Origin of Salt Effects in SN2 Fluorination Using KF Promoted by Ionic Liquids: Quantum Chemical Analysis
Abstract
:1. Introduction
2. Results
2.1. SN2 Fluorination without Salt Effects: Using 1 Eq. of KF in [bmim]PF6
2.2. Salt Effects: Adding KPF6 or Using 2 Eq. of KF
2.3. Salt Effects: Using 2 KF plus 1 Eq. KPF6 in [bmim]PF6
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. 2001, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Wasserscheid, P.; Keim, W. Ionic Liquids—New “Solutions” for Transition Metal Catalysis. Angew. Chem. 2000, 39, 3772–3789. [Google Scholar] [CrossRef]
- Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2083. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; De Souza, R.F.; Suarez, P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 2002, 102, 3667–3692. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Suarez, P.A.Z. Physico-chemical processes in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 2006, 8, 2441–2452. [Google Scholar] [CrossRef]
- Binnemans, K. Ionic liquid crystals. Chem. Rev. 2005, 105, 4148–4204. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Tak, H.C. Ionic-liquid-supported synthesis: A novel liquid-phase strategy for organic synthesis. Acc. Chem. Res. 2006, 39, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Pliego, J.R.; Riveros, J.M. The cluster-continuum model for the calculation of the solvation free energy of ionic species. J. Phys. Chem. A 2001, 105, 7241–7247. [Google Scholar] [CrossRef]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef]
- Oh, Y.H.; Jang, B.H.; Im, S.; Song, M.J.; Kim, S.Y.; Park, S.W.; Chi, D.Y.; Song, C.E.; Lee, S. SN2 Fluorination reactions in ionic liquids: A mechanistic study towards solvent engineering. Org. Biomol. Chem. 2011, 9, 418–422. [Google Scholar] [CrossRef]
- Kim, D.W.; Song, C.E.; Chi, D.Y. New method of fluorination using potassium fluoride in ionic liquid: Significantly enhanced reactivity of fluoride and improved selectivity. J. Am. Chem. Soc. 2002, 124, 10278–10279. [Google Scholar] [CrossRef]
- Xu, L.; Chen, W.; Ross, J.; Xiao, J. Palladium-catalyzed regioselective arylation of an electron-rich olefin by aryl halides in ionic liquids. Org. Lett. 2001, 3, 295–297. [Google Scholar] [CrossRef]
- Böhm, V.P.W.; Herrmann, W.A. Nonaqueous ionic liquids: Superior reaction media for the catalytic Heck-Vinylation of chloroarenes. Chem. Eur. J. 2000, 6, 1017–1025. [Google Scholar] [CrossRef]
- Min, B.K.; Lee, S.S.; Kang, S.M.; Kim, J.; Kim, D.W.; Lee, S. Mechanism of Nucleophilic Fluorination Facilitated by a Pyrene-tagged Ionic Liquids: Synergistic Effects of Pyrene–Metal Cation π-Interactions. Bull. Korean Chem. Soc. 2018, 39, 1047–1053. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.W. Sustainable Catalysis in Ionic liquids; CRC Press Publishing: New York, NY, USA, 2018. [Google Scholar]
- Lee, J.W.; Shin, J.Y.; Chun, Y.S.; Jang, B.H.; Song, C.E.; Lee, S.G. Toward understanding the origin of positive effects of ionic liquids on catalysis: Formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids. Acc. Chem. Res. 2010, 43, 985–994. [Google Scholar] [CrossRef]
- Newington, I.; Perez-Arlandis, J.M.; Welton, T. Ionic liquids as designer solvents for nucleophilic aromatic substitutions. Org. Lett. 2007, 9, 5247–5250. [Google Scholar] [CrossRef]
- Jadhav, V.H.; Jang, S.H.; Jeong, H.J.; Lim, S.T.; Sohn, M.H.; Kim, J.Y.; Lee, S.; Lee, J.W.; Song, C.E.; Kim, D.W. Oligoethylene glycols as highly efficient mutifunctional promoters for nucleophilic-substitution reactions. Chem. Eur. J. 2012, 18, 3918–3924. [Google Scholar] [CrossRef]
- Fischer, T.; Sethi, A.; Welton, T.; Woolf, J. Diels-Alder Reactions in Room-Temperature Ionic Liquids. Tetrahedron Lett. 1999, 40, 793–796. [Google Scholar] [CrossRef]
- Gauchot, V.; Schmitzer, A.R. Asymmetric aldol reaction catalyzed by the anion of an ionic liquid. J. Org. Chem. 2012, 77, 4917–4923. [Google Scholar] [CrossRef]
- Xu, L.; Chen, W.; Xiao, J. Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbene complexes of palladium. Organometallics 2000, 19, 1123–1127. [Google Scholar] [CrossRef]
