The Chemical Composition of Oils and Cakes of Ochna serrulata (Ochnaceae) and Other Underutilized Traditional Oil Trees from Western Zambia
Abstract
:1. Introduction
2. Results
2.1. Fatty Acid Content
2.2. Tocopherol and Tocotrienol Content
2.3. Chlorophylls and Carotenoid Contents
2.4. Volatiles of the O. serrulata Oil
2.5. Macro- and Microelements of Cakes
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals, Standards and Reagents
4.3. Sample Preparation
4.3.1. Traditional Oil Preparation Method
4.3.2. Oil Extraction from Seeds
4.4. Fatty Acid Profile
4.5. Tocopherol and Tocotrienol Contents
4.6. Measurement of Chlorophyll a and b and Carotenoid Content
4.7. GC-MS Analysis of Volatiles in O. serrulata Oil after Solid-Phase Microextraction (SPME)
4.8. Determination of Nitrogen Content in the Cakes
4.9. Identification of Other Macro- and Microelements
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability Statement
References
- Verpoorte, R. Pharmacognosy in the New Millennium: Leadfinding and Biotechnology. J. Pharm. Pharmacol. 2000, 52, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, J.; Pilling, D. The State of the World’s Biodiversity for Food and Agriculture; FAO Commission on Genetic Resources for Food and Agriculture Assessment: Rome, Italy, 2019. [Google Scholar]
- Lenné, J.M.; Wood, D. Agrobiodiversity Management for Food Security: A Critical Review; CAB International: Wallingford, UK, 2011. [Google Scholar]
- Kerr, R.B. Lost and Found Crops: Agrobiodiversity, Indigenous Knowledge, and a Feminist Political Ecology of Sorghum and Finger Millet in Northern Malawi. Ann. Assoc. Am. Geogr. 2014, 104, 577–593. [Google Scholar] [CrossRef]
- Thrupp, L.A. Linking Agricultural Biodiversity and Food Security: The Valuable Role of Agrobiodiversity for Sustainable Agriculture. Int. Aff. 2000, 76, 265–281. [Google Scholar] [CrossRef]
- Muthayya, S.; Rah, J.H.; Sugimoto, J.D.; Roos, F.F.; Kraemer, K.; Black, R.E. The Global Hidden Hunger Indices and Maps: An Advocacy Tool for Action. PLoS ONE 2013, 8, e67860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Hunger Index Zambia. Available online: https://www.globalhungerindex.org/zambia.html (accessed on 4 April 2019).
- Convention on Biological Diversity Fifth National Report—Zambia. Available online: https://www.cbd.int/doc/world/zm/zm-nr-05-en.pdf (accessed on 4 August 2019).
- Ngadze, R.T.; Linnemann, A.R.; Nyanga, L.K.; Fogliano, V.; Verkerk, R. Local Processing and Nutritional Composition of Indigenous Fruits: The Case of Monkey Orange (Strychnos Spp.) from Southern Africa. Food Rev. Int. 2017, 33, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Neri-Numa, I.A.; Carvalho-Silva, L.B.; Morales, J.P.; Malta, L.G.; Muramoto, M.T.; Ferreira, J.E.M.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Maróstica Junior, M.R.; Pastore, G.M. Evaluation of the Antioxidant, Antiproliferative and Antimutagenic Potential of Araçá-Boi Fruit (Eugenia Stipitata Mc Vaugh—Myrtaceae) of the Brazilian Amazon Forest. Food Res. Int. 2013, 50, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Muwowo, P.; Coillard, H. Food Processing Sector Investment Profile Zambia; International Trade Centre: Geneva, Switzerland, 2020. [Google Scholar]
