Validation and Evaluation of Selected Organic Pollutants in Shrimp and Seawater Samples from the NW Portuguese Coast
Abstract
:1. Introduction
2. Results
2.1. Validation of the Analytical Methodology
2.1.1. Water Sampled in the Shrimps’ Habitat
2.1.2. Shrimp Samples
2.2. Pollutants
2.2.1. Pollutants in Water Sampled in the Shrimps’ Habitat
2.2.2. Pollutants in Shrimp Samples
2.3. Bioaccumulation
2.4. Maximum Admissible Concentration
2.5. Risk Assessment
3. Materials and Methods
3.1. Sample Collection
3.2. Reagents, Solvents and Materials
3.3. Extraction Procedure
3.3.1. Water Sampled in the Shrimps’ Habitat
3.3.2. Shrimp
3.4. Method Validation
3.5. Bioaccumulation Factor
3.6. Risk Assessment
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jurado, E.; Lohmann, R.; Meijer, S.; Jones, K.C.; Dachs, J. Latitudinal and seasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls. Environ. Pollut. 2004, 128, 149–162. [Google Scholar] [CrossRef]
- EU Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:en:PDF (accessed on 5 March 2021).
- Al-Malki, A.L.; Moselhy, S.S. Impact of pesticides residue and heavy metals on lipids and fatty acids composition of some seafoods of Red Sea (KSA). Hum. Exp. Toxicol. 2011, 30, 1666–1673. [Google Scholar] [CrossRef]
- Ayas, D.; Ozogul, Y.; Yazgan, H. The effects of season on fat and fatty acids contents of shrimp and prawn species. Eur. J. Lipid Sci. Technol. 2013, 115, 356–362. [Google Scholar] [CrossRef]
- Dayal, J.S.; Ponniah, A.G.; Khan, H.I.; Babu, E.P.M.M.; Ambasankar, K.; Vasagam, K.P.K.K. Shrimps—A nutritional perspective. Curr. Sci. 2013, 104, 1487–1491. [Google Scholar]
- Aksoy, A.; Guvenc, D.; Yavuz, O.; Das, Y.K.; Atmaca, E. Seasonal variation of polychlorinated biphenyls and organochlorine pesticide levels of sea and cultured farm fish in the Samsun Region of Turkey. Bull. Environ. Contam. Toxicol. 2012, 88, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Lee, I.-S.; Jung, R.-H. Rapid determination of organochlorine pesticides in fish using selective pressurized liquid extraction and gas chromatography–mass spectrometry. Food Chem. 2016, 205, 1–8. [Google Scholar] [CrossRef]
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef]
- EPA Persistent Organic Pollutants: A Global Issue, A Global Response; United States Environmental Protection Agency: Washington, DC, USA, 2009.
- Stockholm Convention Protecting Human Health and the Environment from Persistent Organic Pollutants. Genève, Switzerland. Available online: http://www.pops.int/TheConvention/Overview/tabid/3351/Default.aspx (accessed on 4 April 2021).
- Chung, S.W.C.; Chen, B.L.S. Development of a Multiresidue Method for the Analysis of 33 Organochlorine Pesticide Residues in Fatty and High Water Content Foods. Chromatographia 2015, 78, 565–577. [Google Scholar] [CrossRef]
- Teodoro, M.; Briguglio, G.; Fenga, C.; Costa, C. Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicol. Rep. 2019, 6, 564–570. [Google Scholar] [CrossRef]
- EU Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0001:0050:EN:PDF (accessed on 9 March 2021).
- EU Directive 2003/11/EC of the European Parliament and of the Council of 6 February 2003 Amending for the 24th time Council Directive 76/769/EEC Relating to Restrictions on the Marketing and Use of Certain Dangerous Substances and Preparations (pentabromodip). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:042:0045:0046:EN:PDF (accessed on 8 March 2021).
- EU Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:037:0019:0023:en:PDF (accessed on 8 March 2021).
- EU Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:174:0088:0110:EN:PDF (accessed on 8 March 2021).
- European Court of Justice 2008/C 116/02. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2008:116:0002:0003:EN:PDF (accessed on 8 March 2021).
