Characterisation of Hyaluronic Acid Blends Modified by Poly(N-Vinylpyrrolidone)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fims Prepartion
2.3. Viscometric Technique
2.4. Steady Shear Rheological Studies
2.5. Mechanical Tests
2.6. Infrared Spectroscopy (ATR-FTIR)
3. Results and Discussion
3.1. Viscometric Studies
3.2. Steady Shear Rheological Studies
3.3. Mechanical Tests
3.4. Infrared Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ghannan, M.T.; Esmail, M.N. Rheological properties of carboxymethyl cellulose. J. Appl. Polym. Sci. 1997, 64, 289–301. [Google Scholar] [CrossRef]
- Cheng, Y.; Brown, K.M.; Prud’Humme, R.K. Characterization and intermolecular interactions of hydroxypropyl guar solutions. Biomacromolecules 2002, 3, 456–461. [Google Scholar] [CrossRef]
- Jukić, A.; Rogošić, M.; Bolarić, I.; Tomašek, L.; Janović, Z. Viscometric study of miscibility and interactions of some polyolefines and poly(alkyl methacrylates) in dilute xylene solutions. J. Mol. Liq. 2004, 112, 161–169. [Google Scholar] [CrossRef]
- Wang, S.; He, L.; Guo, J.; Zhao, J.; Tang, H. Intrinsic viscosity and rheological properties of natural and substituted guar gum in seawater. Int. J. Biol. Macromol. 2015, 76, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Brunchi, C.E.; Bercea, M.; Morariu, S.; Avadanei, M. Investigations on the interactions between xanthan gum and poly(vinyl alcohol) in solid state and aqueous solutions. Eur. Polym. J. 2016, 84, 161–172. [Google Scholar] [CrossRef]
- Yang, H.; Duan, L.; Li, Q.; Tian, Z.; Li, G. Experimental and modeling investigation on the rheological behavior of collagen solution as a function of acetic concentration. J. Mech. Behav. Biomed. Mater. 2018, 77, 125. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, D.; Zhu, G.; Guo, C. Rheological properties of two high polymers suspended in ab abrasive slurry jet. e-Polymers 2021, 21, 186. [Google Scholar] [CrossRef]
- Ma, J.; Lin, Y.; Chen, X.; Zhao, B.; Zhang, J. Flow behavior, thixotropy and dynamic viscoelasticity of sodium alginate aqueous solution. Food Hydrocoll. 2014, 38, 119. [Google Scholar] [CrossRef]
- Tian, Z.; Duan, L.; Wu, L.; Shen, L.; Li, G. Rheological properties of glutaraldehyde-crosslinked collagen solutions analyzed quantitatively using mechanical models. Mater. Sci. Eng. C 2016, 63, 10–17. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Kamal, M.S.; Al-Harthi, M.A. Rheological and filtration properties of clay-polymer systems: Impact of polymer structure. Appl. Clay Sci. 2018, 160, 226–237. [Google Scholar] [CrossRef]
- Jummaat, F.; Yahya, E.B.; Khalil, A.; Adnan, A.S.; Alqadhi, A.M.; Abdullah, C.K.; Atty Sofea, A.K.; Olaiya, N.G.; Abdat, M. The role of biopolymer-based materials in obstetrics and gynecology applications: A review. Polymers 2021, 13, 633. [Google Scholar] [CrossRef] [PubMed]
- Hinchliffe, J.D.; Madappura, A.P.; Mohamed, S.M.D.S.; Roy, I. Review: Biomedical applications of bacteria-derived polymers. Polymers 2021, 13, 1081. [Google Scholar] [CrossRef]
- Valachová, K.; Šoltěs, L. Versatile use of chitosan and hyaluronan in medicine. Molecules 2021, 26, 1195. [Google Scholar] [CrossRef] [PubMed]
- Croll, T.I.; O’Connor, A.J.; Stevens, G.W.; Cooper-White, J.J. A Blank Slate? Layer-by layer deposition of hyaluronic acid and chitosan onto various surface. Biomacromolecules 2006, 7, 1610–1622. [Google Scholar] [CrossRef]
