. Phys. 2017, 19, 20251–20258. [Google Scholar] [CrossRef]
- Alberto, M.E.; De Simone, B.C.; Marino, T.; Russo, N.; Toscano, M. Photophysical properties of methyl ketone based multi-responsive electrochromic materials: A theoretical investigation. J. Mol. Liq. 2021, 338, 116576. [Google Scholar] [CrossRef]
- Cappello, C.; Therien, D.A.B.; Staroverov, V.N.; Lagugn-Labarthet, F.; Gilroy, J.B. Optoelectronic, Aggregation, and Redox Properties of Double-Rotor Boron Difluoride Hydrazone Dyes. Chem. Eur. J. 2019, 25, 5994–6006. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, Y.; Tanioka, M.; Muranaka, A.; Miyamoto, K.; Aoyama, T.; Ouyang, X.; Kamino, S.; Sawada, D.; Uchiyama, M. Stable Thiele’s Hydrocarbon Derivatives Exhibiting Near-Infrared Absorption/Emission and Two-Step Electrochromism. J. Am. Chem. Soc. 2018, 140, 17857–17861. [Google Scholar] [CrossRef]
- Higashino, T.; Kumagai, A.; Sakaki, S.; Imahori, H. Reversible p-system switching of thiophene-fused thiahexaphyrins by solvent and oxidation/reduction. Chem. Sci. 2018, 9, 7528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Q.; Chang, J.; Shi, X.; Dai, G.; Zhang, W.; Huang, K.-W.; Chi, C. Stable 7,14-Disubstituted-5,12-Dithiapentacenes with Quinoidal Conjugation. Org. Lett. 2014, 16, 3966–3969. [Google Scholar] [CrossRef]
- Quinton, C.; Alain-Rizzo, V.; Dumas-Verdes, C.; Miomandre, F.; Clavier, G.; Audebert, P. Redox- and Protonation-Induced Fluorescence Switch in a New Triphenylamine with Six Stable Active or Non-Active Forms. Chem. Eur. J. 2015, 21, 2230–2240. [Google Scholar] [CrossRef] [PubMed]
- Alberto, M.E.; De Simone, B.C.; Cospito, S.; Imbardelli, D.; Veltri, L.; Chidichimo, G.; Russo, N. Experimental and theoretical characterization of a new synthesized extended viologen. Chem. Phys. Lett. 2012, 552, 141–145. [Google Scholar] [CrossRef]
- De Simone, B.C.; Quartarolo, A.D.; Cospito, S.; Veltri, L.; Chidichimo, G.; Russo, N. Theoretical and experimental investigation on the near-infrared and UV−Vis spectral regions of a newly synthesized triarylamine electrochromic system. Theor. Chem. Acc. 2012, 131, 1225–1233. [Google Scholar] [CrossRef]
- Maltese, V.; Cospito, S.; Beneduci, A.; De Simone, B.C.; Russo, N.; Chidichimo, G.; Janssen, R.A.J. Electro-optical Properties of Neutral and Radical Ion Thienosquaraines. Chem. Eur. J. 2016, 22, 10179–10186. [Google Scholar] [CrossRef]
- Schipper, D.J.; Moh, L.C.H.; Muller, P.; Swager, T.M. Dithiolodithiole as a Building Block for Conjugated Materials. Angew. Chem. Int. Ed. 2014, 53, 5847–5851. [Google Scholar] [CrossRef]
- Bockman, T.M.; Kochi, J.K. Isolation and oxidation-reduction of methylviologen cation radicals. Novel disproportionation in charge-transfer salts by x-ray crystallography. J. Org. Chem. 1990, 55, 4127–4135. [Google Scholar] [CrossRef]
- Born, M. Die Elektronenaffinität der Halogenatome. Verhandl. Deut. Physik. Ges. 1919, 21, 679–685. [Google Scholar]
- Durben, S.; Baumgartner, T. 3,7-Diazadibenzophosphole Oxide: A Phosphorus-Bridged Viologen Analogue with Significantly Lowered Reduction Threshold. Angew. Chem. Int. Ed. 2011, 50, 7948–7952. [Google Scholar] [CrossRef]
- Pospíšil, L.; Bednárová, L.; Štepánek, P.; Slavícek, P.; Vávra, J.; Hromadová, M.; Dlouhá, H.; Tarábek, J.; Teplý, F. Intense Chiroptical Switching in a Dicationic Helicene-Like Derivative: Exploration of a Viologen-Type Redox Manifold of a Non-Racemic Helquat. J. Am. Chem. Soc. 2014, 136, 10826–10829. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter Mater. Phys. 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 84106–84155. [Google Scholar] [CrossRef] [PubMed]