- Cheikhyoussef, N.; Kandawa-Schulz, M.; Böck, R.; de Koning, C.; Cheikhyoussef, A.; Hussein, A.A. Characterization of Schinziophyton Rautanenii (Manketti) Nut Oil from Namibia Rich in Conjugated Fatty Acids and Tocopherol. J. Food Compos. Anal. 2018, 66, 152–159. [Google Scholar] [CrossRef]
- Gwatidzo, L.; Botha, B.M.; McCrindle, R.I. Determination of Amino Acid Contents of Manketti Seeds (Schinziophyton Rautanenii) by Pre-Column Derivatisation with 6-Aminoquinolyl- Nhydroxysuccinimidyl Carbamate and RP-HPLC. Food Chem. 2013, 141, 2163–2169. [Google Scholar] [CrossRef]
- Peters, C.R. Ricinodendron Rautanenii (Euphorbiaceae): Zambezian Wild Food Plant for All Seasons. Econ. Bot. 1987, 41, 494–502. [Google Scholar] [CrossRef]
- Olaleye, M.T.; Adegboye, O.O.; Akindahunsi, A.A. Antioxidant and Antihypertensive Investigation of Seed Extract of Parinari Curatellifolia. In Medicinal Plants; Phytochemistry, Pharmacology and Therapeutics; Daya Publishing House: Delhi, India, 2010; Volume 1, pp. 363–377. [Google Scholar]
- Colla, G.; da Silva, M.A.; Pizzolatti, M.G.; Brighente, I.M.C. Phytochemical Study and Antioxidant Activity of Ochna serrulata; Sociedade Brasileira de Quimica: Sao Paulo, Brazil, 2010. [Google Scholar]
- Ndoile, M.M.; Van Heerden, F.R. Antimalarial Biflavonoids from the Roots of Ochna serrulata (Hochst.) Walp. Int. Res. J. Pure Appl. Chem. 2018, 16, 1–9. [Google Scholar] [CrossRef]
- Dyer, J.M.; Chapital, D.C.; Kuan, J.-C.W.; Mullen, R.T.; Turner, C.; McKeon, T.A.; Pepperman, A.B. Molecular Analysis of a Bifunctional Fatty Acid Conjugase/Desaturase from Tung. Implications for the Evolution of Plant Fatty Acid Diversity. Plant Physiol. 2002, 130, 2027–2038. [Google Scholar] [CrossRef] [Green Version]
- Mitei, Y.C.; Ngila, J.C.; Yeboah, S.O.; Wessjohann, L.; Schmidt, J. Profiling of Phytosterols, Tocopherols and Tocotrienols in Selected Seed Oils from Botswana by GC-MS and HPLC. JAOCS J. Am. Oil Chem. Soc. 2009, 86, 617–625. [Google Scholar] [CrossRef]
- Byrdwell, W.C. Comprehensive Dual Liquid Chromatography with Quadruple Mass Spectrometry (LC1MS2 × LC1MS2 = LC2MS4) for Analysis of Parinari Curatellifolia and Other Seed Oil Triacylglycerols. Anal. Chem. 2017, 89, 10537–10546. [Google Scholar] [CrossRef] [Green Version]
