Simultaneous Hydrodistillation-Steam Distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, Major Terpenes: Impact on Biological Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yields and Chemical Composition of Essential Oils Extracted by a Hydrodistillation and a Simultaneous Hydrodistillation–Steam Distillation
2.2. Antioxidant Activity
2.2.1. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Free Radical-Scavenging Activity
2.2.2. Hydrogen Peroxide (H2O2) Scavenging Activity
2.2.3. Nitric Oxide Free Radical Scavenging Activity
2.2.4. Superoxide Anion Radical Scavenging Activity
2.3. Enzymatic Activity
2.3.1. Anti-Glucosidase Activity
2.3.2. Anti-Acetylcholinesterase Activity
2.3.3. Anti-Lipoxygenase Activity
2.3.4. Anti-Tyrosinase Activity
2.4. Antibacterial Activity
2.5. Antibiofilm Activity
3. Materials and Methods
3.1. Plant Material
3.2. Hydrodistillation and Simultaneous Hydrodistillation–Steam Distillation
3.3. Chemical Composition of the Essential Dils:GC-FID/MS Analysis
3.4. Antioxidant Activity
3.4.1. 2,2-Diphenyl-1-Picrylhydrazyl Free Radical-Scavenging
3.4.2. Hydrogen Peroxide Free Radical Scavenging
3.4.3. Nitric Oxide Free Radical-Scavenging Activity
3.4.4. Superoxide Anion Free Radical Scavenging
3.5. Enzymatic Activity
3.5.1. α-Glucosidase Inhibition Activity Assay
3.5.2. Acetylcholinesterase Inhibition Activity Assay
3.5.3. Lipoxygenase Inhibition Activity Assay
3.5.4. Tyrosinase Inhibition Activity Assay
3.6. Antimicrobial Activity
3.6.1. Microorganisms
3.6.2. Agar Disc Diffusion Method
3.6.3. Determination of the Minimum Inhibitory Concentration
3.6.4. Biofilm Formation Inhibition
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Soe, P.E.; Han, W.W.; Sagili, K.D.; Satyanarayana, S.; Shrestha, P.; Htoon, T.T.; Tin, H.H. High prevalence of methicillin-resistant staphylococcus aureus among healthcare facilities and its related factors in myanmar (2018–2019). Trop. Med. Infect. Dis. 2021, 6, 70. [Google Scholar] [CrossRef]
- Liu, H.; Lu, L.; Pan, Y.; Sun, X.; Hwang, C.A.; Zhao, Y.; Wu, V.C.H. Rapid detection and differentiation of Listeria monocytogenes and Listeria species in deli meats by a new multiplex PCR method. Food Control 2015, 52, 78–84. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, C.H.; Aljuffali, I.A.; Fang, J.Y. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 2017, 199, 811–825. [Google Scholar] [CrossRef]
- Sergelidis, D.; Angelidis, A.S. Methicillin-resistant Staphylococcus aureus: A controversial food-borne pathogen. Lett. Appl. Microbiol. 2017, 64, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Doulgeraki, A.I.; Di Ciccio, P.; Ianieri, A.; Nychas, G.J.E. Methicillin-resistant food-related Staphylococcus aureus: A review of current knowledge and biofilm formation for future studies and applications. Res. Microbiol. 2017, 168, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Baveye, P.; Neu, T.R.; Stoodley, P.; Szewzyk, U.; Wingender, J.; Wuertz, S. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond. npj Biofilms Microbiomes 2021, 7, 1–5. [Google Scholar] [CrossRef]
- Moormeier, D.E.; Bayles, K.W. Staphylococcus aureus biofilm: A complex developmental organism. Mol. Microbiol. 2017, 104, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [Green Version]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid.-Based Complement. Altern. Med. 2016, 2016. [Google Scholar] [CrossRef]
