Radiosynthesis of 5-[18F]Fluoro-1,2,3-triazoles through Aqueous Iodine–[18F]Fluorine Exchange Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. Chemical Synthesis
3.1.1. General Procedure to Synthesize Compounds 12–13
1-Benzyl-5-iodo-4-propyl-1H-1,2,3-triazole (12)
5-Iodo-1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-4-phenyl-1H-1,2,3-triazole (13)
3.1.2. General Procedure to Synthesize Non-Radioactive Standard of Compounds 7–13
1-Benzyl-5-fluoro-4-phenyl-1H-1,2,3-triazole (non-radioactive standard compound of 7)
Benzyl (3-(1-benzyl-5-fluoro-1H-1,2,3-triazol-4-yl)propyl)carbamate (non-radioactive standard compound of 9)
1-Benzyl-5-fluoro-4-(4-methoxyphenyl)-1H-1,2,3-triazole (non-radioactive standard compound of 10)
4-((5-Fluoro-4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile (non-radioactive standard compound of 11)
1-Benzyl-5-fluoro-4-propyl-1H-1,2,3-triazole (non-radioactive standard compound of 12)
5-Fluoro-1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-4-phenyl-1H-1,2,3-triazole (non-radioactive standard compound of 13)
4-Iodo-but-3-yn-1-ol (18)
5-Azidomethyl-2-methylpyrimidin-4-ylamine (17)
2-[1-(4-Amino-2-methyl-pyrimidin-5-ylmethyl)-5-iodo-1H-[1,2,3]triazol-4-yl]-ethanol (18)
2-[1-(4-Amino-2-methyl-pyrimidin-5-ylmethyl)-5-Flouro-1H-[1,2,3]triazol-4-yl]-ethanol (15)
3.2. Radiosynthesis
3.2.1. General Procedure for the Synthesis of 5-[18F]fluoro-1,2,3-triazoles
3.2.2. Radiosynthesis of [18F]15
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. [Google Scholar] [CrossRef]
- Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today 2017, 22, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne "click" chemistry. Adv. Drug Deliv. Rev. 2008, 60, 958–970. [Google Scholar] [CrossRef] [PubMed]
- El Malah, T.; Nour, H.F.; Satti, A.A.E.; Hemdan, B.A.; El-Sayed, W.A. Design, Synthesis, and Antimicrobial Activities of 1,2,3-Triazole Glycoside Clickamers. Molecules 2020, 25, 790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrova, K.T.; Potewar, T.M.; Correia-da-Silva, P.; Barros, M.T.; Calhelha, R.C.; Ćiric, A.; Soković, M.; Ferreira, I.C.F.R. Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives. Carbohydr. Res. 2015, 417, 66–71. [Google Scholar] [CrossRef]
- López-Rojas, P.; Janeczko, M.; Kubiński, K.; Amesty, Á.; Masłyk, M.; Estévez-Braun, A. Synthesis and Antimicrobial Activity of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives. Molecules 2018, 23, 199. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, W.A.; Khalaf, H.S.; Mohamed, S.F.; Hussien, H.A.; Kutkat, O.M.; Amr, A.E. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russ. J. Gen. Chem. 2017, 87, 2444–2453. [Google Scholar] [CrossRef]
- Zhou, L.; Amer, A.; Korn, M.; Burda, R.; Balzarini, J.; De Clercq, E.; Kern, E.R.; Torrence, P.F. Synthesis and Antiviral Activities of 1,2,3-triazole Functionalized Thymidines: 1,3-dipolar Cycloaddition for Efficient Regioselective Diversity Generation. Antivir. Chem. Chemother. 2005, 16, 375–383. [Google Scholar] [CrossRef]
- de Lourdes, G.; Ferreira, M.; Pinheiro, L.C.S.; Santos-Filho, O.A.; Peçanha, M.D.S.; Sacramento, C.Q.; Machado, V.; Ferreira, V.F.; Souza, T.M.L.; Boechat, N. Design, synthesis, and antiviral activity of new 1H-1,2,3-triazole nucleoside ribavirin analogs. Med. Chem. Res. 2014, 23, 1501–1511. [Google Scholar] [CrossRef]
- Rajavelu, K.; Subaraja, M.; Rajakumar, P. Synthesis, optical properties, and antioxidant and anticancer activity of benzoheterazole dendrimers with triazole bridging unit. N. J. Chem. 2018, 42, 3282–3292. [Google Scholar] [CrossRef]
- Santosh, R.; Selvam, M.K.; Kanekar, S.U.; Nagaraja, G.K. Synthesis, Characterization, Antibacterial and Antioxidant Studies of Some Heterocyclic Compounds from Triazole-Linked Chalcone Derivatives. ChemistrySelect 2018, 3, 6338–6343. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem. 2019, 183, 111700. [Google Scholar] [CrossRef] [PubMed]
