Facile Fabrication of Diatomite-Supported ZIF-8 Composite for Solid-Phase Extraction of Benzodiazepines in Urine Samples Prior to High-Performance Liquid Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of ZIF-8@Dt-COOH
2.2. Optimization of SPE Conditions
2.2.1. Ionic Strength and Sample pH
2.2.2. Loading Volume
2.3. Adsorption Performance of ZIF-8@Dt-COOH(2×) for BZDs
2.4. Method Evaluation
2.5. Application to Urine Samples
3. Materials and Methods
3.1. Chemicals and Standards
3.2. Instrumentation
3.3. Fabrication of ZIF-8@Dt-COOH
3.4. Sample Pretreatment
3.5. SPE Procedure
3.6. HPLC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Silva, A.V.D.; Meneghetti, S.M.P.; Meneghetti, M.R. Benzodiazepines: Drugs with chemical skeletons suitable for the preparation of metallacycles with potential pharmacological activity. Molecules 2021, 26, 2796. [Google Scholar] [CrossRef] [PubMed]
- Guina, J.; Merrill, B. Benzodiazepines I: Upping the care on downers: The evidence of risks, benefits and alternatives. J. Clin. Med. 2018, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Sluiszen, N.N.J.J.M.; Vermeeren, A.; Jongen, S.; Vinckenbosch, F.; Ramaekers, J.G. Influence of long-term benzodiazepine use on neurocognitive skills related to driving performance in patient populations: A review. Pharmacopsychiatry 2017, 50, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Lader, M. Benzodiazepine harm: How can it be reduced? Br. J. Clin. Pharmacol. 2014, 77, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Grigoriadis, S.; Graves, L.; Peer, M.; Mamisashvili, L.; Dennis, C.L.; Vigod, S.N.; Steiner, M.; Brown, C.; Cheung, A.; Dawson, H.; et al. Benzodiazepine use during pregnancy alone or in combination with an antidepressant and congenital malformations: Systematic review and meta-analysis. J. Clin. Psychiatry 2019, 80, 4. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, B.; Zohrabi, P.; Shamsipur, M. Recent developments and applications of different sorbents for SPE and SPME from biological samples. Talanta 2018, 187, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Furugen, A.; Nishimura, A.; Kobayashi, M.; Umazume, T.; Narumi, K.; Iseki, K. Quantification of eight benzodiazepines in human breastmilk and plasma by liquid-liquid extraction and liquid-chromatography tandem mass spectrometry: Application to evaluation of alprazolam transfer into breastmilk. J. Pharm. Biomed. 2019, 168, 83–93. [Google Scholar] [CrossRef]
- Abrão, L.C.D.C.; Figueiredo, E.C. A new restricted access molecularly imprinted fiber for direct solid phase microextraction of benzodiazepines from plasma samples. Analyst 2019, 144, 4320–4330. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, W.; Fu, D.; Zhang, C.; Zhao, H. Fabrication of magnetic zinc adeninate metal-organic frameworks for the extraction of benzodiazepines from urine and wastewater. J. Sep. Sci. 2018, 41, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, P.; Jin, Q.; Hu, Z.; Wang, J. Multi-residue analysis of sedative drugs in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2018, 1072, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Du, L.; Zhang, Z.; Li, N.; Wang, M.; Ren, Q. A poly(N,N-dimethylaminoethyl methacrylate-co-ethylene glycol dimethacrylate) monolith for direct solid-phase extraction of benzodiazepines from undiluted human urine. Anal. Methods 2020, 12, 3924–3932. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review. part ii. TRAC-Trends Anal. Chem. 2016, 80, 655–667. [Google Scholar] [CrossRef]