- Graßmann, J. Terpenoids as Plant antioxidants. Vitam. Horm. 2005, 72, 505–535. [Google Scholar] [CrossRef]
- Perez, A.P.; Perez, N.; Lozano, C.M.S.; Altube, M.J.; de Farias, M.A.; Portugal, R.V.; Buzzola, F.; Morilla, M.J.; Romero, E.L. The anti MRSA biofilm activity of Thymus vulgaris essential oil in nanovesicles. Phytomedicine 2019, 57, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef]
- González-Minero, F.J.; Bravo-Díaz, L.; Ayala-Gómez, A. Rosmarinus offcinalis L. (Rosemary): An ancient plant with uses in personal healthcare and cosmetics. Cosmetics 2020, 7, 77. [Google Scholar] [CrossRef]
- Napoli, E.; Siracusa, L.; Ruberto, G. New Tricks for Old Guys: Recent developments in the chemistry, biochemistry, applications and exploitation of selected species from the Lamiaceae family. Chem. Biodivers. 2020, 17, e1900677. [Google Scholar] [CrossRef] [PubMed]
- Fugh-Berman, A.; Myers, A. Citrus aurantium, an ingredient of dietary supplements marketed for weight loss: Current status of clinical and basic research. Exp. Biol. Med. 2004, 229, 698–704. [Google Scholar] [CrossRef]
- Wei, A.; Shibamoto, T. Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J. Agric. Food Chem. 2010, 58, 7218–7225. [Google Scholar] [CrossRef]
- Ramadan, W.; Mourad, B.; Ibrahim, S.; Sonbol, F. Oil of bitter orange: New topical antifungal agent. Int. J. Dermatol. 1996, 35, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Hu, Y.; Zhang, W.; Zhao, X.; Chen, Y.; Sun, C.; Li, X.; Chen, K. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-Ay mice. Food Funct. 2015, 6, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Park, K.I.; Park, H.S.; Kim, M.K.; Hong, G.E.; Nagappan, A.; Lee, H.J.; Yumnam, S.; Lee, W.S.; Won, C.K.; Shin, S.C.; et al. Flavonoids identified from Korean Citrus aurantium L. inhibit Non-Small Cell Lung Cancer growth in vivo and in vitro. J. Funct. Foods 2014, 7, 287–297. [Google Scholar] [CrossRef] [Green Version]
- De Moraes Pultrini, A.; Almeida Galindo, L.; Costa, M. Effects of the essential oil from Citrus aurantium L. in experimental anxiety models in mice. Life Sci. 2006, 78, 1720–1725. [Google Scholar] [CrossRef]
- Moraes, T.M.; Kushima, H.; Moleiro, F.C.; Santos, R.C.; Machado Rocha, L.R.; Marques, M.O.; Vilegas, W.; Hiruma-Lima, C.A. Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: Role of prostaglandins and gastric mucus secretion. Chem. Biol. Interact. 2009, 180, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Azadi, B.; Nickavar, B.; Amin, G. Volatile constituents of the peel and leaf of Citrus aurantium L. cultivated in the north of Iran. J. Pharm. Heal. Sci. 2012, 1, 37–41. [Google Scholar]
- El Kharraf, S.; Farah, A.; Miguel, M.G.; El-Guendouz, S.; El Hadrami, E.M. Two extraction methods of essential oils: Conventional and non-conventional hydrodistillation. J. Essent. Oil-Bear. Plants 2020, 23, 870–889. [Google Scholar] [CrossRef]
- Mehalaine, S.; Chenchouni, H. Effect of climatic factors on essential oil accumulation in two Lamiaceae species from Algerian semiarid lands. In Exploring the Nexus of Geoecology, Geoarcheology and Geotourism: Advances and Applications for Sustainable Development in Environmental Sciences and Agroforestry Research; Chenchouni, H., Errami, E., Rocha, F., Sabato, L., Eds.; Conference of the Arabian Journal of Geosciences (CAJG 2018). Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development); Springer: Cham, Switzerland, 2019; pp. 57–60. ISBN 9783030016838. [Google Scholar] [CrossRef]