- Niyukuri, J.; Raiti, J.; Ntakarutimana, V.; Hafidi, A. Lipid Composition and Antioxidant Activities of Some Underused Wild Plants Seeds from Burundi. Food Sci. Nutr. 2021, 9, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Gwatidzo, L.; Botha, B.M.; McCrindle, R.I. Influence of Extraction Method on Yield, Physicochemical Properties and Tocopherol Content of Manketti (Schinziophyton rautanenii) Nut Oil. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 973–980. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Sabliov, C.M.; Fronczek, C.; Astete, C.E.; Khachaturyan, M.; Khachatryan, L.; Leonardi, C. Effects of Temperature and UV Light on Degradation of α-Tocopherol in Free and Dissolved Form. JAOCS J. Am. Oil Chem. Soc. 2009, 86, 895–902. [Google Scholar] [CrossRef]
- Valerio, P.P.; Frias, J.M.; Cren, E.C. Thermal Degradation Kinetics of Carotenoids: Acrocomia Aculeata Oil in the Context of Nutraceutical Food and Bioprocess Technology. J. Therm. Anal. Calorim. 2021, 143, 2983–2994. [Google Scholar] [CrossRef]
- Mock, H.-P. Tocopherol Composition of Plants and Their Regulation. In Encyclopedia of Vitamin E; Preedy, V., Watson, R., Eds.; CAB International: Oxon, UK, 2007; pp. 112–121. [Google Scholar]
- Harborne, J.B. Introduction to Ecological Biochemistry, 4th ed.; Academic Press: London, UK, 2014. [Google Scholar]
- Statheropoulos, M.; Spiliopoulou, C.; Agapiou, A. A Study of Volatile Organic Compounds Evolved from the Decaying Human Body. Forensic Sci. Int. 2005, 153, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Statheropoulos, M.; Agapiou, A.; Spiliopoulou, C.; Pallis, G.C.; Sianos, E. Environmental Aspects of VOCs Evolved in the Early Stages of Human Decomposition. Sci. Total Environ. 2007, 385, 221–227. [Google Scholar] [CrossRef]
- Van Eys, J.E.; Offner, A.; Bach, A. Manual of Quality Analyses for Soybean Products in the Feed Industry, 2nd ed.; American Soybean Association: St. Louis, MO, USA, 2004. [Google Scholar]
- European Food Safety Authority. Scientific Opinion on the Risks to Animal and Public Health and the Environment Related to the Presence of Nickel in Feed. EFSA J. 2015, 13, 4074–4149. [Google Scholar]
- Sparling, D.W.; Lowe, T.P. Environmental Hazards of Aluminum to Plants, Invertebrates, Fish, and Wildlife. Rev. Environ. Contam. Toxicol. 1996, 145, 1–127. [Google Scholar] [PubMed]
- Kobori, M.; Ohnishi-Kameyama, M.; Akimoto, Y.; Yukizaki, C.; Yoshida, M. α-Eleostearic Acid and Its Dihydroxy Derivative Are Major Apoptosis-Inducing Components of Bitter Gourd. J. Agric. Food Chem. 2008, 56, 10515–10520. [Google Scholar] [CrossRef] [PubMed]
- Marsili, R. Sensory-Directed Flavor Analysis, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007. [Google Scholar]
- Hlisnikovský, L.; Kunzová, E.; Hejcman, M.; Škarpa, P.; Zukalová, H.; Menšík, L. The Effect of Climate, Nitrogen and Micronutrients Application on Oiliness and Fatty Acid Composition of Sunflower Achenes. Helia 2015, 38, 221–239. [Google Scholar] [CrossRef]
- Kováts, E. Gas-Chromatographische Charakterisierung Organischer Verbindungen. Teil 1: Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde Und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Lachman, J.; Hejtmánková, A.; Hejtmánková, K.; Horníčková, T.; Pivec, V.; Skala, O.; Dědina, M.; Přibyl, J. Towards Complex Utilisation of Winemaking Residues: Characterisation of Grape Seeds by Total Phenols, Tocols and Essential Elements Content as a by-Product of Winemaking. Ind. Crop. Prod. 2013, 49, 445–453. [Google Scholar] [CrossRef]
