Crystalline Forms of Trazodone Dihydrates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure of β-trazodone Dihydrate
2.2. Structure of γ-trazodone Dihydrate
2.3. Comparison of the Three Polymorphs
2.4. Hirshfeld Surfaces
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Airaksinen, S.; Karjalainen, M.; Shevchenko, A.; Westermarck, S.; Leppanen, E.; Rantanen, J.; Yliruusi, J. Role of water in the physical stability of solid dosage formulations. J. Pharm. Sci. 2005, 94, 2147–2165. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Larson, I.; Young, P.; Stewart, P. Agglomerate properties and dispersibility changes of salmeterol xinafoate from powders for inhalation after storage at high relative humidity. Eur. J. Pharm. Sci. 2009, 37, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Kaushal, A.M.; Bansal, A.K. Compression physics in the formulation development of tablets. Crit. Rev. Ther. Drug Carr. Syst. 2006, 23, 1–65. [Google Scholar] [CrossRef]
- Lam, M.; Nokhodchi, A. Factors affecting performance and manufacturability of naproxen liqui-pellet. Pharm. Technol. 2020, 28, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Grant, D.J.W. Improved tableting properties of p-hydroxybenzoic acid by water of crystallisation: A molecular insight. Pharm. Res. 2004, 21, 382–386. [Google Scholar] [CrossRef]
- Chen, X.; Griesser, U.J.; Te, R.L.; Pfeiffer, R.R.; Morris, K.R.; Stowell, J.G.; Bryn, S.R. Analysis of the acid-base reaction between solid indomethacin and sodium bicarbonate using infrared spectroscopy, X-ray powder diffraction, and solid-state nuclear magnetic resonance spectroscopy. J. Pharm. Biomed. Anal. 2005, 38, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wei, B.; Fleres, S.; Comfort, A.; Royce, A. Correlation and prediction of moisture-mediated dissolution stability for benazepril hydrochloride tablets. Pharm. Res. 2004, 21, 617–624. [Google Scholar] [CrossRef]
- Rohrs, B.R.; Thamann, T.J.; Gao, P.; Stelzer, D.J.; Bergren, M.S.; Chao, R.S. Tablet dissolution affected by a moisture mediated solid-state interaction between drug and disintegrant. Pharm. Res. 1999, 16, 1850–1856. [Google Scholar] [CrossRef]
- Bauer, J.F.; Dziki, W.; Quick, J.E. Role of an isomorphic desolvate in dissolution failures of an erythromycin tablet formulation. J. Pharm. Sci. 1999, 88, 1222–1227. [Google Scholar] [CrossRef]
- Shefter, E.; Higuchi, T. Dissolution behaviour of crystalline solvated and nonsolvated forms of some pharmaceuticals. J. Pharm. Sci. 1963, 52, 781–791. [Google Scholar] [CrossRef]
- Newman, A.W.; Reutzel-Edens, S.M.; Zografi, G. Characterisation of the “hygroscopic” properties of active pharmaceutical ingredients. J. Pharm. Sci. 2008, 97, 1047–1059. [Google Scholar] [CrossRef]
- Zemtsova, V.M.; Fedorov, A.Y.; Fedorova, E.A.; Boa, C.; Arkhipov, S.G.; Rychkoz, D.A.; Minkov, V.S.; Pulham, C.R.; Boldyreva, E.V. A novel crystal form of metacetamol: The first example of a hydrated form. Acta Cryst. 2019, C75, 1465–1470. [Google Scholar] [CrossRef]
- McGregor, L.; Rychkov, D.A.; Coster, P.L.; Day, S.; Drebushchak, V.A.; Achkasov, A.F.; Nichol, G.S.; Pulham, C.R.; Boldyreva, E.L. A new polymorph of metacetamol. CrystEngComm 2015, 17, 6183–6192. [Google Scholar] [CrossRef] [Green Version]
- Reutzel-Edens, S.M.; Braun, D.E.; Newman, A.W. Polymorphism in the Pharmaceutical Industry; Hilfiker, R., von Raumer, M., Eds.; Wiley-VCH, Verlag GmbH & Co.: Weinheim, Germany, 2019; pp. 159–184. [Google Scholar]
- Morris, K.R.; Rodriguez-Hornedo, N. Hydrates. In Encyclo Pharm Technol; Swarbrick, J., Boylan, J., Eds.; Marcel Dekker: New York, NY, USA, 1992; Volume 6, pp. 393–440. [Google Scholar]
- Khankari, R.K.; Grant, D.J.W. Pharmaceutical hydrates. Thermochim. Acta 1995, 248, 61–79. [Google Scholar] [CrossRef]
- Reutzel, S.M.; Russell, V.A. Origins of the unusual hygroscopicity observed in LY297802 tartrate. J. Pharm. Sci. 1998, 87, 1568–1571. [Google Scholar] [CrossRef] [PubMed]
- Giron, D.; Goldbronn, C.; Mutz, M.; Pfeffer, S.; Piechon, P.; Schwab, P. Solid state characterisations of pharmaceutical hydrates. J. Therm. Anal. Calorim. 2002, 68, 453–465. [Google Scholar] [CrossRef]