- Council of Europe; European Pharmacopoeia Commission; European Directorate for the Quality of Medicines and Healthcare European Pharmacopoeia. European Pharmacopoeia, 7th ed.; Council of Europe, European Directorate for the Quality of Medicines and Healthcare: Strasbourg, France, 2010. [Google Scholar]
- Messaoudi Moussii, I.; Nayme, K.; Timinouni, M.; Jamaleddine, J.; Filali, H.; Hakkou, F. Synergistic antibacterial effects of Moroccan Artemisia herba alba, Lavandula angustifolia and Rosmarinus officinalis essential oils. Synergy 2020, 10, 100057. [Google Scholar] [CrossRef]
- Özcan, M.M.; Starovic, M.; Aleksic, G.; Figueredo, G.; Al Juhaimi, F.; Chalchat, J.C. Chemical composition and antifungal activity of lavender (Lavandula stoechas) oil. Nat. Prod. Commun. 2018, 13, 895–898. [Google Scholar] [CrossRef] [Green Version]
- El Kharraf, S.; El-Guendouz, S.; Farah, A.; Bennani, B.; Mateus, M.d.C.; El Hadrami, E.M.; Miguel, M.G. Hydrodistillation and simultaneous hydrodistillation-steam distillation of Rosmarinus officinalis and Origanum compactum: Antioxidant,anti-inflammatory, and antibacterial effect of the essential oils. Ind. Crop. Prod. 2021, 168, 113591. [Google Scholar] [CrossRef]
- Bellik, Y.; Benabdesselam, F.; Ayad, A.; Dahmani, Z.; Boukraa, L.; Nemmar, A.; Iguer-Ouada, M. Antioxidant activity of the essential oil and oleoresin of Zingiber officinale Roscoe as affected by chemical environment. Int. J. Food Prop. 2013, 16, 1304–1313. [Google Scholar] [CrossRef] [Green Version]
- Peana, A.; Marzocco, S.; Popolo, A.; Pinto, A. (-)-Linalol inhibits in vitro NO formation: Probable involvement in the anti-nociceptive activity of this monoterpene compound. Life Sci. 2006, 78, 719–723. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant activity of some Morrocan hydrosols. J. Med. Plant. Res 2011, 5, 6688–6696. [Google Scholar]
- Parejo, I.; Viladomat, F.; Bastida, J.; Rosas-Romero, A.; Flerlage, N.; Burillo, J.S.; Codina, C. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled Mediterranean herbs and aromatic plants. J. Agric. Food Chem. 2002, 50, 6882–6890. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, L.; Yang, L.; Qiu, J. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata. Excli J. 2013, 12, 479–490. [Google Scholar]
- Gunaseelan, S.; Balupillai, A.; Govindasamy, K.; Ramasamy, K.; Muthusamy, G.; Shanmugam, M.; Thangaiyan, R.; Robert, B.M.; Prasad Nagarajan, R.; Ponniresan, V.K.; et al. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLoS ONE 2017, 12, e0176699. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.Y.; Lin, C.C.; Wang, H.Y.; Shih, Y.; Chou, S.T. The melanogenesis alteration effects of Achillea millefolium L. essential oil and linalyl acetate: Involvement of oxidative stress and the JNK and ERK signaling pathways in melanoma cells. PLoS ONE 2014, 9, e95186. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Aazza, S.; Lyoussi, B.; Antunes, M.D.; Faleiro, M.L.; Miguel, M. Anti-acetylcholinesterase, antidiabetic, anti-inflammatory, antityrosinase and antixanthine oxidase activities of Moroccan propolis. Int. J. Food Sci. Technol. 2016, 51, 1762–1773. [Google Scholar] [CrossRef] [Green Version]
