Selective Oxidation of Clopidogrel by Peroxymonosulfate (PMS) and Sodium Halide (NaX) System: An NMR Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Impact of Halides on the Transformation of Clopidogrel
2.1.1. Influence of Chloride
2.1.2. Influence of Bromide
2.1.3. Influence of Iodide
2.2. Determination of Reaction Progress by NMR
2.2.1. With NaCl
2.2.2. With NaBr
2.2.3. With NaI
2.3. Characterization of the Products
2.3.1. Characterization of DP-2
2.3.2. Characterization of DP-3a
2.3.3. Characterization of DP-4a
2.3.4. Characterization of DP-3b
2.3.5. Characterization of DP-5b
3. Materials and Methods
3.1. Materials
3.2. Nuclear Magnetic Resonance Spectroscopy
3.2.1. Recording of One-Dimensional NMR Spectra
3.2.2. Recording of Two-Dimensional NMR Spectra
3.3. Mass Spectrometry
3.4. General Description of the Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Larock, R.C.; Zhang, L. Aromatic Halogenation. In Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 3rd ed.; Larock, R.C., Ed.; John Wiley & Sons, Inc.: Chichester, UK, 2018. [Google Scholar]
- Kosjek, T.; Heath, E. Halogenated Heterocycles as Pharmaceuticals; Springer: Berlin, Heidelberg, 2011; Volume 27. [Google Scholar]
- Gramec, D.; Mašič, P.L.; Dolenc, S.M. Bioactivation Potential of Thiophene-Containing Drugs. Chem. Res. Toxicol. 2014, 27, 1344–1358. [Google Scholar] [CrossRef]
- Shah, R.; Verma, P.K. Therapeutic importance of synthetic thiophene. Chem. Cent. J. 2018, 12, 137. [Google Scholar] [CrossRef] [Green Version]
- Podgoršek, A.; Zupan, M.; Iskra, J. Oxidative halogenation with “green” oxidants: Oxygen and hydrogen peroxide. Angew. Chem. Int. Ed. 2009, 48, 8424–8450. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Green, I.R.; Ahmed, I. Journey describing applications of oxone in synthetic chemistry. Chem. Rev. 2013, 113, 3329–3371. [Google Scholar] [CrossRef] [PubMed]
- Baertschi, S.W.; Alsante, K.M.; Reed, R.A. Pharmaceutical Stress Testing: Predicting Drug Degradation, 2nd ed.; Informa Healthcare: London, UK, 2011. [Google Scholar]
- Sheng, B.; Huang, Y.; Wang, Z.; Yang, F.; Ai, L.; Liu, J. On peroxymonosulfate-based treatment of saline wastewater: When phosphate and chloride co-exist. RSC Adv. 2018, 8, 13865–13870. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, O.; Moletta, R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 2006, 40, 3671–3682. [Google Scholar] [CrossRef]
- Woolard, C.R.; Irvine, R.L. Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res. 1995, 29, 1159–1168. [Google Scholar] [CrossRef]
- Kim, E.-H.; Koo, B.-S.; Song, C.-E.; Lee, K.-J. Halogenation of aromatic methyl ketones using Oxone® and sodium halide. Synth. Commun. 2001, 31, 3627–3632. [Google Scholar] [CrossRef]
