Review: Veratrum californicum Alkaloids
Abstract
:1. Introduction
1.1. V. album: Subspecies V. lobelianum, V. grandiflorum and V. oxysepalum
1.1.1. V. lobelianum
1.1.2. V. grandiflorum
1.1.3. V. oxysepalum
1.2. V. maackii
1.3. V. nigrum
1.4. V. taliense
1.5. V. viride: Subspecies V. viride and V. eschscholtzii
1.5.1. V. viride
1.5.2. V. eschscholtzii
1.6. V. californicum
2. Alkaloids Identified in Veratrum californicum
2.1. Cyclopamine (1)
Alkaloid | Plant(s) | Sample Preparation * | Separation Technique | Identification | References |
---|---|---|---|---|---|
Cyclopamine (1) | V. californicum | Soxhlet extraction with ethanol/ammonium hydroxide | HPLC | LC-MS, 1H and 13C NMR | [1,50] |
Ethanol soak | [48,49] | ||||
Veratramine (2) | V. viride | Ethanol and chloroform extraction | Flash chromatography with silica gel | 1H and 13C NMR, HPLC-MS, crystallization, melting point, and HPLC-CAD. | [65] |
V. viride | Benzene, ammonia, acetic acid, and NaOH extractions | High-speed counter-current chromatography | HPLC, MS and NMR | [66] | |
V. oxysepalum | Diethyl ether and dichloromethane extractions | N/A | HPLC-MS | [67] | |
V. nigrum L. | Ethanol and then chloroform extraction | Column chromatography | Crystallization | [68] | |
V. grandiflorum | Crystallization and filtration using 2 N-calcium acetate and acetic acid (Unk plant part) | N/A | Crystallization, melting point, and NMR | [69] | |
V. californicum | Dried and ground, ethanol then chloroform extraction | HPLC | HPLC, CAD and MS | [70] | |
Isorubijervine (3) | V. eschscholtzii Gray | Chloroform extraction (Unknown plant part) | Craig countercurrent distribution | N/A | [71] |
V. taliense | Methanol extraction | Silica gel column chromatography and MPLC | NMR and ESI-MS. | [32] | |
V. viride Aiton | Ethanol and chloroform extraction (Unk plant part) | Flash chromatography with silica gel | IR, LC-MS, 1H and 13C NMR | [65] | |
Muldamine (4) | V. californicum | Benzene and 5% NH4OH soak (Unk plant part) | Column chromatography with silica gel/benzene/methanol slurry | HPLC-ELSD, MS m/z = 458.37 | [72] |
Cycloposine (5) | V. californicum | Dried and ground, ethanol then chloroform extraction | HPLC-ELSD | HPLC-MS spectra confirmation | [70,72,73] |
Veratrosine (6) | V. patulum | Ethanol soak, chloroform extraction, alkaloid residue | Silica gel, recrystallization in acetone | HPLC-MS m/z and elution times | [70,72,73] |
V. californicum | Dried and ground, ethanol then chloroform extraction | HPLC-ELSD | |||
Verazine (7) | Zygadenus sibiricus | N/A (From aerial plant) | N/A | N/A | [74] |
Solanaceae Solanum hypomalacophyllum | Dried, ground and refluxed with CHCl3 | Vacuum liquid chromatography and column chromatography | N/A | [75] | |
Asteraceae Eclipta alba | EtOAc and MeOH extraction from leaves | Silica gel columns and preparative TLC | MeOH crystallization and DEPT, HETCOR, HMQC, and HMBC NMR | [76] | |
V. nigrum | Ethanol extraction followed by two CHCl3 extractions (Unknown plant part) | Alkali-treated silica gel and TLC | Specific TLC fractions were recrystallized | [77] | |
V. nigrum | Three methanol extractions | Silica gel column chromatography twice and HPLC | Recrystallization, ESI-MS, IR, 1H and 13C NMR | [28] | |
Etioline (8) | Solanum spirale | Dried and ground, Soxhlet extraction with ethanol, chloroform/methanol extraction | Silica gel | 13C NMR and atom probe chromatography | [78] |
Lilium candidum L. | Ethanol extraction from bulbs and then CHCl3 extraction | TLC with chloroform and methanol | TLC with chloroform and methanol | [79] | |
Tetrahydrojervine (9) | N/A | Synthesized only | |||
Dihydrojervine (10) | N/A | Synthesized only | |||
22-Keto-26-amino cholesterol (11) | N/A | Cholesterol metabolite, proposed | [80,81] |
2.2. Veratramine (2)
2.3. Isorubijervine (3)
2.4. Muldamine (4)
2.5. Cycloposine (5)
2.6. Veratrosine (6)
2.7. Verazine (7)
2.8. Etioline (8)
2.9. Tetrahydrojervine (9)
2.10. Dihydrojervine (10)
2.11. 22-Keto-26-aminocholesterol (11)
Alkaloid | Method of Testing | Efficacy | Reference |