- Lichtenthaler, H.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. In Handbook of Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M., Sporns, P., Eds.; Pigments, Colorants, Flavors, Texture, and Bioactive Food Components; Wiley-Interscience: Hoboken, NJ, USA, 2005; pp. 171–178. ISBN 978-0-471-66378-2. [Google Scholar]
- Kjeldahl, J. Neue Methode Zur Bestimmung Des Stickstoffs in Organischen Körpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Vaněk, A.; Komárek, M.; Chrastný, V.; Bečka, D.; Mihaljevič, M.; Šebek, O.; Panušková, G.; Schusterová, Z. Thallium Uptake by White Mustard (Sinapis Alba L.) Grown on Moderately Contaminated Soils-Agro-Environmental Implications. J. Hazard. Mater. 2010, 182, 303–308. [Google Scholar] [CrossRef]
Species | Voucher Specimen No. | Family | Vernacular Name (Lozi) | Oil-Bearing Part | Oil Use | Oil Yield (%) |
---|---|---|---|---|---|---|
Ochna serrulata Walp. | [JT002] | Ochnaceae | Munyelenyele | Seeds | Cooking, soap making | 35.41 ± 4.43 |
Parinari curatellifolia Planch. ex Benth. | [JT001] | Chryso- balanaceae | Mubula | Seeds | Cooking, paint and varnish preparation | 71.00 ± 0.00 |
Schinziophyton rautanenii (Schinz) Radcl.-Sm. | [JT003] | Euphorbiaceae | Mungongo1 | Seeds | Cooking, cosmetic products | 56.86 ± 0.59 |
Fatty Acid | Oil | |||||
---|---|---|---|---|---|---|
(%) | O. serrulata | P. curatellifolia 1 | S. rautanenii | |||
Traditional Preparation 2 | Soxhlet Extraction 3 | Soxhlet Extraction 3 | Traditional Preparation 2 | Soxhlet Extraction 3 | ||
myristic | C14:0 | 0.11 ± 0.0001 a | 0.10 ± 0.002 | 0.02 ± 0.001 | 0.03 ± 0.001 | ND |
pentadecaonic | C15:0 | 0.05 ± 0.0002 | ND | ND | ND | ND |
palmitic | C16:0 | 35.62 ± 0.05 a | 37.31 ± 0.12 | 6.33 ± 0.02 | 8.83 ± 0.04 a | 6.29 ± 0.06 |
palmitoleic | C16:1 (9c) | 0.14 ± 0.002 | 0.36 ± 0.004 | ND | 0.04 ± 0.0003 | ND |
heptadecanoic | C17:0 | 0.32 ± 0.001 | 0.30 ± 0.02 | ND | ND | ND |
heptadecenoic | C17:1 (10c) | 0.09 ± 0.001 | 0.09 ± 0.01 | ND | ND | ND |
stearic | C18:0 | 4.23 ± 0.07 a | 3.66 ± 0.08 | 5.28 ± 0.42 | 6.13 ± 0.01 a | 9.45 ± 1.96 |
elaidic | C18:1 (9t) | ND | ND | 0.03 ± 0.01 | ND | ND |
oleic | C18:1 (9c) | 46.80 ± 0.22 a | 37.31 ± 0.22 | 20.25 ± 0.09 | 15.26 ± 0.02 a | 24.07 ± 0.65 |
vaccenic | C18:1 (11c) | 0.79 ± 0.23 a | 1.21 ± 0.04 | 0.49 ± 0.01 | 0.46 ± 0.004 | 0.42 ± 0.01 |
linolelaidic | C18:2 (9t,12t) | ND | ND | ND | ND | 0.89 ± 0.05 |
linoleic | C18:2 (9c,12c) | 10.61 ± 0.02 a | 18.66 ± 0.28 | 9.78 ± 0.09 | 40.18 ± 0.1 a | 10.28 ± 0.28 |
α-eleostearic 4 | C18:3 (9c,11t,13t) | ND | ND | 55.96 ± 0.21 | 28.58 ± 0.15 a | 46.17 ± 1.48 |
γ-linolenic | C18:3 (6c,9c,12c) | 0.01 ± 0.005 | ND | ND | ND | ND |