- Tamhankar, B.V.; Desai, U.V.; Mane, R.B.; Wadgaonkar, P.P.; Bedekar, A.V. A simple and practical halogenation of activated arenes using potassium halide and Oxone® in water-acetonitrile medium. Synth. Commun. 2001, 31, 2021–2027. [Google Scholar] [CrossRef]
- Narender, N.; Srinivasu, P.; Kulkarni, S.J.; Raghavan, K.V. Highly efficient, para-selective oxychlorination of aromatic compounds using potassium chloride and oxone®. Synth. Commun. 2002, 32, 279–286. [Google Scholar] [CrossRef]
- Bovicelli, P.; Bernini, R.; Antoniolettia, R.; Mincione, E. Selective halogenation of flavanones. Tetrahedron Lett. 2002, 43, 5563–5567. [Google Scholar] [CrossRef]
- Desai, U.V.; Pore, D.M.; Tamhankar, B.V.; Jadhavb, S.A.; Wadgaonkar, P.P. An efficient deprotection of dithioacetals to carbonyls using Oxone–KBr in aqueous acetonitrile. Tetrahedron Lett. 2006, 47, 8559–8561. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Kazemi, S. Direct halogenation of organic compounds with halides using oxone in water—A green protocol. Can. J. Chem. 2009, 87, 1675–1681. [Google Scholar] [CrossRef]
- Takada, Y.; Hanyu, M.; Nagatsu, K.; Fukumura, T. Radiolabeling of aromatic compounds using K[*Cl]Cl and OXONE®. J. Label. Compd. Radiopharm. 2012, 55, 383–386. [Google Scholar] [CrossRef]
- Ren, J.; Tong, R. Convenient in situ generation of various dichlorinating agents from oxone and chloride: Diastereoselective dichlorination of allylic and homoallylic alcohol derivatives. Org. Biomol. Chem. 2013, 11, 4312–4315. [Google Scholar] [CrossRef]
- Brucher, O.; Hartung, J. Oxidative chlorination of 4-pentenols and other functionalized hydrocarbons. Tetrahedron 2014, 70, 7950–7961. [Google Scholar] [CrossRef]
- Lai, L.; Wang, H.; Wu, J. Facile assembly of 1-(4-haloisoquinolin-1-yl) ureas via a reaction of 2-alkynylbenzaldoxime, carbodiimide, and halide in water. Tetrahedron 2014, 70, 2246–2250. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Jiang, K.; Zhang, Q.; Li, D. Transition-metal-free oxidative C5 C–H-halogenation of 8-aminoquinoline amides using sodium halides. Org. Biomol. Chem. 2016, 14, 10180–10184. [Google Scholar] [CrossRef]
- Bikshapathi, R.; Parvathaneni, S.P.; Rao, V.J. An atom-economical protocol for direct conversion of Baylis-Hillman alcohols to β-chloro aldehydes in water. Green Chem. 2017, 19, 4446–4450. [Google Scholar] [CrossRef]
- Olsen, K.L.; Jensen, M.R.; MacKay, J.A. A mild halogenation of pyrazoles using sodium halide salts and Oxone. Tetrahedron Lett. 2017, 58, 4111–4114. [Google Scholar] [CrossRef]
- Sriramoju, V.; Kurva, S.; Madabhushi, S. New method for the preparation of N-chloroamines by oxidative N-halogenation of amines using oxone-KCl. Synth. Commun. 2018, 48, 699–704. [Google Scholar] [CrossRef]