---|---|---|---|
Cyclopamine (1) | Inhibition of growth of estrogen receptor positive cell line MCF7 | Significant effects at both 10 and 20 µM | [59] |
Inhibition of proliferation of HEL and TF1a cells | Strong effect at 40 µM | [60] | |
Induced apoptosis in human erythroleukemia cells | 40 µM | [60] | |
Inhibition of growth of LNCaP C4-2B cells | Significant inhibition at 100 nmol/L and IC50 of 11 µmol/L. | [61] | |
Decreased cell viability | <75% viability at 20 µM with 50 ng/mL TRAIL in TRAIL-resistant AGS cells | [62] | |
Inhibition of hRSV infection in vitro | IC50 of 36 nM | [100] | |
Reduction of lung hRSV titers | Reduction by 1.5 logs at 100 mg/kg | [100] | |
Veratramine (2) | Inhibition of progression of human prostate metastatic cancer cell line PC-3 | <40% proliferation at 50 µM dose | [82] |
Inhibition of progression of human prostate metastatic cancer cell line PC-3 | <20% migration at 50 µM dose | [82] | |
Number of DNA-strand breaks in the cerebellum and cerebral cortex of mice | In both cerebellum and cerebral cortex: >0.5 µm tail moment with 0.25 µmol/kg dose, >1.0 µm tail moment with 2.5 µmol/kg | [83] | |
Isorubijervine (3) | Inhibition of rNaV1.3 | IC50 of 12.14 ± 0.77 µM | [32] |
Inhibition of rNaV1.4 | IC50 of 9.82 ± 0.84 µM | [32] | |
Inhibition of rNaV1.5 | IC50 of 6.962 ± 0.422 µM | [32] | |
Inhibition of rNaV1.5 | 5 µM dose led to 41% decrease in current | [32] | |
Lethal dose in mice | LD50 of 1.14 mg/kg | [32] | |
Muldamine (4) | Blocks action potential in squid and crayfish giant axons | Little or no depolarization at 1 × 10−4 M | [101] |
Verazine (7) | Antifungal | Minimum inhibitory concentration of 6.2 µg/mL for C. albicans | [90] |
Antifungal | Minimum inhibitory concentration of 3.1 µg/mL for T. rubrum | [90] | |
Inhibition of melanogenesis in B16 FI mouse melanoma cells | IC50 < 1 µg/mL | [28] | |
Etioline (8) | Inhibition of hepatitis B in PLC/PRF/5 cells | EC50 of 2.67 µg/mL | [91] |
Dihydrojervine (10) | Inhibition of progression of human prostate metastatic cancer cell line PC-3 | <40% proliferation at 50 µM dose | [82] |
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Charged Aerosol Dectector |
CC | Column Chromatography |
COSY | Correlation Spectroscopy |
DEPT | Distortions Enhancement by Polarization Transfer |
ELSD | Evaporative Light Scattering Detector |
GC | Gas Chromatography |
HETCOR | Heteronuclear Correlation |
Hh | Hedgehog |
HMBC | Heteronuclear Multiple Bond Coherence |
HMQC | Heteronuclear Multiple Quantum Coherence |
HPLC | High Performance Liquid Chromatography |
HPV-18 | Human Papillomavirus Virus-18 |
hRSV | Human Respiratory Syncytial Virus |
HSCCC | High-Speed Counter-Current Chromatography |
IC50 | Half Maximal Inhibitory Concentration |
IR | Infrared Spectroscopy |
ITS | Internal Transcribed Spacers |
KAAD | 3-keto N-(aminoethyl-aminocaproyl-dihydrocinnamoyl) |
LC | Liquid Chromatography |
LDL. | Low-Density Lipoprotein |
MHz | MegaHertZ |
mp | Melting Point |
MPLC | Medium Pressure Liquid Chromatography |
MS | Mass Spectrometry |
MSQ | Mass Single Quadrupole |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
NMR | Nuclear Magnetic Resonance Spectroscopy |
NOESY | Nuclear Overhauser Effect Spectroscopy |
TLC | Thin Layer Chromatography |
References
- Chandler, C.M.; McDougal, O.M. Medicinal History of North American Veratrum. Phytochem. Rev. 2013, 13, 671–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, W.J.; Yuan, Y.M.; Zhang, D.Y. Biogeography and Evolution of Flower Color in Veratrum (Melanthiaceae) through Inference of a Phylogeny Based on Multiple DNA Markers. Plant Syst. Evol. 2007, 267, 177–190. [Google Scholar] [CrossRef]
- Zomlefer, W.B.; Whitten, W.M.; Williams, N.H.; Judd, W.S. An Overview of Veratrum s.l. (Liliales: Melanthiaceae) and an Infrageneric Phylogeny Based on ITS Sequence Data. Syst. Bot. 2003, 28, 250–269. [Google Scholar] [CrossRef]
- Veratrum lobelianum Bernh. Available online: http://plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:30300236-2 (accessed on 8 July 2021).