- Ahamad, J.; Uthirapathy, S.; Mohammed Ameen, M.S.; Anwer, E.T. Essential oil composition and antidiabetic, anticancer activity of Rosmarinus officinalis L. leaves from Erbil (Iraq). J. Essent. Oil-Bear. Plants 2019, 22, 1544–1553. [Google Scholar] [CrossRef]
- Dhasthakeer, A.G.B.; Kavitha, S.; Vishnupriya, V.; Gayathri, R. Evaluation of in vitro antidiabetic potential of lavender oil. Drug Discov. 2020, 14, 1117–1119. [Google Scholar]
- Dang, N.H.; Nhung, P.H.; Mai Anh, B.T.; Thu Thuy, D.T.; Minh, C.V.; Dat, N.T. Chemical composition and α-glucosidase inhibitory activity of Vietnamese citrus peels essential oils. J. Chem. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Movahhedin, N.; Zengin, G.; Bahadori, M.B.; Sarikurkcu, C.; Bahadori, S.; Dinparast, L. Ajuga chamaecistus subsp. scoparia (Boiss.) Rech. f.: A new source of phytochemicals for antidiabetic, skincare, and neuroprotective uses. Ind. Crop. Prod. 2016, 94, 89–96. [Google Scholar] [CrossRef]
- Orhan, I.; Aslan, S.; Kartal, M.; Şener, B.; Can Başer, K. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem. 2008, 108, 663–668. [Google Scholar] [CrossRef]
- Cutillas, A.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Rosmarinus officinalis L. essential oils from Spain: Composition, antioxidant capacity, lipoxygenase and acetylcholinesterase inhibitory capacities, and antimicrobial activities. Plant. Biosyst. 2018, 152, 1282–1292. [Google Scholar] [CrossRef]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.; Araujo, M.E. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef]
- Dohi, S.; Terasaki, M.; Makino, M. Acetylcholinesterase inhibitory activity and chemical composition of commercial essential oils. J. Agri. Food Chem 2009, 57, 4313–4318. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.; Tundis, R.; Bonesi, M.; Menichini, F.; de Luca, D.; Colica, C.; Menichini, F. Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities. J. Sci. Food Agric. 2012, 92, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Frum, Y.; Viljoen, A. In vitro 5-lipoxygenase activity of three indigenous South African aromatic plants used in traditional healing and the stereospecific activity of limonene in the 5-lipoxygenase. J. Essent. Oil Res. 2006, 18, 831–839. [Google Scholar] [CrossRef]
- El-Massry, K.F.; Farouk, A.; Abou-Zeid, M. Free radical scavenging activity and lipoxygenase inhibition of rosemary (Rosmarinus officinalis L.) volatile oil. J. Essent. Oil-Bear. Plants 2008, 11, 536–543. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Megíasc, C.; Cortés-Giraldoc, I.; Vioquec, J.; Figueiredod, A.C.; Miguel, M. Anti-oxidant, anti-inflammatory and Anti-proliferative activities of Moroccan commercial essential oils. Nat. Prod. Commun. 2014, 9, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco, A.; Ortiz-Ruiz, V.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Lavandula stoechas essential oil from Spain: Aromatic profile determined by gas chromatography–mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities. Ind. Crop. Prod. 2015, 73, 16–27. [Google Scholar] [CrossRef]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, M.F. Kinetic studies of tyrosinase inhibitory activity of 19 essential oils extracted from endemic and exotic medicinal plants. S. Afr. J. Bot. 2016, 103, 89–94. [Google Scholar] [CrossRef]