- Hansen, F.A.A.; Pedersen-Bjergaard, S. Emerging extraction strategies in analytical chemistry. Anal. Chem. 2019, 92, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Nema, T.; Chan, E.C.; Ho, P.C. Applications of monolithic materials for sample preparation. J. Pharm. Biomed. Anal. 2014, 87, 130–141. [Google Scholar] [CrossRef]
- Afsharipour, R.; Shabani, A.M.H.; Dadfarnia, S.; Kazemi, E. Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots. Microchim. Acta 2020, 187, 54. [Google Scholar] [CrossRef]
- Khatibi, S.A.; Hamidi, S.; Siahi-Shadbad, M.R. Current trends in sample preparation by solid-phase extraction techniques for the determination of antibiotic residues in foodstuffs: A review. Crit. Rev. Food Sci. Nutr. 2020, 1–22. [Google Scholar] [CrossRef]
- Xin, J.; Wang, X.; Li, N.; Liu, L.; Lian, Y.; Wang, M.; Zhao, R. Recent applications of covalent organic frameworks and their multifunctional composites for food contaminant analysis. Food Chem. 2020, 330, 127255. [Google Scholar] [CrossRef] [PubMed]
- Safaei, M.; Foroughi, M.M.; Ebrahimpour, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. TrAC Trends Anal. Chem. 2019, 118, 401–425. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Yang, L.; Wang, Z.; Liu, H. Recent advances in applications of metal-organic frameworks for sample prepa-ration in pharmaceutical analysis. Coordin. Chem. Rev. 2020, 411, 213235. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Pacheco-Fernández, I.; Pasán, J.; Pino, V. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?—A review. Anal. Chim. Acta 2016, 939, 26–41. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, C.; Fu, Y.; Liu, L.; Xie, Y. Ultrasensitive electrochemical sensor for luteolin based on zirconium metal-organic framework UiO-66/reduced graphene oxide composite modified glass carbon electrode. Molecules 2020, 25, 4557. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Cao, H.; Zhang, Z.; Zhao, T.; Hao, Y.; Wang, M. Silica supported metal organic framework 808 composites as adsorbent for solid-phase extraction of benzodiazepines in urine sample. Microchem. J. 2020, 157, 105062. [Google Scholar] [CrossRef]
- Duo, H.; Lu, X.; Wang, S.; Wang, L.; Guo, Y.; Liang, X. Synthesis of magnetic metal–organic framework composites, Fe3O4-NH2@MOF-235, for the magnetic solid-phase extraction of benzoylurea insecticides from honey, fruit juice and tap water samples. New J. Chem. 2019, 43, 12563–12569. [Google Scholar] [CrossRef]
- Mohammadi, F.; Shabani, A.M.H.; Dadfarnia, S.; Ansari, M.; Asgharinezhad, A.A. Dispersive solid-phase extraction of buprenorphine from biological fluids using metal-organic frameworks and its determination by ultra-performance liquid chromatography. J. Sep. Sci. 2020, 43, 3045–3052. [Google Scholar] [CrossRef]
- Manousi, N.; Zachariadis, G.A.; Deliyanni, E.A.; Samanidou, V.F. Applications of metal-organic frameworks in food sample preparation. Molecules 2018, 23, 2896. [Google Scholar] [CrossRef] [Green Version]
- Namor, A.F.D.; Elgamouz, A.; Frangie, S.; Martinez, V.; Valiente, L.; Webb, O.A. Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. J. Hazard. Mater. 2012, 241–242, 14–31. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Luo, Y.; Luo, Z.; Yu, C. Diatomite-based material as an adsorbent or photocatalyst for water treatment. Prog. Chem. 2019, 31, 561–570. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Zhao, Y.; Chen, S.; Liu, Z. Diatomite-supported Pd-M (M = Cu, Co, Ni) bimetal nanocatalysts for selective hydrogenation of long-chain aliphatic esters. J. Colloid Interface Sci. 2012, 386, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lee, Y.-N.; Nam, H.; Nam, H.; Kim, H.-K. Chemical activation of porous diatomite ceramic filter for the adsorption of TMA, H2S, CH3COOH and NH3: Isotherm and kinetic studies. J. Environ. Chem. Eng. 2019, 7, 103481. [Google Scholar] [CrossRef]