- Suladze, T.S.; Vachnadze, V.Y.; Tsakadze, D.M.; Gedevanishvili, M.D.; Tsutsunava, L.E.; Malazoniya, N.A. Alkaloid Accumulation Dynamics in Veratrum Lobelianum Growing in Georgia and Biological Activity of Jervine. Chem. Nat. Compd. 2006, 42, 71–74. [Google Scholar] [CrossRef]
- Tabanca, N.; Ali, Z.; Bernier, U.R.; Epsky, N.; Nalbantsoy, A.; Khan, I.A.; Ali, A. Bioassay-Guided Isolation and Identification of Aedes Aegypti Larvicidal and Biting Deterrent Compounds from Veratrum Lobelianum. Open Chem. 2018, 16, 324–332. [Google Scholar] [CrossRef]
- Paloch, D. File:Veratrum Lobelianum-Inflorescence.jpg. Available online: https://commons.wikimedia.org/wiki/File:Veratrum_lobelianum_-_inflorescence.jpg (accessed on 24 August 2021).
- Fam, A.G. Gout, Diet, and the Insulin Resistance Syndrome. J. Rheumatol. 2002, 29, 1350–1355. [Google Scholar] [PubMed]
- Rodnan, G.P.; Benedek, T.G. The Early History of Antirheumatic Drugs. Arthritis Rheum. 1970, 13, 145–165. [Google Scholar] [CrossRef]
- Ramprasath, V.R.; Jones, P.J.H. Anti-Atherogenic Effects of Resveratrol. Eur. J. Clin. Nutr. 2010, 64, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Rocha, K.K.R.; Souza, G.A.; Ebaid, G.X.; Seiva, F.R.F.; Cataneo, A.C.; Novelli, E.L.B. Resveratrol Toxicity: Effects on Risk Factors for Atherosclerosis and Hepatic Oxidative Stress in Standard and High-Fat Diets. Food Chem. Toxicol. 2009, 47, 1362–1367. [Google Scholar] [CrossRef]
- Smoliga, J.M.; Blanchard, O.L. Allometric Scaling Models: History, Use, and Misuse in Translating Resveratrol from Basic Science to Human Clinical Applications. Funct. Foods Heal. Dis. 2017, 7, 338–352. [Google Scholar] [CrossRef] [Green Version]
- Han, L.J.; Liu, Y.Y.; Zhang, Y.M.; Yang, C.W.; Qian, Z.G.; Li, G.D. The Complete Chloroplast Genome and Phylogenetic Analysis of Veratrum Mengtzeanum Loes. F. (Liliaceae). Mitochondrial DNA Part B Resour. 2019, 4, 4170–4171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Yang, K.X.; Zhao, Y.L.; Qin, X.J.; Yang, X.W.; Liu, L.; Liu, Y.P.; Luo, X.D. Potent Anti-Inflammatory and Analgesic Steroidal Alkaloids from Veratrum Taliense. J. Ethnopharmacol. 2016, 179, 274–279. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.L.; Long, C.B.; Zhu, P.F.; Liu, Y.P.; Luo, X.D. Seven New Veratramine-Type Alkaloids with Potent Analgesic Effect from Veratrum Taliense. J. Ethnopharmacol. 2019, 244, 112–137. [Google Scholar] [CrossRef] [PubMed]
- Maepa, M.; Razwinani, M.; Motaung, S. Effects of Resveratrol on Collagen Type II Protein in the Superficial and Middle Zone Chondrocytes of Porcine Articular Cartilage. J. Ethnopharmacol. 2016, 178, 25–33. [Google Scholar] [CrossRef]
- Boufford, D.E. Veratrum Grandiflorum. Available online: http://www.efloras.org/object_page.aspx?object_id=89544&flora_id=800 (accessed on 24 August 2021).