- Satyal, P.; Jones, T.H.; Lopez, E.; McFeeters, R.; Ali, N.A.; Mansi, I.; Al-Kaf, A.; Setzer, W. Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Fiocco, D.; Fiorentino, D.; Frabboni, L.; Benvenuti, S.; Orlandini, G.; Pellati, F.; Gallone, A. Lavender and peppermint essential oils as effective mushroom tyrosinase inhibitors: A basic study. Flavour Fragr. J. 2011, 26, 441–446. [Google Scholar] [CrossRef]
- Robu, S.; Aprotosoaie, A.C.; Spac, A.; Cioancă, O.; Hăncianu, M.; Stănescu, U. Studies regarding chemical composition of lavender volatile oils. Rev. Med. Chir. Soc. Med. Nat. Iasi 2011, 115, 584–589. [Google Scholar]
- Fiocco, D.; Arciuli, M.; Arena, M.; Benvenuti, S.; Gallone, A. Chemical composition and the anti-melanogenic potential of different essential oils. Flavour Fragr. J. 2016, 31, 255–261. [Google Scholar] [CrossRef]
- Matsuura, R.; Ukeda, H.; Sawamura, M. Tyrosinase inhibitory activity of Citrus essential oils. J. Agric. Food Chem 2006, 54, 2309–2313. [Google Scholar] [CrossRef]
- Faleiro, M.L.; Miguel, M.G.; Ladeiro, F.; Venâncio, F.; Tavares, R.; Brito, J.C.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Lett. Appl. Microbiol. 2003, 36, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatkowski, P.; Pruss, A.; Wojciuk, B.; Egowska, B.D.; Wajs-Bonikowska, A.; Sienkiewicz, M.; Mezynska, M.; Łopusiewicz, Ł. The influence of essential oil compounds on antibacterial activity of mupirocin-susceptible and induced low-level mupirocin-resistant MRSA strains. Molecules 2019, 24, 3105. [Google Scholar] [CrossRef] [Green Version]
- Simsek, M.; Duman, R. Investigation of effect of 1,8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacognosy Res. 2017, 9, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Merghni, A.; Noumi, E.; Hadded, O.; Dridi, N.; Panwar, H.; Ceylan, O.; Mastouri, M.; Snoussi, M. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb. Pathog. 2018, 118, 74–80. [Google Scholar] [CrossRef]
- Gao, Z.; Van Nostrand, J.D.; Zhou, J.; Zhong, W.; Chen, K.; Guo, J. Anti-listeria activities of linalool and its mechanism revealed by comparative transcriptome analysis. Front. Microbiol. 2019, 10, 2947. [Google Scholar] [CrossRef]
- Prakash, A.; Vadivel, V.; Rubini, D.; Nithyanand, P. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium. Food Biosci. 2019, 28, 57–65. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Galovičová, L.; Ivanišová, E.; Štefániková, J.; Valková, V.; Borotová, P.; Łukasz Kowalczewski, P.; Kunová, S.; Felšöciová, S.; et al. Biological activity and antibiofilm molecular profile of Citrus aurantium essential oil and its application in a food model. Molecules 2020, 25, 3956. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, S.; Mukherjee, D.; Joshi, S.; Ray, R. Antibiofilm and anti-quorum sensing activities of eugenol and linalool from Ocimum tenuiflorum against Pseudomonas aeruginosa biofilm. J. Appl. Microbiol. 2021. [Google Scholar] [CrossRef]
- Apolónio, J.; Faleiro, M.L.; Miguel, M.G.; Neto, L. No induction of antimicrobial resistance in Staphylococcus aureus and Listeria monocytogenes during continuous exposure to eugenol and citral. FEMS Microbiol. Lett. 2014, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother. 2009, 64, 1219–1225. [Google Scholar] [CrossRef]