- Gandhi, N.; Bhavsar, S.P.; Reiner, E.J.; Chen, T.; Morse, D.; Arhonditsis, G.B.; Drouillard, K.G. Evaluation and Interconversion of Various Indicator PCB Schemes for ΣPCB and dioxin-like PCB toxic equivalent levels in fish. Environ. Sci. Technol. 2015, 49, 123–131. [Google Scholar] [CrossRef]
- Tsutsumi, T.; Kawashima, A.; Hamada, N.; Adachi, R.; Akiyama, H. A novel analytical method for determining total polychlorinated biphenyl concentrations in fish and shellfish using a simple and rapid clean-up followed by GC-MS/MS. J. Food Compos. Anal. 2021, 96, 103725. [Google Scholar] [CrossRef]
- Saktrakulkla, P.; Lan, T.; Hua, J.; Marek, R.F.; Thorne, P.S.; Hornbuckle, K.C. Polychlorinated Biphenyls in Food. Environ. Sci. Technol. 2020, 54, 11443–11452. [Google Scholar] [CrossRef] [PubMed]
- EU Council Directive 96/591EC of 16 September 1996 on the Disposal of Polychlorinated Biphenyls and Polychlorinated Terphenyls (PCB/PCT). Available online: https://eur-lex.europa.eu/legal-cotent/EN/TXT/PDF/?uri=CELEX:31996L0059&from=EN (accessed on 10 March 2021).
- UNEP. The 12 Initial POPs under the Stockholm Convention. Available online: http://chm.pops.int/TheConvention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx (accessed on 9 March 2021).
- Agudo, A.; Aronson, K.J.; Bonefeld-Jorgensen, E.C.; Cocco, P.; Cogliano, V.; Cravedi, J.P.; Esch, H.; Fiedler, H.; Glauert, H.P.; Guo, Y.-L.L.; et al. Polychlorinated Biphenyls and Polybrominated Biphenyls; IARC Publications: Lyon, France, 2016. [Google Scholar]
- Taylor, K.M.; Weisskopf, M.; Shine, J. Human exposure to nitro musks and the evaluation of their potential toxicity: An overview. Environ. Health 2014, 13, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EU Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: https://ec.europa.eu/health/sites/default/files/endocrine_disruptors/docs/cosmetic_1223_2009_regulation_en.pdf (accessed on 8 March 2021).
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Clark, J.M.; Park, Y. Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food Chem. Toxicol. 2017, 105, 456–474. [Google Scholar] [CrossRef]
- Pinkas, A.; Gonçalves, C.L.; Aschner, M. Neurotoxicity of fragrance compounds: A review. Environ. Res. 2017, 158, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Harden, F.A.; Toms, L.M.L.; Norman, R.E. Health consequences of exposure to brominated flame retardants: A systematic review. Chemosphere 2014, 106, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, M.L.; Sousa, S.; Correia-Sá, M.L.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Organochlorine pesticides, brominated flame retardants, synthetic musks and polycyclic aromatic hydrocarbons in shrimps. An overview of occurrence and its implication on human exposure. Heliyon 2020, 6, e04870. [Google Scholar] [CrossRef]
- EU Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 28 January 2021).
- Nagyová, S.; Tölgyessy, P. Validation including uncertainty estimation of a GC-MS/MS method for determination of selected halogenated priority substances in fish using rapid and efficient lipid removing sample preparation. Foods 2019, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Huerta, B.; Rodriguez-Mozaz, S.; Nannou, C.; Nakis, L.; Ruhí, A.; Acuña, V.; Sabater, S.; Barcelo, D. Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Sci. Total Environ. 2016, 540, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Lakaschus, S.; Weber, K.; Wania, F.; Bruhn, R.; Schrems, O. The air-sea equilibrium and time trend of hexachlorocyclohexanes in the Atlantic Ocean between the Arctic and Antarctica. Environ. Sci. Technol. 2002, 36, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, G.; Xie, Z.; Möller, A.; Halsall, C.; Caba, A.; Sturm, R.; Tang, J.; Zhang, G.; Ebinghaus, R. Currently used pesticides, hexachlorobenzene and hexachlorocyclohexanes in the air and seawater of the German Bight (North Sea). Environ. Chem. 2012, 9, 405–414. [Google Scholar] [CrossRef]