- Kikkawa, H.S.; Aragane, M.; Tsuge, K. Species Identification of White False Hellebore (Veratrum Album Subsp. Oxysepalum) by Loop-Mediated Isothermal Amplification (LAMP). Forensic Toxicol. 2019, 37, 308–315. [Google Scholar] [CrossRef]
- Kato, Y.; Araki, K.; Kubota, S.; Ohara, M. Development of Microsatellite Markers in a Large Perennial Herb, Veratrum Album Ssp. Oxysepalum. Mol. Ecol. Resour. 2008, 8, 996–997. [Google Scholar] [CrossRef] [PubMed]
- Grobosch, T.; Binscheck, T.; Martens, F.; Lampe, D. Accidental Intoxication with Veratrum album. J. Anal. Toxicol. 2008, 32, 768–773. [Google Scholar] [CrossRef] [Green Version]
- Gilotta, I.; Brvar, M. Accidental Poisoning with Veratrum album Mistaken for Wild Garlic (Allium ursinum). Clin. Toxicol. 2010, 48, 949–952. [Google Scholar] [CrossRef]
- Rauber-Lüthy, C.; Halbsguth, U.; Kupferschmidt, H.; König, N.; Mégevand, C.; Zihlmann, K.; Ceschi, A. Low-Dose Exposure to Veratrum album in Children Causes Mild Effects a Case Series. Clin. Toxicol. 2010, 48, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Minatani, T.; Ohta, H.; Sakai, E.; Tanaka, T.; Goto, K.; Watanabe, D.; Miyaguchi, H. Analysis of Toxic Veratrum Alkaloids in Plant Samples from an Accidental Poisoning Case. Forensic Toxicol. 2018, 36, 200–210. [Google Scholar] [CrossRef]
- Qwert1234. File:Veratrum album Subsp. oxysepalum 0807.JPG. Available online: https://commons.wikimedia.org/wiki/File:Veratrum_album_subsp._oxysepalum_0807.JPG (accessed on 25 August 2021).
- Wu, Y.; Li, S.; Liu, J.; Liu, X.; Ruan, W.; Lu, J.; Liu, Y.; Lawson, T.; Shimoni, O.; Lovejoy, D.B.; et al. Stilbenes from Veratrum Maackii Regel Protect against Ethanol-Induced DNA Damage in Mouse Cerebellum and Cerebral Cortex. ACS Chem. Neurosci. 2018, 9, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Alpsdake. File: Veratrum Maackii.jpg. Available online: https://commons.wikimedia.org/wiki/File:Veratrum_maackii.jpg (accessed on 25 August 2021).
- Cong, Y.; Zhu, H.L.; Zhang, Q.C.; Li, L.; Li, H.Y.; Wang, X.Y.; Guo, J.G. Steroidal Alkaloids from Veratrum maackii Regel with Genotoxicity on Brain-Cell DNA in Mice. Helv. Chim. Acta 2015, 98, 539–545. [Google Scholar] [CrossRef]
- Ho-Jeong, K.; Sang-Jin, K.; Seh-Hoon, K.; Chul-Hwan, K.; Min-Hwan, J.; Mu-Hyun, J. Three Melanogenesis Inhibitors from the Roots of Veratrum Nigrum. Korean J. Pharmacogn. 2002, 33, 399–403. [Google Scholar]
- Park, J.; Jeon, Y.D.; Kim, H.L.; Kim, D.S.; Han, Y.H.; Jung, Y.; Youn, D.H.; Kang, J.W.; Yoon, D.; Jeong, M.Y.; et al. Veratri Nigri Rhizoma et Radix (Veratrum Nigrum L.) and Its Constituent Jervine Prevent Adipogenesis via Activation of the LKB1-AMPK α -ACC Axis in Vivo and in Vitro. Evid.-Based Complement. Altern. Med. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, W.; Liu, Y. Hypotensive Effect and Toxicology of Total Alkaloids and Veratramine from Roots and Rhizomes of Veratrum Nigrum L. in Spontaneously Hypertensive Rats. Pharmazie 2008, 63, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Kwiecień, A. File:Veratrum Nigrum Ciemiężyca Czarna Flowers 01.jpg. Available online: https://commons.wikimedia.org/wiki/File:Veratrum_nigrum_Ciemiężyca_czarna_flowers_01.jpg (accessed on 25 August 2021).