- Cáceres, M.; Hidalgo, W.; Stashenko, E.; Torres, R.; Ortiz, C. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics 2020, 9, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalia, V.C.; Patel, S.K.S.; Kang, Y.C.; Lee, J.K. Quorum sensing inhibitors as antipathogens: Biotechnological applications. Biotechnol. Adv. 2019, 37, 68–90. [Google Scholar] [CrossRef] [PubMed]
- Alibi, S.; Ben Selma, W.; Ramos-Vivas, J.; Smach, M.A.; Touati, R.; Boukadida, J.; Navas, J.; Ben Mansour, H. Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Curr. Res. Transl. Med. 2020, 68, 59–66. [Google Scholar] [CrossRef]
- Wang, W.; Huang, X.; Yang, H.; Niu, X.; Li, D.; Yang, C.; Li, L.; Zou, L.; Qiu, Z.; Wu, S.; et al. Antibacterial activity and anti-quorum sensing mediated phenotype in response to essential oil from Melaleuca bracteata leaves. Int. J. Mol. Sci. 2019, 20, 5696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleiro, L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007, 105. [Google Scholar] [CrossRef]
- Gupta, V.; Sharma, S. In vitro antioxidant activities of aqueous extract of Ficus bangalensis Linn. root. Int. J. Biol. Chem. 2010, 4, 134–140. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Aazza, S.; Lyoussi, B.; Bankova, V.; Popova, M.; Neto, L.; Faleiro, M.L.; Da Graça Miguel, M. Moroccan Propolis: A natural antioxidant, antibacterial, and antibiofilm against Staphylococcus aureus with no induction of resistance after continuous exposure. Evid.-Based Complement. Altern. Med. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ro (Summit) | La (Middle) | Ca (Lower) | Yields (mL/100 g of Plants) | Color | Odor |
---|---|---|---|---|---|
1.00 | 0 | 0 | 1.50 ± 0.13 c,d | colorless | woodsy |
0 | 1.00 | 0 | 1.23 ± 0.11 e | colorless | floral-herbaceous |
0 | 0 | 1.00 | 0.76 ± 0.17 g | greenish | herbaceous |
0.50 | 0.50 | 0 | 2.26 ± 0.04 a | colorless | heavy floral–herbaceous |
0 | 0.50 | 0.50 | 1.9 ± 0.10 b | light yellow | heavy floral–herbaceous |
0.50 | 0 | 0.50 | 1.35 ± 0.05 f | light yellow | herbaceous, strong citrus |
0.33 | 0.33 | 0.33 | 1.60 ± 0.10 c | light yellow | herbaceous, strong citrus |
0.67 | 0.16 | 0.16 | 1.50 ± 0.10 c,d | colorless | woodsy |
0.16 | 0.67 | 0.16 | 1.65 ± 0.05 c | colorless | Floral–herbaceous |
0.16 | 0.16 | 0.67 | 1.60 ± 0.10 c | greenish | herbaceous, strong citrus |
Peak Area (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | RI | Ro | La | Ca | Ro:La (1:1) | Ro:Ca (1:1) | Ca:La (1:1) | Ro:La:Ca (1:1:1) | Ro:La:Ca (2/3:1/6:1/6) | Ro:La:Ca (1/6:2/3:1/6) | Ro:La:Ca (1/6:1/6:2/3) |
Monoterpene Hydrocarbons | |||||||||||
α-Pinene | 939 | 13.83 | tr | nd | tr | tr | nd | tr | tr | tr | tr |
Camphene | 953 | 3.82 | 0.67 | nd | 2.40 | 3.11 | nd | 2.11 | 3.39 | 1.78 | 1.35 |
β-Pinene | 980 | 2.37 | 0.64 | nd | 1.86 | 3.17 | 0.24 | 2.17 | 2.92 | 1.64 | 1.56 |
β-Myrcene | 991 | 0.63 | nd | nd | 0.41 | 0.80 | 0.26 | 0.72 | 0.69 | 0.96 | 0.30 |
Limonene | 1020 | nd | nd | 1.78 | nd | 0.3 | 0.49 | 0.73 | nd | nd | 1.19 |
Aromatic Monoterpene Hydrocarbon | |||||||||||
p-Cymene | 1026 | 1.26 | 0.22 | nd | 1.11 | 1.45 | nd | 1.33 | 1.77 | 1.28 | nd |
Oxygenated Monoterpenes | |||||||||||
1,8-Cineole | 1033 | 46.71 | 13.9 | tr | 37.81 | 30.9 | 11.14 | 27.77 | 38.84 | 16.35 | 24.27 |