- Deng, L.; Du, P.; Yu, W.; Yuan, P.; Annabi-Bergaya, F.; Liu, D.; Zhou, J. Novel hierarchically porous allophane/diatomite nanocomposite for benzene adsorption. Appl. Clay Sci. 2019, 168, 155–163. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. J. Mater. Chem. A 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Liu, H.; Chen, L.; Ding, J. A core-shell magnetic metal organic framework of type Fe3O4@ZIF-8 for the extraction of tetracycline antibiotics from water samples followed by ultra-HPLC-MS analysis. Microchim. Acta 2017, 184, 4091–4098. [Google Scholar] [CrossRef]
- Jafari, Z.; Hadjmohammadi, M.R. In situ growth of zeolitic imidazolate framework-8 on a GO–PVDF membrane as a sorbent for thin-film microextraction of caffeine followed by quantitation through high-performance liquid chromatography. Anal. Methods 2020, 12, 1736–1743. [Google Scholar] [CrossRef]
- Taghvimi, A.; Tabrizi, A.B.; Dastmalchi, S.; Javadzadeh, Y. Metal organic framework based carbon porous as an efficient dispersive solid phase extraction adsorbent for analysis of methamphetamine from urine matrix. J. Chromatogr. B 2019, 1109, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Venna, S.R.; Jasinski, J.B.; Carreon, M.A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030–18033. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T.; Lai, C.W.; Hsien, K.J. Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching. J. Colloid Interface Sci. 2006, 297, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Yuan, P.; Liu, D.; Deng, L.; Zhou, J.; Yu, W.; Chen, F. A hierarchically porous diatomite/silicalite-1 composite for benzene adsorption/desorption fabricated via a facile premodification in situ synthesis route. Chem. Eng. J. 2016, 294, 333–342. [Google Scholar] [CrossRef]
- Rezaei, F.; Yamini, Y.; Moradi, M.; Daraei, B. Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Anal. Chim. Acta 2013, 804, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Bayati, B.; Ghorbani, A.; Ghasemzadeh, K.; Iulianelli, A.; Basile, A. Study on the separation of H2 from CO2 using a ZIF-8 membrane by molecular simulation and maxwell-stefan model. Molecules 2019, 24, 4350. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.; Chang, H.; Yang, W.; Choi, H.; Kim, E.; Yu, B.-H.; Oh, Y.; Chung, H. Development of an LC–MS/MS method for the simultaneous determination of 25 benzodiazepines and zolpidem in oral fluid and its application to authentic samples from regular drug users. J. Pharm. Biomed. Anal. 2012, 74, 213–222. [Google Scholar] [CrossRef]
- Saito, K.; Kikuchi, Y.; Saito, R. Solid-phase dispersive extraction method for analysis of benzodiazepine drugs in serum and urine samples. J. Pharm. Biomed. Anal. 2014, 100, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Fernández, P.; Vázquez, C.; Lorenzo, R.A.; Carro, A.M.; Alvarez, I.; Cabarcos, P. Experimental design for optimization of microwave-assisted extraction of benzodiazepines in human plasma. Anal. Bioanal. Chem. 2010, 397, 677–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabarcos, P.; Tabernero, M.J.; Álvarez, I.; López, P.; Fernández, P.; Bermejo, A.M. Analysis of six benzodiazepines in vitreous humor by high-performance liquid chromatography-photodiode-array detection. J. Anal. Toxicol. 2010, 34, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pebdani, A.A.; Khodadoust, S.; Talebianpoor, M.; Zargar, H.; Zarezade, V. Preconcentration and determination of chlordiazepoxide and diazepam drugs using dispersive nanomaterial-ultrasound assisted microextraction method followed by high performance liquid chromatography. J. Chromatogr. B 2016, 1008, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Asgharinezhad, A.A.; Ebrahimzadeh, H.; Mirbabaei, F.; Mollazadeh, N.; Shekari, N. Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. Anal. Chim. Acta 2014, 844, 80–89. [Google Scholar] [CrossRef]