- Oh, Y.H.; Choi, H.; Park, C.; Kim, D.W.; Lee, S. Harnessing ionic interactions and hydrogen bonding for nucleophilic fluorination. Molecules 2020, 25, 721. [Google Scholar] [CrossRef] [Green Version]
- Shinde, S.S.; Lee, B.S.; Chi, D.Y. Synergistic effect of two solvents, tert-alcohol and lonic liquid, in one molecule in nucleophilic fluorination. Org. Lett. 2008, 10, 733–735. [Google Scholar] [CrossRef]
- Lee, J.W.; Oliveira, M.T.; Jang, H.B.; Lee, S.; Chi, D.Y.; Kim, D.W.; Song, C.E. Hydrogen-bond promoted nucleophilic fluorination: Concept, mechanism and applications in positron emission tomography. Chem. Soc. Rev. 2016, 45, 4638–4650. [Google Scholar] [CrossRef]
- Lee, J.W.; Yan, H.; Jang, H.B.; Kim, H.K.; Park, S.; Lee, S.; Chi, D.Y.; Song, C.E. Bis-Terminal Hydroxy Polyethers as All-Purpose, Multifunctional Organic Promoters: A Mechanistic Investigation and Applications. Angew. Chem. 2009, 121, 7819–7822. [Google Scholar] [CrossRef]
- Jadhav, V.H.; Kim, J.Y.; Chi, D.Y.; Lee, S.; Kim, D.W. Organocatalysis of nucleophilic substitution reactions by the combined effects of two promoters fused in a molecule: Oligoethylene glycol substituted imidazolium salts. Tetrahedron 2014, 70, 533–542. [Google Scholar] [CrossRef]
- Oh, Y.-H.; Ahn, D.-S.; Chung, S.-Y.; Jeon, G.-H.; Park, S.-W.; Oh, S.J.; Kim, D.W.; Kil, H.S.; Chi, D.Y.; Lee, S. Facile SN2 reaction in protic solvent: Quantum chemical analysis. J. Phys. Chem. A 2007, 111. [Google Scholar] [CrossRef]
- Anguille, S.; Garayt, M.; Schanen, V.; Grée, R. Activation of nucleophilic fluorination by salts in ionic liquids and in sulfolane. Adv. Synth. Catal. 2006, 348, 1149–1153. [Google Scholar] [CrossRef]
- Seeman, J.I. Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics. Chem. Rev. 1983, 83, 83–134. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Available online: https://gaussian.com/g09citation/ (accessed on 2 June 2016).
- Chiappe, C.; Mennucci, B.; Pomelli, C.S.; Angelo Sanzone, A.; Marra, A. A theoretical study of the copper(i)-catalyzed 1,3-dipolar cycloaddition reaction in dabco-based ionic liquids: The anion effect on regioselectivity. Phys. Chem. Chem. Phys. 2010, 12, 1958–1962. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Kumar, A. Static dielectric constant of room temperature ionic liquids: Internal pressure and cohesive energy density approach. J. Phys. Chem. B 2008, 112, 12968–12972. [Google Scholar] [CrossRef] [PubMed]
- Laloo, J.Z.A.; Rhyman, L.; Larrañaga, O.; Ramasami, P.; Bickelhaupt, F.M.; de Cózar, A. Ion-Pair SN2 Reaction of OH− and CH3Cl: Activation Strain Analyses of Counterion and Solvent Effects. Chem. Asian J. 2018, 13, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Streitwieser, A.; Jayasree, E.G.; Hasanayn, F.; Leung, S.S.H. A theoretical study of SN2′ reactions of allylic halides: Role of ion pairs. J. Org. Chem. 2008, 73, 9426–9434. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, S.; Pegot, B.; Marrot, J.; Magnier, E. Solvent free nucleophilic introduction of fluorine with [bmim][F]. Tetrahedron Lett. 2014, 55, 826–829. [Google Scholar] [CrossRef]
- Kim, S.K.; Sessler, J.L. Calix[4]pyrrole-Based Ion Pair Receptors. Acc. Chem. Res. 2014, 47, 2525–2536. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, Y.-H.; Lee, S. Origin of Salt Effects in SN2 Fluorination Using KF Promoted by Ionic Liquids: Quantum Chemical Analysis. Molecules 2021, 26, 5738. https://doi.org/10.3390/molecules26195738
Oh Y-H, Lee S. Origin of Salt Effects in SN2 Fluorination Using KF Promoted by Ionic Liquids: Quantum Chemical Analysis. Molecules. 2021; 26(19):5738. https://doi.org/10.3390/molecules26195738
Chicago/Turabian StyleOh, Young-Ho, and Sungyul Lee. 2021. "Origin of Salt Effects in SN2 Fluorination Using KF Promoted by Ionic Liquids: Quantum Chemical Analysis" Molecules 26, no. 19: 5738. https://doi.org/10.3390/molecules26195738
APA StyleOh, Y. -H., & Lee, S. (2021). Origin of Salt Effects in SN2 Fluorination Using KF Promoted by Ionic Liquids: Quantum Chemical Analysis. Molecules, 26(19), 5738. https://doi.org/10.3390/molecules26195738