cis-Linalool oxide | 1074 | nd | 3.06 | nd | 1.41 | nd | 1.01 | 0.67 | nd | 2.28 | 0.79 |
trans-Linalool oxide | 1088 | nd | 2.48 | nd | 1.19 | nd | 1.09 | 0.59 | nd | 2.80 | 0.93 |
Linalool | 1098 | nd | 21.34 | 30.77 | tr | tr | 19.33 | 12.99 | tr | 14.02 | 16.13 |
Camphor | 1143 | 13.07 | 14.18 | tr | 15.14 | 10.71 | 11.36 | 12.65 | 13.41 | 12.30 | tr |
Borneol | 1165 | tr | 11.77 | nd | tr | tr | tr | tr | tr | tr | tr |
Terpinen-4-ol | 1177 | 0.79 | 0.51 | nd | 1.04 | 1.00 | 0.47 | 0.98 | 1.21 | nd | 0.50 |
α-Terpineol | 1185 | tr | nd | 14.97 | tr | tr | tr | tr | tr | tr | tr |
Linalyl acetate | 1261 | nd | 11.58 | 36.00 | tr | 10.71 | 23.54 | 11.20 | tr | 11.48 | 19.60 |
Neryl acetate | 1365 | nd | nd | 4.25 | nd | 0.47 | 2.01 | 0.76 | nd | 0.23 | 0.32 |
Geranyl acetate | 1383 | nd | nd | 8.05 | nd | nd | 3.63 | 0.36 | nd | 1.68 | 0.96 |
Sesquiterpene Hydrocarbons | |||||||||||
Caryophyllene | 1467 | 6.72 | 1.70 | 0.70 | 0.45 | 0.84 | 1.44 | 0.60 | 0.76 | 1.03 | 0.29 |
(+)-Epi-bicyclosesquiphellandrene | 1483 | nd | 4.06 | nd | 1.62 | nd | 2.97 | 1.45 | 0.61 | 3.05 | 0.84 |
Total (%) | 98.5 | 86.59 | 9.08 | 97.4 | 90.44 | 94.6 | 94.96 | 97.8 | 89.95 | 94.18 |
Methods | Plants Material Ratios | Half Maximal Inhibitory Concentration IC50 (mg/mL) | |||||
Ro | La | Ca | DPPH | H2O2 | NO. | Superoxide | |
(Summit) | (Middle) | (Lower) | |||||
0 | 1.00 | 0 | 9.01 ± 0.00 c | 26.20 ± 2.77 b | ND | 2.19 ± 0.58 b,c,d,e | |
0 | 0 | 1.00 | 1.91 ± 0.00 e,d | 39.62 ± 3.56 a | 0.26 ± 0.02 h,i | 2.94 ± 0.03 b,c,d,e | |
Simultaneous Hydrodistillation–Steam Distillation | 1/2 | 1/2 | 0 | 2.02 ± 0.02 e,d | ND | 4.11 ± 0.19 a,b | ND |
1/2 (middle) | 0 | 1/2 | 0.57 ± 0.09 h,j,j | ND | 1.56 ± 0.18 c,d,e,f,g | ND | |
0 | 1/2 | 1/2 | 0.90 ± 0.07 f,g,h,i,j | ND | 1.45 ± 0.03 d,e,f | 2.47 ± 0.22 b,c,d,e | |
1/3 | 1/3 | 1/3 | 2.34 ± 0.00 d | 28.13 ± 4.14 b | 2.69 ± 0.23 b,c,d | 10.36 ± 0.73 a | |
2/3 | 1/6 | 1/6 | 1.38 ± 0.02 f,g,h | ND | 1.66 ± 0.05 d,e,f | ND | |
1/6 | 2/3 | 1/6 | 1.37 ± 0.03 f,g,h | ND | 1.63 ± 0.05 d,e,f | 2.98 ± 0.07 b,c,d,e | |
1/6 | 1/6 | 2/3 | 0.75 ± 0.02 h,j,i | ND | 1.12 ± 0.03 g | 1.39 ± 0.02 f | |
Major Components | α-Pinene | ND | --- | ND | ND | ||
Limonene | ND | ND | ND | ND | |||
Borneol | ND | --- | ND | ND | |||
1,8-Cineole | ND | ND | --- | ND | |||
Camphor | ND | --- | --- | --- | |||
Linalool | 102.34 ± 3.13 b | ND | --- | 20.41 ± 1.47 b | |||
Linalyl acetate | 148.61 ± 1.28 a | --- | --- | 18.23 ± 0.01 b | |||
α-Terpineol | ND | --- | ND | ND |
Methods | Plant Material Atios | Half Maximal Inhibitory Concentration IC50 (mg/mL) | |||||
---|---|---|---|---|---|---|---|
Ro | La | Ca | α-Glucosidase | Acetylcholinesterase | Lipoxygenase | Tyrosinase | |
(Summit) | (Middle) | (Lower) | |||||
Hydrodistillation | 1.00 | 0 | 0 | 0.50 ± 0.07 c | † | ‡ | ND |
0 | 1.00 | 0 | 0.05 ± 0.00 i,j | 0.44 ± 0.00 c | 0.28 ± 0.00 c,d | ND | |
0 | 0 | 1.00 | 0.16 ± 0.00 f | 2.87 ± 0.38 a | 0.18 ± 0.00 e | ND | |
Simultaneous Hydrodistillation-Steam Distillation | 1/2 | 1/2 | 0 | 0.29 ± 0.01 e | 0.05 ± 0.00 e,f,g,h,i,j | 0.48 ± 0.00 a,b | ND |
1/2 | 0 | 1/2 | 0.11 ± 0.00 g,h | 0.07 ± 0.0 e,f,g,h,i,j | 0.29 ± 0.00 c,d | ND | |
0 | 1/2 | 1/2 | 0.08 ± 0.00 h,i | 0.06 ± 0.00 e,f,g,h,i,j | 0.44 ± 0.00 b,c | ND | |