α-linolenic | C18:3 (9c,12c,15c) | 0.34 ± 0.01 a | 0.40 ± 0.002 | ND | 0.04 ± 0.0003 | ND |
arachidic | C20:0 | 0.15 ± 0.002 | 0.16 ± 0.002 | 0.31 ± 0.01 | 0.16 ± 0.001 a | 0.41 ± 0.01 |
eicosaenoic | C20:1 (11c) | 0.27 ± 0.003 a | 0.23 ± 0.004 | 0.91 ± 0.04 | 0.30 ± 0.003 a | 0.78 ± 0.02 |
eicosadienoic | C20:2 (11c,14c) | ND | 0.01 ± 0.002 | ND | ND | ND |
eicosapentaenoic (EPA) | C20:5 (5c,8c,11c,14c,17c) | 0.04 ± 0.01 a | 0.07 ± 0.03 | ND | ND | ND |
behenic | C22:0 | ND | 0.03 ± 0.01 | 0.04 ± 0.002 | ND | ND |
tricosanoic | C23:0 | ND | ND | 0.11 ± 0.01 | ND | ND |
lignoceric | C24:0 | ND | 0.13 ± 0.1 | ND | ND | ND |
Sum of SFA (%) | 40.48 | 41.67 | 11.98 | 15.15 | 16.15 | |
Sum of MUFA (%) | 48.09 | 39.19 | 21.68 | 16.05 | 25.27 | |
Sum of PUFA (%) | 11.00 | 19.14 | 65.74 | 68.80 | 57.34 | |
MUFA:SFA ratio | 1.2 | 0.9 | 1.8 | 1.1 | 1.6 | |
PUFA:SFA ratio | 0.3 | 0.5 | 5.5 | 4.5 | 3.6 |
Compound | LOD | LOQ | Oil | ||||
---|---|---|---|---|---|---|---|
(μg/g) | (μg/g) | (μg/g) | O. serrulata | P. curatellifolia1 | S. rautanenii | ||
Traditional Preparation 2 | Soxhlet Extraction 3 | Soxhlet Extraction 3 | Traditional Preparation 2 | Soxhlet Extraction 3 | |||
α-tocopherol | 5.00 | 15.2 | 16.22 ± 4.81 a | 287.37 ± 16.63 | 36.37 ± 8.36 | 17.32 ± 0.84 a | 51.94 ± 12.90 |
β-tocopherol | 1.50 | 4.5 | 4.96 ± 1.56 | ˂LOQ | ˂LOD | ˂LOD | ˂LOD |
γ-tocopherol | 1.50 | 4.5 | 7.94 ± 1.20 a | 361.11 ± 19.30 | 6.61 ± 0.93 | 3236.18 ± 43.99 a | 162.95 ± 11.52 |
δ-tocopherol | 1.50 | 4.5 | 6.52 ± 1.83 | ˂LOQ | 6.31 ± 0.71 | 77.69 ± 0.88 | ˂LOD |
γ-tocotrienol | 1.20 | 3.6 | 15.60 ± 5.36 | ˂LOQ | ˂LOD | ˂LOD | ˂LOD |
Compound | Oil | |||||
---|---|---|---|---|---|---|
(μg/g) | Olive | O. serrulata | P. curatellifolia1 | S. rautanenii | ||
Traditional Preparation 2 | Soxhlet Extraction 3 | Soxhlet Extraction 3 | Traditional Preparation 2 | Soxhlet Extraction 3 | ||
Chlorophyll a | 7.02 ± 1.39 | 16.01 ± 1.42 a | 4.47 ± 0.83 | 1.24 ± 0.09 | ND | ND |
Chlorophyll b | 13.82 ± 2.86 | 7.91 ± 2.69 a | 3.95 ± 1.61 | 1.73 ± 0.13 | ND | ND |
Carotenoids | 0.84 ± 0.55 | 7.87 ± 0.04 a | 1.32 ± 0.03 | 0.69 ± 0.11 | ND | ND |
Sum of pigments | 21.69 ± 4.77 | 31.79 ± 4.07 | 9.74 ± 2.43 | 3.66 ± 0.28 | - | - |
Element | LOD | Plants | ||
---|---|---|---|---|
(mg/kg DW) | (mg/kg) | O. serrulata | P. curatellifolia | S. rautanenii |
Al | 96.51 | 134.01 ± 20.69 | ND | ND |
Ba | 16.84 | 31.54 ± 1.94 | 32.16 ± 0.17 | 36.25 ± 1.99 |
Ca | 19.71 | 2850 ± 6.5 | 2753 ± 54 | 3364 ± 8.6 a |
Cr | 1.86 | ND | ND | 2.53 ± 0.62 |
Cu | 14.93 | 23.03 ± 2.68 | 28.78 ± 0.82 | 32.46 ± 0.73 |
K | 233.53 | 9622 ± 119 a | 4714.25 ± 246 | 6243 ± 134 |
Mg | 7.16 | 1560 ± 2.6 a | 2808 ± 72.2 b | 4490 ± 97.5 c |
Mn | 0.37 | 25.56 ± 0.26 | 23.33 ± 1.85 | 37.76 ± 0.18 a |
N | - | 30181 ± 119 a | 93312 ± 133 b | 91298 ± 562 c |
Na | 64.59 | 232.75 ± 33.43 | 249.09 ± 38.2 | 284.93 ± 12.22 |
Ni | 1.00 | 5.89 ± 0.18 a | 1.95 ± 0.36 | 2.45 ± 0.43 |