- Lohmann, R.; Klanova, J.; Kukucka, P.; Yonis, S.; Bollinger, K. Concentrations, fluxes, and residence time of PBDEs across the tropical Atlantic Ocean. Environ. Sci. Technol. 2013, 47, 13967–13975. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Lee, S.; Lim, J.E.; Moon, H.B. Legacy and novel flame retardants in water and sediment from highly industrialized bays of Korea: Occurrence, source tracking, decadal time trend, and ecological risks. Mar. Pollut. Bull. 2020, 160, 111639. [Google Scholar] [CrossRef] [PubMed]
- Gioia, R.; Nizzetto, L.; Lohmann, R.; Dachs, J.; Temme, C.; Jones, K.C. Polychlorinated biphenyls (PCBs) in air and seawater of the Atlantic Ocean: Sources, trends and processes. Environ. Sci. Technol. 2008, 42, 1416–1422. [Google Scholar] [CrossRef]
- Ramos, S.; Homem, V.; Santos, L. Simultaneous determination of synthetic musks and UV-filters in water matrices by dispersive liquid-liquid microextraction followed by gas chromatography tandem mass-spectrometry. J. Chromatogr. A 2019, 1590, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Aminot, Y.; Sayfritz, S.J.; Thomas, K.V.; Godinho, L.; Botteon, E.; Ferrari, F.; Boti, V.; Albanis, T.; Köck-Schulmeyer, M.; Diaz-Cruz, M.S.; et al. Environmental risks associated with contaminants of legacy and emerging concern at European aquaculture areas. Environ. Pollut. 2019, 252, 1301–1310. [Google Scholar] [CrossRef]
- Voorspoels, S.; Covaci, A.; Maervoet, J.; De Meester, I.; Schepens, P. Levels and profiles of PCBs and OCPs in marine benthic species from the Belgian North Sea and the Western Scheldt Estuary. Mar. Pollut. Bull. 2004, 49, 393–404. [Google Scholar] [CrossRef]
- Van Ael, E.; Covaci, A.; Blust, R.; Bervoets, L. Persistent organic pollutants in the Scheldt estuary: Environmental distribution and bioaccumulation. Environ. Int. 2012, 48, 17–27. [Google Scholar] [CrossRef]
- Ferrante, M.C.; Cirillo, T.; Naso, B.; Clausi, M.T.; Lucisano, A.; Cocchieri, R.A. Polychlorinated Biphenyls and Organochlorine Pesticides in Seafood from the Gulf of Naples (Italy). J. Food Prot. 2007, 70, 706–715. [Google Scholar] [CrossRef]
- Verslycke, T.A.; Vethaak, A.D.; Arijs, K.; Janssen, C.R. Flame retardants, surfactants and organotins in sediment and mysid shrimp of the Scheldt estuary (The Netherlands). Environ. Pollut. 2005, 136, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, S.P.J.; Van Velzen, M.J.M.; Swart, C.P.; van der Veen, I.; Traag, W.A.; de Boer, J. Halogenated Contaminants in Farmed Salmon, Trout, Tilapia, Pangasius, and Shrimp. Environ. Sci. Technol. 2009, 43, 4009–4015. [Google Scholar] [CrossRef]
- Cunha, S.C.; Trabalón, L.; Jacobs, S.; Castro, M.; Fernandez-Tejedor, M.; Granby, K.; Verbeke, W.; Kwadijk, C.; Ferrari, F.; Robbens, J.; et al. UV-filters and musk fragrances in seafood commercialized in Europe Union: Occurrence, risk and exposure assessment. Environ. Res. 2018, 161, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Trabalón, L.; Cano-Sancho, G.; Pocurull, E.; Nadal, M.; Domingo, J.L.; Borrull, F. Exposure of the population of Catalonia (Spain) to musk fragrances through seafood consumption: Risk assessment. Environ. Res. 2015, 143, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Hornung, R.W.; Reed, L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Griboff, J.; Wunderlin, D.A.; Horacek, M.; Monferrán, M.V. Seasonal variations on trace element bioaccumulation and trophic transfer along a freshwater food chain in Argentina. Environ. Sci. Pollut. Res. 2020, 27, 40664–40678. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, J.L.; Liu, Y.S.; Zhang, Q.Q.; Jiang, Y.X.; Liu, S.; Liu, W.R.; Yang, Y.Y.; Ying, G.G. Personal care products in wild fish in two main Chinese rivers: Bioaccumulation potential and human health risks. Sci. Total Environ. 2018, 621, 1093–1102. [Google Scholar] [CrossRef]
- Wang, Q.; Kelly, B.C. Assessing bioaccumulation behaviour of hydrophobic organic contaminants in a tropical urban catchment. J. Hazard. Mater. 2018, 358, 366–375. [Google Scholar] [CrossRef]
- EU Commission Regulation (EU) No 1259/2011 of 2 December 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Dioxins, Dioxin-like PCBs and Non Dioxin-like PCBs in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:320:0018:0023:EN:PDF (accessed on 27 March 2021).