- Lopes, T.D.; Riegel-Vidotti, L.C.; Grein, A.; Tischer, C.A.; de Sousa Faria-Tischer, P.C. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. Int. J. Biol. Macromol. 2014, 67, 401408. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.C.; Bersaneti, G.T.; Mali, S.; Colabone Celligoi, M.A.P. Films based on blends polyvinyl alcohol and microbial hyaluronic acid. Braz. Arch. Biol. Technolo. 2020, 63, 1–14. [Google Scholar] [CrossRef]
- Sionkowska, A.; Gadomska, M.; Musiał, K.; Piątek, J. Hyaluronic acid as a component of natural polymer blends for biomedical applications: A review. Molecules 2020, 25, 4035. [Google Scholar] [CrossRef]
- Chun-Gamboa, M.G.; Cámara Perer, C.M.; Aguilar Ayala, F.J.; Vargas-Coronado, R.F.; Cauich-Rodriguez, J.V.; Escobar-Garcia, D.M.; Sánchez- Vargas, L.O.; Pacheo, N.; San Román del Barrio, J. Antibacterial behavior of chitosan-sodium hyaluronate-PEGDE crosslinked films. Appl. Sci. 2021, 11, 1267. [Google Scholar] [CrossRef]
- Lim, J.L.; Kang, M.L.; Lee, W.K. Lotus-leaf-like structured chitosan-polyvinyl pyrrolidone films as an anti-adhesion barrier. Appl. Surf. Sci. 2014, 320, 614–619. [Google Scholar] [CrossRef]
- Hasan, A.; Waibhaw, G.; Tiwari, S.; Dharmalingam, K.; Shukla, I.; Pandey, L.M. Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery applications. J. Biomed. Mater. Res. Part A 2017, 105A, 2391–2404. [Google Scholar] [CrossRef] [PubMed]
- Teodorescu, M.; Bercea, M.; Morariu, S. Biomaterials of PVA and PVP in medical and pharmaceutical applications. Perspective and challenges. Biotechnol. Adv. 2019, 37, 109–131. [Google Scholar] [CrossRef]
- Lobo, B.; Veena, L. Experimental investigations on nano-titania incorporated polyvinyl alcohol-polyvinyl pyrrolidone composite films. Polym.-Plast. Technol. Mater. 2021, 60, 1–21. [Google Scholar]
- Kumar, R.; Mishara, I.; Kumar, G. Synthesis and evaluation of mechanical property of chitosan/PVP blend through nanoindentation-a nanoscale study. J. Polym. Environ. 2021. [CrossRef]
- D’Souza, A.J.M.; Schowen, R.L.; Topp, E.M. Polyvinylpyrrolidone-drug conjugate: Synthesis and release mechanism. J. Control. Release 2004, 94, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Rimmer, S.; MacNeil, S. Examination of the effect of poly(N-vinylpyrrolidone) hydrogel in direct and indirect contact with cells. Biomaterials 2006, 27, 2806–2812. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, K. The miscibility of poly(vinyl alcohol)/poly(N-vinylpyrrolidone) blends investigated in dilute solutions and solids. Eur. Polym. J. 2005, 41, 55–64. [Google Scholar] [CrossRef]
- Garcia-Abuin, A.; Gomez-Diaz, D.; Navaza, J.M.; Regueiro, L.; Vidal-Tato, I. Viscosimetric behaviour of hyaluronic acid in different aqueous solutions. Carbohydr. Polym. 2011, 85, 500–505. [Google Scholar] [CrossRef]
- Cerny, L.C.; Helminiak, T.E.; Meier, J.F. Osmotic pressures of aqueous polyvinylpyrrolidone solutios. J. Polym. Sci. 1960, 44, 539–545. [Google Scholar] [CrossRef]
- Lewandowska, K. Miscibility studies of hyaluronic acid and poly(vinyl alcohol) blends in various solvents. Materials 2020, 13, 4750. [Google Scholar] [CrossRef]
- Polish Norm PN-81/C-89034 (ISO 527-1 and 527-2). International Standard: Plastic—Determination of Tensile Properties, 2nd ed. 2012. Available online: https://www.iso.org/standard/56045.html (accessed on 26 August 2021).