- Lakshmireddy, V.M.; Veera, Y.N.; Reddy, T.J.; Rao, V.J.; Raju, B.C. A Green and Sustainable Approach for Selective Halogenation of Anilides, Benzanilides, Sulphonamides and Heterocycles†. Asian J. Org. Chem. 2019, 8, 1380–1384. [Google Scholar] [CrossRef]
- Uyanik, M.; Sahara, N.; Ishihara, K. Regioselective oxidative chlorination of arenols using NaCl and oxone. Eur. J. Org. Chem. 2019, 27–31. [Google Scholar] [CrossRef]
- Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. Sodium salts (NaI/NaBr/NaCl) for the halogenation of imidazo-fused heterocycles. J. Org. Chem. 2019, 84, 792–805. [Google Scholar] [CrossRef]
- Kim, K.-M.; Park, I.-H. A convenient halogenation of α, β-unsaturated carbonyl compounds with OXONE® and hydrohalic acid (HBr, HCl). Synthesis 2004, 16, 2641–2644. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, H.J.; Lee, K.Y.; Kim, J.N. Controlled C-5 Chlorination and Dichlorohydrin Formation of Uracil Ring with HCl/DMF/Oxone® System. Bull. Korean Chem. Soc. 2012, 33, 1357–1359. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Cao, X.; Chai, K.; Shen, J.; Xu, J.; Zhang, P. Remote radical halogenation of aminoquinolines with aqueous hydrogen halide (HX) and oxone. Tetrahedron Lett. 2018, 59, 2243–2247. [Google Scholar] [CrossRef]
- Krake, E.F.; Baumann, W. Unprecedented Formation of 2-Chloro-5-(2-chlorobenzyl)-4, 5, 6, 7-tetrahydrothieno [3, 2-c] pyridine 5-oxide via Oxidation-Chlorination Reaction Using Oxone: A Combination of Synthesis and 1D-2D NMR Studies. ChemistrySelect 2019, 4, 13479–13484. [Google Scholar] [CrossRef]
- Wu, Y.J. Heterocycles and medicine: A survey of the heterocyclic drugs approved by the US FDA from 2000 to present. Prog. Heterocycl. Chem. 2012, 1–53. [Google Scholar]
- Herbert, J.M.; Frehel, D.; Vallée, E.; Kieffer, G.; Gouy, D.; Necciari, J.; Defreyn, G.; Maffrand, J.P. Clopidogrel, A Novel Antiplatelet and Antithrombotic Agent. Cardiovasc. Drug Rev. 1993, 11, 180–198. [Google Scholar] [CrossRef]
- Ferri, N.; Corsini, A.; Bellosta, S. Pharmacology of the new P2Y 12 receptor inhibitors: Insights on pharmacokinetic and pharmacodynamic properties. Drugs 2013, 73, 1681–1709. [Google Scholar] [CrossRef]
- Aalla, S.; Gilla, G.; Anumula, R.R.; Charagondla, K.; Vummenthala, P.R.; Padi, P.R. New and Efficient Synthetic Approaches for the Regioisomeric and Iminium Impurities of Clopidogrel Bisulfate. Org. Process Res. Dev. 2012, 16, 1523–1526. [Google Scholar] [CrossRef]
- Song, S.; Li, X.; Wei, J.; Wang, W.; Zhang, Y.; Ai, L.; Zhu, Y.; Shi, X.; Zhang, X.; Jiao, N. DMSO-catalysed late-stage chlorination of (hetero) arenes. Nat. Catal. 2020, 3, 107–115. [Google Scholar] [CrossRef]