- EU Commission Regulation (EC) No 178/2006 of 1 February 2006 Amending Regulation (EC) No 396/2005 of the European Parliament and of the Council to Establish Annex I Listing the Food and Feed Products to Which Maximum Levels for Pesticide Residues Apply. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuiance_SANTE_2019_12682.pdf (accessed on 27 March 2021).
- EU Commission Recommendation of 3 March 2014 on the Monitoring of Traces of Brominated Flame Retardants in Food. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R0178&from=EN (accessed on 27 March 2021).
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on Emerging and Novel Brominated Flame Retardants (BFRs) in Food. EFSA J. 2012, 10, 1–133. [Google Scholar] [CrossRef]
- Chemical Substances Bureau. 4′-TERT-BUTYL-2′,6′-DIMETHYL-3′,5′-DINITROACETOPHENONE (MUSK KETONE)_Risk Assessment. Available online: https://echa.europa.eu/documents/10162/c870f3b6-a674-4589-9565-c7a771b5fb5d (accessed on 22 April 2021).
- Chemical Substances Bureau. 1-(5,6,7,8-TETRAHYDRO-3,5,5,6,8,8-HEXAMETHYL-2-NAPHTHYL)ETHAN-1-ONE (AHTN)-Risk Assessment. Available online: https://echa.europa.eu/documents/10162/a0da6504-8d8c-49af-8614-fe396c556c43 (accessed on 22 April 2021).
- Chemical Substances Bureau. 1,3,4,6,7,8-HEXAHYDRO-4,6,6,7,8,8-HEXAMETHYLCYCLOPENTA-γ-2-BENZOPYRAN (1,3,4,6,7,8-HEXAHYDRO-4,6,6,7,8,8-HEXAMETHYLIN-DENO[5,6-C]PYRAN-HHCB)-Risk Assessment. Available online: https://echa.europa.eu/documents/10162/947def3b-bbbf-473b-bc19-3bda7a8da910 (accessed on 22 April 2021).
- Jacobs, S.; Sioen, I.; Jacxsens, L.; Domingo, J.L.; Sloth, J.J.; Marques, A.; Verbeke, W. Risk assessment of methylmercury in five European countries considering the national seafood consumption patterns. Food Chem. Toxicol. 2017, 104, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Aprova o Regulamento da Pesca por Arte de Arrasto Portaria n.° 1102-E/2000 - Diário da República n.° 270/2000, 2° Suplemento, Série I-B de 2000-11-22. Available online: https://dre.pt/web/guest/legislacao-consolidada/-/lc/106487480/201804160154/exportPdf/maximized/1/cacheLevelPage?rp=indice (accessed on 30 November 2020).
- Dong, H.; Tang, H.; Chen, D.; Xu, T.; Li, L. Analysis of 7 synthetic musks in cream by supported liquid extraction and solid phase extraction followed by GC-MS/MS. Talanta 2014, 120, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kuklenyik, Z.; Bryant, X.A.; Needham, L.L.; Calafat, A.M. SPE/SPME-GC/MS approach for measuring musk compounds in serum and breast milk. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 858, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.C.; Domingues, V.F.; Mateus, N.; Delerue-Matos, C. Organochlorine pesticide residues in strawberries from integrated pest management and organic farming. J. Agric. Food Chem. 2011, 59, 7582–7591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapozhnikova, Y. High-throughput analytical method for 265 pesticides and environmental contaminants in meats and poultry by fast low pressure gas chromatography and ultrahigh-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2018, 1572, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Sapozhnikova, Y.; Lehotay, S.J. Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography-tandem mass spectrometry. Anal. Chim. Acta 2013, 758, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Gobas, F.A.P.C. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- U.S. EPA. Technical Support Document for Water Quality-based Toxics Control; United States Environmental Protection Agency, Office of Water: Washington, DC, USA, 1991.