- Garcia, R.; Melad, O.; Gómez, C.M.; Figueruelo, J.E.; Campos, A. Viscometric study on the compatibility of polymer-polymer mixtures in solution. Eur. Polym. J. 1999, 35, 47–55. [Google Scholar] [CrossRef]
- Dondos, A.; Christopoulou, V.; Papanagopoulos, D. The influence of the molecular mass of two incompatible polymers on their miscibility in the solid state without compatibilizer after casting from solution. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 379–387. [Google Scholar] [CrossRef]
- Pingping, Z.; Haiyang, Y.; Shiqiang, W. Viscosity behavior of poly-ε-caprolactone (PCL)/poly(vinyl chloride) (PVC) blends in various solvents. Eur. J. Polym. 1998, 34, 91–94. [Google Scholar] [CrossRef]
- Haxaire, K.; Marėchal, Y.; Milas, M.; Rinaudo, M. Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and band assignments. Biopolymers 2003, 72, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhang, F.; Wei, Y.; Zhang, H. Freeze-thaw-induced gelation of hyaluronan: Physical cryostructuration correlated with intermolecular associations and molecular conformation. Macromolecules 2017, 50, 6647–6658. [Google Scholar] [CrossRef]
- Lewandowska, K. Miscibility and interactions in chitosan acetate/poly(N-vinylpyrrolidone) blends. Thermochim. Acta 2011, 517, 90–97. [Google Scholar]
- Lee, E.J.; Kang, E.S.; Kang, W.; Huh, K.M. Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering. Carbohydr. Polym. 2020, 244, 116432. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Li, D.; Ren, K.; Ji, J. Chitosan/poly(vinyl pyrollidone) coatings improve the antibacterial properties of poly(ethylene terephthalate). Appl. Surf. Sci. 2012, 258, 7801–7808. [Google Scholar] [CrossRef]
wHA | 25 °C | 35 °C | ||||
---|---|---|---|---|---|---|
n | k (Pas)n | R2 | n | k (Pas)n | R2 | |
HA I/PVP | ||||||
1.0 | 0.47 | 7.78 | 0.993 | 0.44 | 9.99 | 0.993 |
0.8 | 0.44 | 8.53 | 0.994 | 0.50 | 5.34 | 0.994 |
0.5 | 0.56 | 2.04 | 0.997 | 0.62 | 1.21 | 0.996 |
0.2 | 0.72 | 3.18 | 0.999 | 0.77 | 0.19 | 0.998 |
0.0 | 1.21 | 5.6 × 10−3 | 0.999 | 1.30 | 2.0 × 10−3 | 0.998 |
HA II/PVP | ||||||
1.0 | 0.16 | 101.4 | 0.965 | 0.17 | 90.1 | 0.975 |
0.8 | 0.20 | 55.2 | 0.995 | 0.22 | 45.3 | 0.994 |
0.5 | 0.31 | 14.8 | 1.00 | 0.33 | 11.5 | 0.999 |
0.2 | 0.50 | 1.54 | 1.00 | 0.52 | 1.15 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowska, K.; Szulc, M. Characterisation of Hyaluronic Acid Blends Modified by Poly(N-Vinylpyrrolidone). Molecules 2021, 26, 5233. https://doi.org/10.3390/molecules26175233
Lewandowska K, Szulc M. Characterisation of Hyaluronic Acid Blends Modified by Poly(N-Vinylpyrrolidone). Molecules. 2021; 26(17):5233. https://doi.org/10.3390/molecules26175233
Chicago/Turabian StyleLewandowska, Katarzyna, and Marta Szulc. 2021. "Characterisation of Hyaluronic Acid Blends Modified by Poly(N-Vinylpyrrolidone)" Molecules 26, no. 17: 5233. https://doi.org/10.3390/molecules26175233
APA StyleLewandowska, K., & Szulc, M. (2021). Characterisation of Hyaluronic Acid Blends Modified by Poly(N-Vinylpyrrolidone). Molecules, 26(17), 5233. https://doi.org/10.3390/molecules26175233