- Cossi, M.; Barone, V. Solvent effect on vertical electronic transitions by the polarizable continuum model. J. Chem. Phys. 2000, 112, 2427–2435. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision, D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
a) | X-Ray | B3LYP | M06 | PBE0 |
---|---|---|---|---|
1 | ||||
B-C1 | 1.563 | 1.564 | 1.559 | 1.560 |
B-C19 | 1.595 | 1.595 | 1.585 | 1.590 |
C9-C10 | 1.502 | 1.497 | 1.490 | 1.490 |
C1BC18 | 127.3 | 127.1 | 127.3 | 127.3 |
C1BC19 | 116.4 | 116.4 | 116.3 | 116.3 |
C8C9C10C11 | 38.9 | 39.2 | 39.2 | 39.0 |
2 | ||||
C1-C2 | 1.365 | 1.365 | 1.361 | 1.363 |
C2-C3 | 1.444 | 1.447 | 1.441 | 1.441 |
C2-S3 | 1.757 | 1.783 | 1.771 | 1.764 |
S3-S4 | 2.084 | 2.128 | 2.119 | 2.099 |
C1-C2-S3 | 126.5 | 125.7 | 126.0 | 126.3 |
C3-C2-S3 | 113.4 | 113.4 | 113.6 | 113.5 |
C2-S3-S4 | 95.8 | 95.1 | 95.1 | 95.4 |
C2-C3-C4 | 120.1 | 120.7 | 120.4 | 120.1 |
φ1 | 154.6 | 140.6 | 142.2 | 142.9 |
φ2 | 26.1 | −34.7 | −33.6 | −32.7 |
System | B3LYP | M06 | wB97XD | Transition (%) | λexp |
---|---|---|---|---|---|
32+ | 368 (0.23) | 366 (0.24) | 313 (0.30) | H→L (70) | 337 [72] |
3+ | 399 (0.10) 433 (0.15) 1152 (0.11) | 399 (0.13) 440 (0.12) 1169 (0.12) | 355 (0.16) 403 (0.15) 1213 (0.15) | βH-1→L (84) βH→L (75) H→L (99) | 400 [72], 447 [72] 1050–1100 [72] |
3 | 553 (0.1) 721 (0.2) | 557 (0.1) 698 (0.2) | 455 (0.0) 599 (0.3) | H→L+3 (57) H→L (68) | 558 [72], 712 [72] |
42+ | 513 (1.39) | 504 (1.49) | 450 (1.74) | H→L (69) | 450 [70] |
4+ | 575 (1.61) 842 (0.00) | 581 (1.62) 825 (0.00) | 565 (1.64) 733 (0.05) | βH→L (71) αH→L (74) | 570 [70] 840 [70] |
4 | 572 (1.67) | 575 (1.64) | 585 (1.70) | H→L (71) | 660 [70] |
4− | 494 (1.30) 709 (0.07) | 487 (1.12) 690 (0.08) | 444 (1.22) 643 (0.14) | αH→L (83) βH→L (84) | 660 [70] |
Molecule | Potential | Theory (M06) | Experimental a | Δtheo-exp |
---|---|---|---|---|
5 | EIred | −1.60 | −1.49 | 0.11 |
EIIred | −2.00 | −1.84 | 0.16 | |
6 | EIred | −2.24 | −2.14 | 0.10 |
3 | EIred | −1.18 | −1.09 | 0.09 |
EIIred | −1.42 | −1.52 | 0.00 | |
7 | EIred | −0.74 | −0.51 | 0.23 |
EIIred | −1.23 | −1.00 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Simone, B.C.; Alberto, M.E.; Marino, T.; Russo, N.; Toscano, M. The Contribution of Density Functional Theory to the Atomistic Knowledge of Electrochromic Processes. Molecules 2021, 26, 5793. https://doi.org/10.3390/molecules26195793
De Simone BC, Alberto ME, Marino T, Russo N, Toscano M. The Contribution of Density Functional Theory to the Atomistic Knowledge of Electrochromic Processes. Molecules. 2021; 26(19):5793. https://doi.org/10.3390/molecules26195793
Chicago/Turabian StyleDe Simone, Bruna Clara, Marta Erminia Alberto, Tiziana Marino, Nino Russo, and Marirosa Toscano. 2021. "The Contribution of Density Functional Theory to the Atomistic Knowledge of Electrochromic Processes" Molecules 26, no. 19: 5793. https://doi.org/10.3390/molecules26195793
APA StyleDe Simone, B. C., Alberto, M. E., Marino, T., Russo, N., & Toscano, M. (2021). The Contribution of Density Functional Theory to the Atomistic Knowledge of Electrochromic Processes. Molecules, 26(19), 5793. https://doi.org/10.3390/molecules26195793