Concentrations µg/L | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OCPs | OPPs | BFRs | PCBs | SMs | |||||||||||
Location and Date of Sampling | α-HCH | Lindane | δ-HCH | Aldrin | DDE | Dieldrin | DDD | DDT | Chlorpyrifos | BDE 28 | BTBPE | PCB 28 | HHCB | AHTN | Ketone |
Vila do Conde Autumn 2017 | ND | ND | ND | ˂MDL | ND | ND | ND | ND | ˂MDL | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Vila do Conde Spring 2018 | ˂MDL | ˂MDL | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL | ˂MDL |
Vila do Conde Autumn 2018 | ˂MDL | ˂MDL | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Vila do Conde Spring 2019 | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ND |
Matosinhos Autumn 2017 | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Matosinhos Spring 2018 | ND | ˂ MDL | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Matosinhos Autumn 2018 | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Matosinhos Spring 2019 | ND | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Aveiro Spring 2018 | ND | ˂MDL | ND | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Aveiro Autumn 2018 | ND | 0.021 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Aveiro Spring 2019 | ND | ˂MDL | ˂MDL | ND | ND | ˂MDL | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Ria de Aveiro Autumn 2017 | ND | 0.014 | ND | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Ria de Aveiro Spring 2018 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.013 | ND | ˂MDL | ˂MDL | ˂MDL |
Figueira da Foz Autumn 2017 | ND | 0.014 | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Figueira da Foz Spring 2018 | ND | ND | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Figueira da Foz Autumn 2018 | ND | ˂MDL | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Figueira da Foz Spring 2019 | ND | ND | ND | ˂MDL | ˂MDL | ND | ND | ND | ND | ˂MDL | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Aquaculture Autumn 2017 | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ND | ND | ND | ˂MDL | ˂MDL | ND |
Aquaculture Spring 2018 | ND | ND | ˂MDL | ND | ND | ND | 0.012 | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Aquaculture Autumn 2018 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ND | ˂MDL |
Aquaculture Spring 2019 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.015 | ND | ˂MDL | ˂MDL | ˂MDL |
Sado Autumn 2017 | ˂MDL | 0.023 | ˂MDL | ˂MDL | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Sado Spring 2018 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Sado Autumn 2018 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Sado Spring 2019 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ˂MDL | ˂MDL | ˂MDL |
Concentrations ng/g ww | ||||||
---|---|---|---|---|---|---|
OCPs | PCBs | SMs | ||||
Location and Date of Sampling | DDD | PCB 153 | PCB 180 | HHCB | AHTN | Ketone |
Vila do conde Autumn 2017 | 6.09 | ND | ND | 3.34 | ND | 3.59 |
Vila do Conde Spring 2018 | ND | ND | ND | 4.76 | ND | ND |
Vila do Conde Spring 2018_E | ND | ND | ˂MDL | 5.26 | ND | 5.38 |
Vila do Conde Autumn 2018 | ND | ND | ND | 4.17 | ND | ND |
Vila do Conde Spring 2019 | ND | ND | ND | 4.34 | ˂MDL | ND |
Vila do Conde Spring 2019_E | ND | ND | ND | 3.95 | ND | ND |
Matosinhos Autumn 2017 | ND | ˂MDL | ND | 3.49 | ˂MDL | ND |
Matosinhos Spring 2018_E | ND | ND | ˂MDL | 4.95 | ND | 6.71 |
Matosinhos Autumn 2018 | ND | ND | ND | 5.78 | ND | ND |
Matosinhos Spring 2019 | ND | ND | ND | 5.92 | ˂MDL | ND |
Matosinhos Spring 2019_E | ND | ND | ND | 4.30 | 2.64 | ND |