P | 16.87 | 2724 ± 36 a | 4867. ± 138.4 b | 7140 ± 87.2 c |
S | 30.18 | 1890 ± 49.5 a | 3085 ± 139.5 | 2755 ± 17.5 |
Zn | 15.01 | 43.02 ± 1.01 | 42.56 ± 2.16 | 40.98 ± 2.26 |
Compound | RT 1 | Mean ± SD | Kováts Indices (KI) | Mode of Identification | Characteristic Odor 3 | |
---|---|---|---|---|---|---|
(min) | (%) | Calculated 2 | in Literature | |||
propanediol | 1.66 | 0.32 ± 0.01 | 691 | 732 | standard, NIST | odorless |
cyclohexane | 2.73 | 0.43 ± 0.04 | 720 | 667 | NIST, KI | sweet, gasoline-like; chloroform-like |
ethylbenzene | 7.97 | 3.23 ± 0.37 | 859 | 855 | NIST, KI | similar to that of gasoline |
m-xylene | 8.27 | 9.63 ± 0.03 | 867 | 866 | NIST, KI | sweet |
o-xylene | 9.14 | 7.97 ± 0.20 | 890 | 889 | NIST, KI | sweet |
α-phellandrene | 10.68 | 3.18 ± 0.09 | 931 | 1012 | standard, NIST | black pepper |
camphene | 11.12 | 0.55 ± 0.03 | 945 | 954 | standard, NIST | fresh herbal, woody 2 |
propylisovalerate | 11.41 | 0.26 ± 0.10 | 952 | 949 | NIST, KI | fruity |
myrcene | 12.86 | 2.47 ± 0.22 | 990 | 992 | standard, NIST | earthy, fruity, and clove-like; pungent in higher concentrations. |
p-cymene | 13.99 | 52.26 ± 0.22 | 1023 | 1023 | standard, NIST | sweet, soft, fresh, lemon, bergamot |
limonene | 14.09 | 7.23 ± 0.16 | 1027 | 1024 | standard, NIST | lemon-like |
γ-terpinene | 15.15 | 9.07 ± 0.08 | 1058 | 1062 | NIST, KI | terpentiny, sweet, citrus, with tropical and lime nuances |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankova, A.; Manourova, A.; Kotikova, Z.; Vejvodova, K.; Drabek, O.; Riljakova, B.; Famera, O.; Ngula, M.; Ndiyoi, M.; Polesny, Z.; et al. The Chemical Composition of Oils and Cakes of Ochna serrulata (Ochnaceae) and Other Underutilized Traditional Oil Trees from Western Zambia. Molecules 2021, 26, 5210. https://doi.org/10.3390/molecules26175210
Frankova A, Manourova A, Kotikova Z, Vejvodova K, Drabek O, Riljakova B, Famera O, Ngula M, Ndiyoi M, Polesny Z, et al. The Chemical Composition of Oils and Cakes of Ochna serrulata (Ochnaceae) and Other Underutilized Traditional Oil Trees from Western Zambia. Molecules. 2021; 26(17):5210. https://doi.org/10.3390/molecules26175210
Chicago/Turabian StyleFrankova, Adela, Anna Manourova, Zora Kotikova, Katerina Vejvodova, Ondrej Drabek, Bozena Riljakova, Oldrich Famera, Mbao Ngula, Mukelabai Ndiyoi, Zbynek Polesny, and et al. 2021. "The Chemical Composition of Oils and Cakes of Ochna serrulata (Ochnaceae) and Other Underutilized Traditional Oil Trees from Western Zambia" Molecules 26, no. 17: 5210. https://doi.org/10.3390/molecules26175210
APA StyleFrankova, A., Manourova, A., Kotikova, Z., Vejvodova, K., Drabek, O., Riljakova, B., Famera, O., Ngula, M., Ndiyoi, M., Polesny, Z., Verner, V., & Tauchen, J. (2021). The Chemical Composition of Oils and Cakes of Ochna serrulata (Ochnaceae) and Other Underutilized Traditional Oil Trees from Western Zambia. Molecules, 26(17), 5210. https://doi.org/10.3390/molecules26175210