- Wang, G.; Rong, M.Q.; Li, Q.; Liu, Y.P.; Long, C.B.; Meng, P.; Yao, H.M.; Lai, R.; Luo, X.D. Alkaloids from Veratrum taliense Exert Cardiovascular Toxic Effects via Cardiac Sodium Channel Subtype 1.5. Toxins 2015, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Veratrum Taliense. Available online: https://www.herbal-organic.com/en/herb/23725 (accessed on 25 August 2021).
- Fried, J.; White, H.L.; Wintersteiner, O. The Hypotensive Principles of Veratrum Viride. J. Am. Chem. Soc. 1950, 72, 4621–4630. [Google Scholar] [CrossRef]
- Siegmund, W. File:Veratrum Viride 6061.JPG-Wikimedia Commons. Available online: https://commons.wikimedia.org/wiki/File:Veratrum_viride_6061.JPG (accessed on 25 August 2021).
- McNeal, D.W., Jr.; Shaw, A.D. Veratrum viride var. eschscholzianum-FNA. Available online: http://floranorthamerica.org/Veratrum_viride_var._eschscholzianum (accessed on 8 July 2021).
- Moerman, D.E. Medicinal Plants of Native America, Vols. 1 and 2; University of Michigan Press: Ann Arbor, MI, USA, 1986. [Google Scholar]
- Klohs, M.W.; Draper, M.D.; Keller, F.; Malesh, W.; Petracek, F.J. Alkaloids of Veratrum Eschscholtzii Gray. I. The Glycosides. J. Am. Chem. Soc. 1953, 75, 2133–2135. [Google Scholar] [CrossRef]
- Slichter, P. American Wild Hellebore, Green False Hellebore, Indian Poke. Available online: http://science.halleyhosting.com/nature/cascade/mtadams/3/lily/veratrum/viride.htm (accessed on 25 August 2021).
- Gaffield, W. The Veratrum Alkaloids: Natural Tools for Studying Embryonic Development. Stud. Nat. Prod. Chem. 2000, 23, 563–589. [Google Scholar] [CrossRef]
- Turner, M. Comprehensive Investigation of Bioactive Steroidal Alkaloids in Veratrum californicum; Boise State University: Boise, Idaho, 2019. [Google Scholar]
- Friedman, J. Veratrum californicum. Available online: https://plantlust.com/plants/11263/veratrum-californicum/ (accessed on 25 August 2021).
- Shikov, A.N.; Narkevich, I.A.; Flisyuk, E.V.; Luzhanin, V.G.; Pozharitskaya, O.N. Medicinal Plants from the 14th Edition of the Russian Pharmacopoeia, Recent Updates. J. Ethnopharmacol. 2021, 268, 13685. [Google Scholar] [CrossRef]
- Breuss, J.M.; Atanasov, A.G.; Uhrin, P. Resveratrol and Its Effects on the Vascular System. Int. J. Mol. Sci. 2019, 20, 1523. [Google Scholar] [CrossRef] [Green Version]
- Zagler, B.; Zelger, A.; Salvatore, C.; Pechlaner, C.; De Giorgi, F.; Wiedermann, C.J. Dietary Poisoning with Veratrum Album—A Report of Two Cases. Wien. Klin. Wochenschr. 2005, 117, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Feng, S.; Wu, Z.-H.; Kwong, J.S.W.; Hu, J.; Wu, N.; Tian, G.-H.; Shang, H.-C.; Qiu, G.-X. Adverse Drug Reactions of Yunnan Baiyao Capsule: A Multi-Center Intensive Monitoring Study in China. Ann. Transl. Med. 2019, 7, 118. [Google Scholar] [CrossRef]
- Jamieson, C.; Martinelli, G.; Papayannidis, C.; Cortes, J.E. Hedgehog Pathway Inhibitors: A New Therapeutic Class for the Treatment of Acute Myeloid Leukemia. Blood Cancer Discov. 2020, 1, 134–145. [Google Scholar] [CrossRef]
- Turner, M.W.; Cruz, R.; Mattos, J.; Baughman, N.; Elwell, J.; Fothergill, J.; Nielsen, A.; Brookhouse, J.; Bartlett, A.; Malek, P.; et al. Cyclopamine Bioactivity by Extraction Method from Veratrum californicum. Bioorg. Med. Chem. 2016, 24, 3752–3757. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zheng, Z.G.; Yu, Y.; Wu, Z.T.; Liang, D.; Li, P.; Jiang, Y.; Li, H.J. Rapid Discovery of Cyclopamine Analogs from Fritillaria and Veratrum Plants Using LC-Q-TOF-MS and LC-QqQ-MS. J. Pharm. Biomed. Anal. 2017, 142, 201–209. [Google Scholar] [CrossRef]