Aveiro Spring 2018 | ND | ND | ˂MDL | 5.38 | ˂MDL | 5.49 |
Aveiro Autumn 2018 | ND | ND | ND | 3.64 | ND | ND |
Aveiro Spring 2019 | ND | ND | ND | 3.16 | ˂MDL | 4.62 |
Ria de Aveiro Atumn 2017 | ND | ND | ND | 4.74 | ND | ND |
Ria de Aveiro Spring 2018 | ND | ND | ND | 7.55 | 2.97 | 2.15 |
Figueira da Foz Autumn 2017 | ND | ND | ND | 3.76 | ˂MDL | 4.52 |
Figueira da Foz Spring 2018 | ND | ND | ND | 4.75 | ND | ND |
Figueira da Foz Autum 2018 | ND | ND | ND | 5.30 | ND | 3.30 |
Figueira da Foz Spring 2019 | ND | ND | ND | 4.18 | ND | 3.96 |
Aquaculture Autumn 2017 | ND | ND | ND | 4.02 | ND | 7.41 |
Aquaculture Spring 2018 | ND | ND | ND | 6.02 | ND | 4.26 |
Aquaculture Autumn 2018 | ND | ND | ND | 4.46 | ˂MDL | 3.96 |
Aquaculture Spring 2019_S | ND | ND | ND | 3.79 | ˂MDL | 4.95 |
Sado Autumn 2017 | ND | ND | ND | 3.17 | ˂MDL | ND |
Sado Spring 2018 | ND | ND | ND | 6.34 | 2.97 | 11.06 |
Sado Autumn 2018_S | ND | ND | ˂MDL | 3.85 | ND | ND |
Sado Spring 2019_S | ND | ˂MDL | ˂MDL | 3.58 | ˂MDL | ND |
Location and Date of Sampling | HHCB | AHTN | Ketone |
---|---|---|---|
Vila do conde Autumn 2017 | 249.4 | 305.2 | |
Vila do Conde Spring 2018 | 355.7 | ||
Vila do Conde Autumn 2018 | 312.0 | ||
Vila do Conde Spring 2019 | 324.1 | 254.2 | |
Matosinhos Autumn 2017 | 260.9 | 254.2 | |
Matosinhos Spring 2018 | 369.9 | 570.6 | |
Matosinhos Autumn 2018 | 432.4 | ||
Matosinhos Spring 2019 | 442.8 | 254.2 | |
Aveiro Spring 2018 | 402.3 | 254.2 | 467.3 |
Aveiro Autumn 2018 | 272.5 | ||
Aveiro Spring 2019 | 236.0 | 254.2 | 392.6 |
Ria de Aveiro Autumn 2017 | 354.6 | ||
Ria de Aveiro Spring 2018 | 564.5 | 346.3 | 183.2 |
Figueira da Foz Autumn 2017 | 281.4 | 254.2 | 384.7 |
Figueira da Foz Spring 2018 | 354.9 | ||
Figueira da Foz Autumn 2018 | 396.4 | 280.3 | |
Figueira da Foz Spring 2019 | 312.7 | 336.7 | |
Aquaculture Autumn 2017 | 300.6 | ||
Aquaculture Spring 2018 | 450.3 | 362.1 | |
Aquaculture Autumn 2018 | 333.7 | 336.4 | |
Aquaculture Spring 2019 | 283.4 | 254.2 | 421.3 |
Sado Autumn 2017 | 237.1 | 254.2 | |
Sado Spring 2018 | 474.1 | 345.6 | 940.7 |
Sado Autumn 2018 | 288.0 | ||
Sado Spring 2019 | 267.7 | 254.2 |
NOAEL | TDI Calculated | Median Exposure | P25 Exposure | P75 Exposure | |
---|---|---|---|---|---|
SMs | mg/kg bw/day | µg/kg bw/day | µg/kg bw/day | µg/kg bw/day | µg/kg bw/day |
HHCB | 50 | 500 | 1.74 | 1.52 | 2.13 |
AHTN | 5 | 50 | 1.19 | 1.06 | 1.20 |
Ketone | 2.5 | 25 | 1.84 | 1.55 | 2.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia, M.L.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Validation and Evaluation of Selected Organic Pollutants in Shrimp and Seawater Samples from the NW Portuguese Coast. Molecules 2021, 26, 5774. https://doi.org/10.3390/molecules26195774
Maia ML, Delerue-Matos C, Calhau C, Domingues VF. Validation and Evaluation of Selected Organic Pollutants in Shrimp and Seawater Samples from the NW Portuguese Coast. Molecules. 2021; 26(19):5774. https://doi.org/10.3390/molecules26195774
Chicago/Turabian StyleMaia, Maria Luz, Cristina Delerue-Matos, Conceição Calhau, and Valentina Fernandes Domingues. 2021. "Validation and Evaluation of Selected Organic Pollutants in Shrimp and Seawater Samples from the NW Portuguese Coast" Molecules 26, no. 19: 5774. https://doi.org/10.3390/molecules26195774
APA StyleMaia, M. L., Delerue-Matos, C., Calhau, C., & Domingues, V. F. (2021). Validation and Evaluation of Selected Organic Pollutants in Shrimp and Seawater Samples from the NW Portuguese Coast. Molecules, 26(19), 5774. https://doi.org/10.3390/molecules26195774