- Al-Yassiri, M.M.; Ankier, S.I.; Bridges, P.K. Trazodone—A new antidepressant. Life Sci. 1981, 28, 2449–2458. [Google Scholar] [CrossRef]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Levcht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Fillers, J.P.; Hawkinson, S.W. The structure of 2-{3-[4-(m-chlorophenyl)-1-piperazinyl]propyl}-s-triazolo[4,3-a]pyridin-3(2H)-one hydrochloride, trazodone hydrochloride. Acta Cryst. 1979, B35, 498–500. [Google Scholar] [CrossRef]
- Plater, M.J.; Harrison, W.T.A. The complexation of 2,4-dinitrophenol with basic drugs: Acid + base = salt. J. Chem. Res. 2019, 43, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Babor, M.; Nievergelt, P.P.; Čejka, J.; Zvoníček, V.; Spingler, B. Microbatch under-oil salt screening of organic cations: Single-crystal growth of active pharmaceutical ingredients. IUCrJ 2019, 6, 145–151. [Google Scholar] [CrossRef]
- Nievergelt, P.P.; Babor, M.; Čejka, J.; Spingler, B. A high throughput screening method for the nano-crystallisation of salts of organic cations. Chem. Sci. 2018, 9, 3716–3722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, R.E.; Schomaker, V.; Herbstein, H.B. Arrays with local centers of symmetry in space groups Pca21 and Pna21. Acta Cryst. 1998, B54, 921–924. [Google Scholar] [CrossRef]
- Spek, A.L. checkCIF validation ALERTS: What they mean and how to respond. Acta Cryst. 2020, E76, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gans, J.D.; Shalloway, D.J. Compositional symmetries in complete genomes. Mol. Graph. Model. 2001, 19, 557–559. [Google Scholar] [CrossRef]
- Cruz-Cabeza, A.J.; Bernstein, J. Conformational polymorphism. Chem. Rev. 2014, 114, 2170–2191. [Google Scholar] [CrossRef]
- Cruz-Cabeza, A.J.; Reutzel-Edens, S.M.; Bernstein, J. Facts and fictions about polymorphism. Chem. Soc. Rev. 2015, 44, 8619–8635. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 17; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Tan, S.L.; Jotani, M.M.; Tiekink, E.R.T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Cryst. 2019, E75, 308–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Qu, H.; Alatalo, H.; Hatakka, H.; Kohonen, J.; Louhi-Kultanen, M.; Reinikainen, S.P.; Kallas, J. Raman and ATR FTIR spectroscopy in reactive crystallization: Simultaneous monitoring of solute concentration and polymorphic state of the crystals. J. Cryst. Growth 2009, 311, 3466–3475. [Google Scholar] [CrossRef]
- Teychene, S.; Biscans, B. Nucleation kinetics of polymorphs: Induction period and interfacial energy measurements. Cryst. Growth Des. 2008, 8, 1133–1139. [Google Scholar] [CrossRef]
- Shiao, L.-D. Modelling of the polymorph nucleation based on classical nucleation theory. Crystals 2019, 9, 69. [Google Scholar] [CrossRef] [Green Version]
Polymorph | ε1 | ε2 | ε3 | ε4 | ε5 |
---|---|---|---|---|---|
α * | −103.45 (19) | 56.5 (2) | 159.10 (14) | 67.89 (19) | 32.0 (2) |
β | −100.92 (15) | 175.98 (11) | −56.11 (16) | −59.16 (14) | −39.09 (17) |
γ-C1 molecule | −89.7 (3) | 175.8 (2) | −176.6 (2) | −73.1 (3) | 45.3 (3) |
γ-C20 molecule | −89.1 (3) | 175.2 (2) | −177.0 (2) | −73.3 (3) | 44.4 (3) |
Contact Type | β | γ-C1 Molecule | γ-C20 Molecule |
---|---|---|---|
H...H | 48.7 | 52.0 | 52.0 |
H...C | 7.0 | 3.6 | 3.7 |
H...N | 2.5 | 3.1 | 3.2 |
H...O | 4.5 | 4.3 | 4.0 |
H...Cl | 5.3 | 4.9 | 5.2 |
N...H | 3.9 | 4.3 | 4.3 |
O...H | 4.2 | 4.4 | 4.3 |
C...H | 9.4 | 5.2 | 5.2 |
Cl...H | 7.5 | 7.5 | 7.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plater, M.J.; Harrison, W.T.A. Crystalline Forms of Trazodone Dihydrates. Molecules 2021, 26, 5361. https://doi.org/10.3390/molecules26175361
Plater MJ, Harrison WTA. Crystalline Forms of Trazodone Dihydrates. Molecules. 2021; 26(17):5361. https://doi.org/10.3390/molecules26175361
Chicago/Turabian StylePlater, M. John, and William T. A. Harrison. 2021. "Crystalline Forms of Trazodone Dihydrates" Molecules 26, no. 17: 5361. https://doi.org/10.3390/molecules26175361
APA StylePlater, M. J., & Harrison, W. T. A. (2021). Crystalline Forms of Trazodone Dihydrates. Molecules, 26(17), 5361. https://doi.org/10.3390/molecules26175361