- Oatis, J.E.; Brunsfeld, P.; Rushing, J.W.; Moeller, P.D.; Bearden, D.W.; Gallien, T.N.; Cooper, G., IV. Isolation, Purification, and Full NMR Assignments of Cyclopamine from Veratrum californicum. Chem. Cent. J. 2008, 2, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carballo, G.B.; Honorato, J.R.; de Lopes, G.P.F.; de Sampaio e Spohr, T.C.L. A Highlight on Sonic Hedgehog Pathway. Cell Commun. Signal. 2018, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Ingham, P.W.; McMahon, A.P. Hedgehog Signaling in Animal Development: Paradigms and Principles. Genes Dev. 2001, 15, 3059–3087. [Google Scholar] [CrossRef] [Green Version]
- Incardona, J.P.; Gaffield, W.; Kapur, R.P.; Roelink, H. The Teratogenic Veratrum Alkaloid Cyclopamine Inhibits Sonic Hedgehog Signal Transduction. Development 1998, 125, 3553–3562. [Google Scholar] [CrossRef] [PubMed]
- Finco, I.; LaPensee, C.R.; Krill, K.T.; Hammer, G.D. Hedgehog Signaling and Steroidogenesis. Annu. Rev. Physiol. 2015, 77, 105–129. [Google Scholar] [CrossRef] [Green Version]
- Weierstall, U.; James, D.; Wang, C.; White, T.A.; Wang, D.; Liu, W.; Spence, J.C.H.; Bruce Doak, R.; Nelson, G.; Fromme, P.; et al. Lipidic Cubic Phase Injector Facilitates Membrane Protein Serial Femtosecond Crystallography. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrova, R.; Joyner, A.L. Roles for Hedgehog Signaling in Adult Organ Homeostasis and Repair. Development 2014, 141, 3445–3457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.K.; Taipale, J.; Cooper, M.K.; Beachy, P.A. Inhibition of Hedgehog Signaling by Direct Binding of Cyclopamine to Smoothened. Genes Dev. 2002, 16, 2743–2748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.R.; Lescarbeau, A.; Grogan, M.J.; Tan, E.; Lin, G.; Austad, B.C.; Yu, L.C.; Behnke, M.L.; Nair, S.J.; Hagel, M.; et al. Discovery of a Potent and Orally Active Hedgehog Pathway Antagonist (IPI-926). J. Med. Chem. 2009, 52, 4400–4418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Harrington, N.; Moraes, R.C.; Wu, M.F.; Hilsenbeck, S.G.; Lewis, M.T. Cyclopamine Inhibition of Human Breast Cancer Cell Growth Independent of Smoothened (Smo). Breast Cancer Res. Treat. 2009, 115, 505–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghezali, L.; Leger, D.Y.; Limami, Y.; Cook-Moreau, J.; Beneytout, J.L.; Liagre, B. Cyclopamine and Jervine Induce COX-2 Overexpression in Human Erythroleukemia Cells but Only Cyclopamine Has a pro-Apoptoticeffect. Exp. Cell Res. 2013, 319, 1043–1053. [Google Scholar] [CrossRef]
- Shaw, G.; Price, A.M.; Ktori, E.; Bisson, I.; Purkis, P.E.; McFaul, S.; Oliver, R.T.D.; Prowse, D.M. Hedgehog Signalling in Androgen Independent Prostate Cancer. Eur. Urol. 2008, 54, 1333–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Na, Y.J.; Lee, D.H.; Kim, J.L.; Kim, B.R.; Park, S.H.; Jo, M.J.; Jeong, S.; Kim, H.J.; Lee, S.Y.; Jeong, Y.A.; et al. Cyclopamine Sensitizes TRAIL-Resistant Gastric Cancer Cells to TRAIL-Induced Apoptosis via Endoplasmic Reticulum Stress-Mediated Increase of Death Receptor 5 and Survivin Degradation. Int. J. Biochem. Cell Biol. 2017, 89, 147–156. [Google Scholar] [CrossRef]