- Krake, E.F.; Jiao, H.; Baumann, W. NMR and DFT analysis of the major diastereomeric degradation product of clopidogrel under oxidative stress conditions. J. Mol. Struct. 2022, 1247, 131309. [Google Scholar] [CrossRef]
Entry | NaCl (equiv) | Oxidant (equiv) | Deuterated Solvent (b) | Time (h) | DP-3a (%) (d) | DP-4a (%) (d) | DP-6 (%) (d) |
---|---|---|---|---|---|---|---|
1 | 1.0 | H2O2 (30%) | H2O2:CD3OD (2:1) | 24 | NR | NR | NR |
2 | 1.0 | TBHP (70%) | TBHP:CD3OD (2:1) | 24 | NR | NR | NR |
3 | 1.0 | PMS (2.0) | D2O (c) | 1 min | degrad. | degrad. | degrad. |
4 | 1.0 | PMS (2.0) | D2O:(CD3)2CO (2:1) | 5 | 4 | 25 | 48 |
5 | 1.0 | PMS (2.0) | D2O:CD3OD (2:1) | 5 | 19 | 32 | 24 |
6 | 1.0 | PMS (2.0) | D2O:C4D8O (2:1) | 5 | 1 | 51 | 45 |
7 | 1.0 | PMS (2.0) | D2O:CD3CN (2:1) | 4 | 6 | 51 | 36 |
8 | 2.0 | PMS (2.0) | D2O:CD3CN (2:1) | 4 | 4 | 85 | 10 |
9 | 1.0 | PMS (1.5) | D2O:CD3CN (2:1) | 4 | 2 | 52 | 42 |
10 | 2.0 | PMS (1.5) | D2O:CD3CN (2:1) | 4 | 17 | 59 | 19 |
11 | 1.0 | PMS (1.0) | D2O:CD3CN (2:1) | 4 | 5 | 27 | 52 |
12 | 2.0 | PMS (1.0) | D2O:CD3CN (2:1) | 4 | 15 | 32 | 33 |
13 | 1.0 | PMS (0.5) | D2O:CD3CN (2:1) | 4 | 5 | 7 | 42 |
Entry | NaBr (equiv) | PMS (equiv) | Deut. Solvent | Time (min) | DP-3b (%) (b) | DP-5b (%) (b) |
---|---|---|---|---|---|---|
1 | NaBr (1.0) | 1.0 | D2O:CD3OD (2:1) | 1 | 62 | 38 |
2 | NaBr (1.0) | 1.0 | D2O:C4D8O (2:1) | 1 | 3 | 97 |
3 | NaBr (1.0) | 1.0 | D2O:(CD3)2CO (2:1) | 1 | 34 | 66 |
4 | NaBr (1.0) | 1.0 | D2O:CD3CN (1:1) | 1 | 60 | 39 |
5 | NaBr (2.0) | 1.0 | D2O:CD3CN (1:1) | 1 | 34 | 66 |
6 | NaBr (1.0) | 0.5 | D2O:CD3CN (1:1) | 1 | 66 | 2 |
7 | NaBr (2.0) | 0.5 | D2O:CD3CN (1:1) | 1 | 61 | 10 |
8 | NaBr (1.0) | 1.5 | D2O:CD3CN (1:1) | 1 | - | 99 |
9 | NaBr (2.0) | 1.5 | D2O:CD3CN (1:1) | 1 | - | 99 |
10 | NaBr (1.0) | 2.0 | D2O:CD3CN (1:1) | 1 | - | 99 |
Entry | NaI (equiv) | PMS (equiv) | Deut. Solvent | Time | DP-2 (%) (b) | DP-3c (%) (b) |
---|---|---|---|---|---|---|
1 | NaI (1.0) | 1.0 | D2O:CD3OD (2:1) | 12 h | <1 | - |
2 | NaI (1.0) | 1.0 | D2O:C4D8O (1:1) | 12 h | NR | NR |
3 | NaI (1.0) | 1.0 | D2O:(CD3)2CO (1:1) | 12 h | NR | NR |
4 | NaI (1.0) | 1.0 | D2O:CD3CN (1:1) | 10 min | 98 | - |
5 | NaI (1.0) | 0.5 | D2O:CD3CN (1:1) | 10 min | 65 | - |
Position | X = H (DP-2) | X = Cl (DP-3a) | X = Cl, N-OH (DP-4a) (a) | X = Cl, N-OH (DP-4a’) (a) | X = Br (DP-3b) | X = Br (DP-5a) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1H | 13C | 1H | 13C | 1H | 13C | 1H | 13C | 1H | 13C | 1H | 13C | |
2 (CX) | - | 128.15 | - | 133.59 | - | 125.72 | - | 125.39 | - | 110.38 | - | 128.41 |