1/3 | 1/3 | 1/3 | 0.36 ± 0.01 d | 0.08 ± 0.00 e,f,g,h,i | 0.26 ± 0.00 c,d | ND | |
2/3 | 1/6 | 1/6 | 0.59 ± 0.03 c | 0.03 ± 0.00 h,i,j | 0.35 ± 0.02 c | ND | |
1/6 | 2/3 | 1/6 | 0.05 ± 0.00 i,j | 0.08 ± 0.00 e,f,g,h,i | 0.39 ± 0.01 b,c | ND | |
1/6 | 1/6 | 2/3 | 0.74 ± 0.02 b,c | 0.08 ± 0.00 e,f,g,h,i | 0.48 ± 0.01 a,b | ND | |
Major Components | α-Pinene | 0.88 ± 0.03 b,c | --- | ND | ND | ||
Limonene | 1.18 ± 0.06 a | 0.08 ± 0.00 e,f,g,h,i | 0.11 ± 0.01 f | ND | |||
Borneol | 1.14 ± 0.03 a | 0.48 ± 0.05 b,c | ND | ND | |||
1,8-Cineole | 1.59 ± 0.07 a,b | 0.18 ± 0.01 d | ND | ND | |||
Camphor | 0.73 ± 0.07 b,c | --- | ND | ND | |||
Linalool | --- | --- | --- | ND | |||
Linalyl acetate | --- | --- | 0.57 ± 0.03 a | ND | |||
α-Terpineol | --- | --- | ND | ND | |||
Standard | Acarbose | 0.014 ± 0.00 k,i,j | ND | ND | ND |
Plant Material Ratios | Inhibition Zone (mm) | MIC (μL/mL) | MBC ((μL /mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ro (Summit) | La (Middle) | Ca (Lower) | S. aureus ATCC 6538 | Methicillin Resistant S. aureus 15 | E. coli DSM 1077 | S. aureus ATCC 6538 | Methicillin Resistant S. aureus 15 | E. coli DSM 1077 | S. aureus ATCC 6538 | Methicillin Resistant S. aureus 15 | E. coli DSM 1077 |
1/3 | 1/3 | 1/3 | 15.33 ± 0.63 b | 11.83 ± 0.23 b,c | 11.16 ± 0.23 d | ND | ND | ND | ND | ND | ND |
2/3 | 1/6 | 1/6 | 20.00 ± 0.40 a | 11.16 ± 1.24 b,c | 13.66 ± 1.24b | ND | ND | ND | ND | ND | ND |
1/6 | 2/3 | 1/6 | 20.83 ± 0.84 a | 12.33 ± 0.23 b | 11.67 ± 2.46 d | 10 | 75 | 10 | 25 | 125 | 25 |
1/6 | 1/6 | 2/3 | 24.00 ± 0.70 a | 18.33 ± 1.24 a | 12.00 ± 0.81 b,c | <10 | <10 | <10 | <10 | 10 | <10 |
1,8-Cineole | 10.5 ± 0.70 c | 12.16 ± 0.47 b | 12.16 ± 0.62 b,c | ND | ND | ND | ND | ND | ND | ||
Camphor | 10.5 ± 1.22 c | 11.67 ± 1.02 b,c | 13.00 ± 0.40 b | ND | ND | ND | ND | ND | ND | ||
Linalool | 12.83 ± 0.47 b,c | 13.83 ± 1.24 b | 15.67 ± 0.23 a | ND | ND | ND | ND | ND | ND | ||
Chloramphenicol (30 μg/mL) | 10.16 ± 0.70 c | 6.00 ± 0.00 d | 10.83 ± 0.47 d,e | ND | 30.00 | ND | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Kharraf, S.; Faleiro, M.L.; Abdellah, F.; El-Guendouz, S.; El Hadrami, E.M.; Miguel, M.G. Simultaneous Hydrodistillation-Steam Distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, Major Terpenes: Impact on Biological Activities. Molecules 2021, 26, 5452. https://doi.org/10.3390/molecules26185452
El Kharraf S, Faleiro ML, Abdellah F, El-Guendouz S, El Hadrami EM, Miguel MG. Simultaneous Hydrodistillation-Steam Distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, Major Terpenes: Impact on Biological Activities. Molecules. 2021; 26(18):5452. https://doi.org/10.3390/molecules26185452
Chicago/Turabian StyleEl Kharraf, Sara, Maria Leonor Faleiro, Farah Abdellah, Soukaïna El-Guendouz, El Mestafa El Hadrami, and Maria Graça Miguel. 2021. "Simultaneous Hydrodistillation-Steam Distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, Major Terpenes: Impact on Biological Activities" Molecules 26, no. 18: 5452. https://doi.org/10.3390/molecules26185452
APA StyleEl Kharraf, S., Faleiro, M. L., Abdellah, F., El-Guendouz, S., El Hadrami, E. M., & Miguel, M. G. (2021). Simultaneous Hydrodistillation-Steam Distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, Major Terpenes: Impact on Biological Activities. Molecules, 26(18), 5452. https://doi.org/10.3390/molecules26185452