- Taş, S.; Avci, O. Rapid Clearance of Psoriatic Skin Lesions Induced by Topical Cyclopamine a Preliminary Proof of Concept Study. Dermatology 2004, 209, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Meth, M.J.; Weinberg, J.M. Cyclopamine: Inhibiting Hedgehog in the Treatment of Psoriasis. Cutis 2006, 78, 185–188. [Google Scholar]
- El Sayed, K.A.; McChesney, J.D.; Halim, A.F.; Zaghloul, A.M.; Lee, I.S. A Study of Alkaloids in Veratrum Viride Aiton. Pharm. Biol. 1996, 34, 161–173. [Google Scholar] [CrossRef]
- Jacobs, W.A.; Craig, L.C. The Veratrine Alkaloids XXV. The Alkaloids Of Veratrum Viride. J. Biol. Chem. 1945, 160, 555–565. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Jiang, Y. Separation and Preparation of Five Cyclopamine Analogs from Rhizomes of Veratrum Oxysepalum Turcz. by Two-Step High-Speed Counter-Current Chromatography. Sep. Sci. Technol. 2014, 49, 2748–2755. [Google Scholar] [CrossRef]
- Cong, Y.; Jia, W.; Chen, J.; Song, S.; Wang, J.H.; Yang, Y.H. Steroidal Alkaloids from the Roots and Rhizomes of Vertrum Nigrum L. Helv. Chim. Acta 2007, 90, 1038–1042. [Google Scholar] [CrossRef]
- Saito, K. Veratramine, a New Alkaloid of White Hellebore ( Veratrum Grandifiorum Loes. Fil.). Bull. Chem. Soc. Jpn. 1940, 15, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.W.; Rossi, M.; Campfield, V.; French, J.; Hunt, E.; Wade, E.; McDougal, O.M. Steroidal Alkaloid Variation in Veratrum californicum as Determined by Modern Methods of Analytical Analysis. Fitoterapia 2019, 137. [Google Scholar] [CrossRef]
- Klohs, M.W.; Keller, F.; Koster, S.; Malesh, W. Hypotensive Alkaloids of Veratrum Eschscholtzii. J. Am. Chem. Soc. 1952, 74, 1871. [Google Scholar] [CrossRef]
- Chandler, C.M.; Habig, J.W.; Fisher, A.A.; Ambrose, K.V.; Jiménez, S.T.; Mcdougal, O.M. Improved Extraction and Complete Mass Spectral Characterization of Steroidal Alkaloids from Veratrum californicum. Nat. Prod. Commun. 2013, 8, 1059–1064. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.W.; Cruz, R.; Elwell, J.; French, J.; Mattos, J.; McDougal, O.M. Native V. californicum Alkaloid Combinations Induce Differential Inhibition of Sonic Hedgehog Signaling. Molecules 2018, 23, 2222. [Google Scholar] [CrossRef] [Green Version]
- Taskhanova, E.M.; Shakirov, R.; Yunusov, S.Y. Alkaloids of Zygadenus Sibiricus. The Structure of Verazinine. Chem. Nat. Compd. 1985, 21, 343–344. [Google Scholar] [CrossRef]
- Colmenares, A.P.; Alarcón, L.; Rojas, L.B.; Mitaine-Offer, A.-C.; Pouységu, L.; Quideau, S.; Paululat, T.; Usubillaga, A.; Lacaille-Dubois, M.-A. New Steroidal Alkaloids from Solanum Hypomalacophyllum. Nat. Prod. Commun. 2010, 5, 1743–1746. [Google Scholar] [CrossRef]
- Abdel-Kader, M.S.; Bahler, B.D.; Malone, S.; Werkhoven, M.C.M.; Van Troon, F.; David; Wisse, J.H.; Bursuker, I.; Neddermann, K.M.; Mamber, S.W.; et al. DNA-Damaging Steroidal Alkaloids from Eclipta Alba from the Suriname Rainforest. J. Nat. Prod. 1998, 61, 1202–1208. [Google Scholar] [CrossRef]