3 (CH) | - | 129.44 | 6.50 s | 125.54 | 6.70 s | 125.26 | 6.60 s | 125.26 | 6.70 s | 129.36 | - | 133.01 |
4 (CH/H2) | 8.81 s | 162.40 | 3.64 d (14.5) 3.54 d (14.5) | 51.07 | 5.09 d (15.5) 4.82 d (15.5) | 62.50 | 4.65 (s) | 62.27 | 3.63 dt (14.4, 1.9) 3.53 dt (14.4, 1.9) | 51.10 | 9.05 s | 162.46 |
6 (CH2) | 4.30–4.23 m 3.95–3.86 m | 49.94 | 2.98–2.84 m | 49.21 | 4.22 dd (12.1, 5.3) 4.03 m | 60.68 | 4.40 m 4.29 dd (9.2, 5.1) | 61.99 | 2.95–2.80 m | 49.21 | 4.44–4.37 m 4.00–3.91 m | 49.64 |
7 (CH2) | 3.52–3.36 m | 24.04 | 2.76–2.70 m | 25.78 | 3.04 m | 21.54 | 3.24 m | 22.19 | 2.77–2.74 m | 26.02 | 3.59–3.40 m | 24.38 |
8 (C) | - | 156.50 | - | 128.22 | - | 130.56 | - | 130.48 | - | 136.39 | - | 158.09 |
9 (C) | - | 129.02 | - | 133.28 | - | 130.39 | - | 130.18 | - | 135.32 | - | 130.19 |
10 (CH) | 6.40 s | 72.08 | 4.97 s | 68.55 | 6.19 (s) | 76.95 | 6.15 (s) | 74.93 | 4.93 s | 68.68 | 6.62 s | 72.72 |
11 (C(ipso)) | - | 129.35 | - | 134.13 | - | 134.58 | - | 134.55 | - | 134.76 | - | 115.56 |
12 (CArH) | 7.62–7.49 m | 133.81 | 7.44–7.41 m | 130.99 | 7.65–7.53 m | 129.20 | 7.65–7.53 m | 129.09 | 7.48–7.43 m | 131.02 | 7.68–7.56 m | 131.29 |
13 (CArH) | - | 129.16 | 7.33–7.29 m | 128.48 | 7.65–7.53 m | 134.58 | 7.65–7.53 m | 134.54 | 7.37–7.31 m | 128.50 | 129.61 | |
14 (CArH) | - | 132.86 | 131.11 | 7.50–7.43 m | 131.91 | 7.50–7.43 m | 131.83 | 131.05 | 133.01 | |||
15 (CArH) | - | 131.83 | 7.63–7.60 m | 130.99 | 7.73 dd (7.9, 1.6) | 133.93 | 7.77 dd (7.9, 1.6) | 133.93 | 7.66–7.61 m | 131.02 | 132.08 | |
16 (CCl) | - | 136.18 | - | 135.80 | - | 137.59 | - | 137.17 | - | 135.91 | - | 136.54 |
17 (C=O) | - | 167.81 | - | 172.10 | - | 166.27 | - | 166.17 | - | 172.76 | - | 168.20 |
18 (OCH3) | 3.89 s | 55.02 | 3.68 s | 52.84 | 3.75 (s) | 55.06 | 3.74 (s) | 55.06 | 3.70 s | 52.71 | 3.97 s | 54.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krake, E.F.; Baumann, W. Selective Oxidation of Clopidogrel by Peroxymonosulfate (PMS) and Sodium Halide (NaX) System: An NMR Study. Molecules 2021, 26, 5921. https://doi.org/10.3390/molecules26195921
Krake EF, Baumann W. Selective Oxidation of Clopidogrel by Peroxymonosulfate (PMS) and Sodium Halide (NaX) System: An NMR Study. Molecules. 2021; 26(19):5921. https://doi.org/10.3390/molecules26195921
Chicago/Turabian StyleKrake, Everaldo F., and Wolfgang Baumann. 2021. "Selective Oxidation of Clopidogrel by Peroxymonosulfate (PMS) and Sodium Halide (NaX) System: An NMR Study" Molecules 26, no. 19: 5921. https://doi.org/10.3390/molecules26195921
APA StyleKrake, E. F., & Baumann, W. (2021). Selective Oxidation of Clopidogrel by Peroxymonosulfate (PMS) and Sodium Halide (NaX) System: An NMR Study. Molecules, 26(19), 5921. https://doi.org/10.3390/molecules26195921