- Prachayasittikul, V.; Pingaew, R.; Anuwongcharoen, N.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Discovery of novel 1,2,3-triazole derivatives as anticancer agents using QSAR and in silico structural modification. Springerplus 2015, 4, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakkakula, R.; Roy, A.; Mukkanti, K.; Sridhar, G. Synthesis and Anticancer Activity of 1,2,3-Triazole Fused N-Arylpyrazole Derivatives. Russ. J. Gen. Chem. 2019, 89, 831–835. [Google Scholar] [CrossRef]
- Huang, R.-Z.; Liang, G.-B.; Li, M.-S.; Fang, Y.-L.; Zhao, S.-F.; Zhou, M.-M.; Liao, Z.-X.; Sun, J.; Wang, H.-S. Synthesis and discovery of asiatic acid based 1,2,3-triazole derivatives as antitumor agents blocking NF-κB activation and cell migration. MedChemComm 2019, 10, 584–597. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, B.H.M.; Groothuys, S.; Soede, A.C.; Laverman, P.; Boerman, O.C.; van Delft, F.L.; Rutjes, F.P.J.T. Preparation and Evaluation of Glycosylated Arginine–Glycine–Aspartate (RGD) Derivatives for Integrin Targeting. Bioconjug. Chem. 2007, 18, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Bock, V.D.; Hiemstra, H.; van Maarseveen, J.H. CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem. 2006, 2006, 51–68. [Google Scholar] [CrossRef]
- Bock, V.D.; Speijer, D.; Hiemstra, H.; van Maarseveen, J.H. 1,2,3-Triazoles as peptide bond isosteres: Synthesis and biological evaluation of cyclotetrapeptide mimics. Org. Biomol. Chem. 2007, 5, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Glaser, M.; Robins, E.G. ‘Click labelling’ in PET radiochemistry. J. Label. Compd. Radiopharm. 2009, 52, 407–414. [Google Scholar] [CrossRef]
- Marik, J.; Sutcliffe, J.L. Click for PET: Rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 2006, 47, 6681–6684. [Google Scholar] [CrossRef]
- Glaser, M.; Årstad, E. “Click Labeling” with 2-[18F]Fluoroethylazide for Positron Emission Tomography. Bioconjug. Chem. 2007, 18, 989–993. [Google Scholar] [CrossRef]
- Bejot, R.; Fowler, T.; Carroll, L.; Boldon, S.; Moore, J.E.; Declerck, J.; Gouverneur, V. Fluorous Synthesis of 18F Radiotracers with the [18F]Fluoride Ion: Nucleophilic Fluorination as the Detagging Process. Angew. Chem. Int. Ed. Engl. 2009, 48, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Theres, R.; Ralf, B.; Frank, W. Synthesis of 18F-labeled Neurotensin(8-13) via Copper-Mediated 1,3-Dipolar [3+2]Cycloaddition Reaction. Lett. Drug Des. Discov. 2007, 4, 279–285. [Google Scholar]
- McConathy, J.; Zhou, D.; Shockley, S.E.; Jones, L.A.; Griffin, E.A.; Lee, H.; Adams, S.J.; Mach, R.H. Click synthesis and biologic evaluation of (R)- and (S)-2-amino-3-[1-(2-[18F]fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid for brain tumor imaging with positron emission tomography. Mol. Imaging 2010, 9, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Sirion, U.; Kim, H.J.; Lee, J.H.; Seo, J.W.; Lee, B.S.; Lee, S.J.; Oh, S.J.; Chi, D.Y. An efficient F-18 labeling method for PET study: Huisgen 1,3-dipolar cycloaddition of bioactive substances and F-18-labeled compounds. Tetrahedron Lett. 2007, 48, 3953–3957. [Google Scholar] [CrossRef]
- Vaidyanathan, G.; White, B.J.; Zalutsky, M.R. Propargyl 4-[F]fluorobenzoate: A Putatively More Stable Prosthetic group for the Fluorine-18 Labeling of Biomolecules via Click Chemistry. Curr. Radiopharm. 2009, 2, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Hausner, S.H.; Marik, J.; Gagnon, M.K.J.; Sutcliffe, J.L. In Vivo Positron Emission Tomography (PET) Imaging with an αvβ6 Specific Peptide Radiolabeled using 18F-“Click” Chemistry: Evaluation and Comparison with the Corresponding 4-[18F]Fluorobenzoyl- and 2-[18F]Fluoropropionyl-Peptides. J. Med. Chem. 2008, 51, 5901–5904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.-B.; Wu, Z.; Chen, K.; Chin, F.T.; Chen, X. Click Chemistry for 18F-Labeling of RGD Peptides and microPET Imaging of Tumor Integrin αvβ3 Expression. Bioconjug. Chem. 2007, 18, 1987–1994. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Jeon, J.; Palner, M.; Ye, D.; Shuhendler, A.; Chin, F.T.; Rao, J. Positron Emission Tomography Imaging of Drug-Induced Tumor Apoptosis with a Caspase-Triggered Nanoaggregation Probe. Angew. Chem. Int. Ed. Engl. 2013, 52, 10511–10514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worrell, B.T.; Hein, J.E.; Fokin, V.V. Halogen exchange (Halex) reaction of 5-iodo-1,2,3-triazoles: Synthesis and applications of 5-fluorotriazoles. Angew. Chem. 2012, 51, 11791–11794. [Google Scholar] [CrossRef]
- Wang, D.; Sun, W.; Chu, T. Synthesis of 5-Fluorotriazoles by Silver-Mediated Fluorination of 5-Iodotriazoles. Eur. J. Org. Chem. 2015, 2015, 4114–4118. [Google Scholar] [CrossRef]
- Li, L.; Xing, X.; Zhang, C.; Zhu, A.; Fan, X.; Chen, C.; Zhang, G. Novel synthesis of 5-iodo-1,2,3-triazoles using an aqueous iodination system under air. Tetrahedron Lett. 2018, 59, 3563–3566. [Google Scholar] [CrossRef]
- Lonsdale, D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid. Based Complement. Alternat. Med. 2006, 3, 49–59. [Google Scholar] [CrossRef]
- Nardone, R.; Höller, Y.; Storti, M.; Christova, M.; Tezzon, F.; Golaszewski, S.; Trinka, E.; Brigo, F. Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: A reappraisal. Sci. World J. 2013, 2013, 309143. [Google Scholar] [CrossRef] [PubMed]
- Zastre, J.A.; Sweet, R.L.; Hanberry, B.S.; Ye, S. Linking vitamin B1 with cancer cell metabolism. Cancer Metab. 2013, 1, 16. [Google Scholar] [CrossRef] [Green Version]
- Erixon, K.M.; Dabalos, C.L.; Leeper, F.J. Synthesis and biological evaluation of pyrophosphate mimics of thiamine pyrophosphate based on a triazole scaffold. Org. Biomol. Chem. 2008, 6, 3561–3572. [Google Scholar] [CrossRef] [PubMed]
- Erixon, K.M.; Dabalos, C.L.; Leeper, F.J. Inhibition of pyruvate decarboxylase from Z. mobilis by novel analogues of thiamine pyrophosphate: Investigating pyrophosphate mimics. Chem. Commun. 2007, 960–962. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-M.; Deng, J.; Li, Y.; Chen, Q.-Y. Regiospecific Synthesis of 1,4,5-Trisubstituted-1,2,3-triazole via One-Pot Reaction Promoted by Copper(I) Salt. Synthesis 2005, 1314–1318. [Google Scholar] [CrossRef]
- Berridge, M.S.; Crouzel, C.; Comar, D. Aromatic fluorination with N.C.A. F-18 fluoride: A comparative study. J. Label. Compd. Radiopharm. 1985, 22, 687–694. [Google Scholar] [CrossRef]
Entry | Base | Co-solvent | T (MW, °C) | Time (min) | RCC b (%) |
1 | K2CO3 | CH3CN | 150 | 10 | 22 |
2 | K2CO3 | CH3CN | 160 | 10 | 40 |
3 | K2CO3 | DMSO | 150 | 20 | 31 |
4 | K2CO3 | DMSO | 160 | 20 | 20 |
5 | No base | DMSO | 150 | 20 | n/a |
6 | K2CO3 c | DMSO | 150 | 20 | 11 |
7 | K2CO3 d | DMSO | 150 | 20 | 50 |
8 | K2CO3 d | DMSO | 140 | 20 | 50 |
9 | K2CO3 e | DMSO | 150 | 20 | 43 |
10 | K2CO3 | DMF | 150 | 20 | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Basuli, F.; Abdelwahed, S.; Begley, T.; Swenson, R. Radiosynthesis of 5-[18F]Fluoro-1,2,3-triazoles through Aqueous Iodine–[18F]Fluorine Exchange Reaction. Molecules 2021, 26, 5522. https://doi.org/10.3390/molecules26185522
Zhang X, Basuli F, Abdelwahed S, Begley T, Swenson R. Radiosynthesis of 5-[18F]Fluoro-1,2,3-triazoles through Aqueous Iodine–[18F]Fluorine Exchange Reaction. Molecules. 2021; 26(18):5522. https://doi.org/10.3390/molecules26185522
Chicago/Turabian StyleZhang, Xiang, Falguni Basuli, Sameh Abdelwahed, Tadhg Begley, and Rolf Swenson. 2021. "Radiosynthesis of 5-[18F]Fluoro-1,2,3-triazoles through Aqueous Iodine–[18F]Fluorine Exchange Reaction" Molecules 26, no. 18: 5522. https://doi.org/10.3390/molecules26185522
APA StyleZhang, X., Basuli, F., Abdelwahed, S., Begley, T., & Swenson, R. (2021). Radiosynthesis of 5-[18F]Fluoro-1,2,3-triazoles through Aqueous Iodine–[18F]Fluorine Exchange Reaction. Molecules, 26(18), 5522. https://doi.org/10.3390/molecules26185522