- An, Y.; Chen, M.; Xue, Q.; Liu, W. Preparation and self-assembly of carboxylic acid-functionalized silica. J. Colloid Interface Sci. 2007, 311, 507–513. [Google Scholar] [CrossRef]
Analyte | Log P a | pKa b | EF | Adsorption Efficiency (%) | |
---|---|---|---|---|---|
Dt-COOH(2×) | ZIF-8@Dt-COOH(2×) | ||||
TRI | 3.67 | 1.5 | 27.8 | 20.1 | 100 |
MID | 3.76 | 1.7 | 30.0 | 39.0 | 100 |
DZP | 4.02 | 3.3 | 30.0 | 36.1 | 100 |
Analyte | Linear Range (ng/mL) | Regression Equation a (r) | LOD (ng/mL) | LOQ (ng/mL) | Spiked (ng/mL) | Recovery (%) | Precisions (RSD, %, n = 3) | Reproducibility b | ||
---|---|---|---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | Column-to-Column | Batch-to-Batch | |||||||
TRI | 2–500 | y = 1.1317 − 5.615 (0.9995) | 0.3 | 1.0 | 5 | 92.9 | 5.2 | 5.7 | 3.3 | 6.9 |
10 | 86.8 | 1.4 | 2.5 | |||||||
20 | 96.7 | 1.5 | 1.5 | |||||||
MID | 2–500 | y = 0.8581x − 3.349 (0.9996) | 0.4 | 1.3 | 5 | 98.7 | 4.1 | 7.3 | 6.4 | 8.0 |
10 | 83.9 | 3.7 | 3.1 | |||||||
20 | 81.3 | 1.9 | 4.3 | |||||||
DZP | 2-500 | y = 1.3859x − 6.372 (0.9996) | 0.3 | 1.0 | 5 | 98.0 | 2.9 | 7.5 | 3.8 | 9.4 |
10 | 80.0 | 2.6 | 2.9 | |||||||
20 | 86.5 | 1.9 | 8.2 |
Pretreatment Method | Instrument | EF a | LOD (ng/mL) | Recovery (%) | References |
---|---|---|---|---|---|
LLE | LC-MS/MS | ~10 | 0.01–0.5 | 81–95 | [40] |
SPDE (HLB) b | LC-TOF-MS | ~10 | 10 | 89.6–105.0 | [41] |
SPE (SLW) | UPLC-MS/MS c | 0.3 | 65.3–114.3 | [10] | |
MAE d | HPLC | 5 | 6.2–12.6 | 89.8–102.1 | [42] |
SPE (HLB) | HPLC | 5 | 3 | 68.5–97.6 | [43] |
DNUM e | HPLC | 23.1–24.0 | 1.2–1.5 | 92.2–96.0 | [44] |
D-μ-SPE | HPLC | 27.7–32.8 | 0.2–2.0 | 84.0–99.0 | [45] |
SPE (ZIF-8@Dt-COOH) | HPLC | 24.0–29.6 | 0.3–0.4 | 80.0–98.7 | This work |
Sample | Found ± SD (ng/mL) | Recovery a (%) | RSD (%) |
---|---|---|---|
1 | 12.4 ± 1.2 | 81.1 | 9.9 |
2 | 10.9 ± 0.7 | 94.9 | 6.4 |
3 | 14.8 ± 1.2 | 91.9 | 8.0 |
4 | 15.1 ± 1.3 | 101 | 8.3 |
5 | 21.4 ± 0.7 | 109 | 3.8 |
6 | 21.7 ± 1.8 | 100 | 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Xu, S.; Wu, H.; Zhao, T.; Wang, X.; Wang, M. Facile Fabrication of Diatomite-Supported ZIF-8 Composite for Solid-Phase Extraction of Benzodiazepines in Urine Samples Prior to High-Performance Liquid Chromatography. Molecules 2021, 26, 5209. https://doi.org/10.3390/molecules26175209
Du L, Xu S, Wu H, Zhao T, Wang X, Wang M. Facile Fabrication of Diatomite-Supported ZIF-8 Composite for Solid-Phase Extraction of Benzodiazepines in Urine Samples Prior to High-Performance Liquid Chromatography. Molecules. 2021; 26(17):5209. https://doi.org/10.3390/molecules26175209
Chicago/Turabian StyleDu, Li, Shaonan Xu, Han Wu, Tengwen Zhao, Xuesheng Wang, and Manman Wang. 2021. "Facile Fabrication of Diatomite-Supported ZIF-8 Composite for Solid-Phase Extraction of Benzodiazepines in Urine Samples Prior to High-Performance Liquid Chromatography" Molecules 26, no. 17: 5209. https://doi.org/10.3390/molecules26175209
APA StyleDu, L., Xu, S., Wu, H., Zhao, T., Wang, X., & Wang, M. (2021). Facile Fabrication of Diatomite-Supported ZIF-8 Composite for Solid-Phase Extraction of Benzodiazepines in Urine Samples Prior to High-Performance Liquid Chromatography. Molecules, 26(17), 5209. https://doi.org/10.3390/molecules26175209