- Zhao, W.; Tezuka, Y.; Kikuchi, T.; Chen, J.; Guo, Y. Studies on the Constituents of Veratrum Plants: II: Constituents of Veratrum Nigrum L. Var. Ussuriense: (1): Structure and 1H- and 13C-Nuclear Magnetic Resonance Spectra of a New Alkaloid, Verussurinine, and Related Alkaloids. Chem. Pharm. Bull. 1991, 39, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Ripperger, H. Steroidal Alkaloids from Roots of Solanum Spirale. Phytochemistry 1996, 43, 705–707. [Google Scholar] [CrossRef]
- Erdoǧan, I.; Sener, B.; Rahman, A.-U. Etioline, a Steroidal Alkaloid from Lilium Candidum L. Biochem. Syst. Ecol. 2001, 29, 535–536. [Google Scholar] [CrossRef]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and Their Derivatives: Structural Diversity, Distribution, Metabolism, Analysis, and Health-Promoting Uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef] [PubMed]
- Augustin, M.M.; Ruzicka, D.R.; Shukla, A.K.; Augustin, J.M.; Starks, C.M.; O’Neil-Johnson, M.; McKain, M.R.; Evans, B.S.; Barrett, M.D.; Smithson, A.; et al. Elucidating Steroid Alkaloid Biosynthesis in Veratrum californicum: Production of Verazine in Sf9 Cells. Plant J. 2015, 82, 991–1003. [Google Scholar] [CrossRef] [Green Version]
- Khanfar, M.A.; El Sayed, K.A. The Veratrum Alkaloids Jervine, Veratramine, and Their Analogues as Prostate Cancer Migration and Proliferation Inhibitors: Biological Evaluation and Pharmacophore Modeling. Med. Chem. Res. 2013, 22, 4775–4786. [Google Scholar] [CrossRef]
- Cong, Y.; Guo, J.; Tang, Z.; Lin, S.; Zhang, Q.; Li, J.; Cai, Z. Metabolism Study of Veratramine Associated with Neurotoxicity by Using HPLC-MSn. J. Chromatogr. Sci. 2015, 53, 1092–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Takebe, N.; LoRusso, P. Targeting the Hedgehog Pathway in Cancer. Ther. Adv. Med. Oncol. 2010, 2, 237. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.T.; Welch, K.D.; Panter, K.E.; Gardner, D.R.; Garrossian, M.; Chang, C.W.T. Cyclopamine: From Cyclops Lambs to Cancer Treatment. J. Agric. Food Chem. 2014, 62, 7355–7362. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, Y.; Kikuchi, T.; Zhao, W.; Chen, J.; Guo, Y. Two New Steroidal Alkaloids, 20-Isoveratramine and Verapatuline, from the Roots and Rhizomes of Veratrum Patulum. J. Nat. Prod. 1998, 61, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Krayer, O. Studies On Veratrum Alkaloids XXXVII. J. Pharmacol. Exp. Ther. 1949, 97, 275–285. [Google Scholar]
- Wang, Y.; Shi, Y.; Tian, W.S.; Tang, P.; Zhuang, C.; Chen, F.E. Stereoselective Synthesis of (-)-Verazine and Congeners via a Cascade Ring-Switching Process of Furostan-26-Acid. Org. Lett. 2020, 22, 2761–2765. [Google Scholar] [CrossRef]
- Han, X.; Ruegger, H. Epimeric (20R,20S)-Verazine Isolated from Veratrum Maackii: Two-Dimensional NMR Studies and Total Assignment of 1H- and 13C-Resonances. Planta Med. 1992, 58, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Kusano, G.; Takahashi, A.; Sugiyama, K.; Nozoe, S. Antifungal Properties of Solanum Alkaloids. Chem. Pharm. Bull. 1987, 35, 4862–4867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, K.H.; Lin, C.N.; Won, S.J. Cytotoxic Principles and Their Derivatives of Formosan Solanum Plants. J. Nat. Prod. 1993, 56, 15–21. [Google Scholar] [CrossRef]
- Home-MeSH-NCBI. Available online: https://www.ncbi.nlm.nih.gov/mesh/ (accessed on 8 July 2021).
- Lee, S.T.; Panter, K.E.; Gaffield, W.; Stegelmeier, B.L. Development of an Enzyme-Linked Immunosorbent Assay for the Veratrum Plant Teratogens: Cyclopamine and Jervine. J. Agric. Food Chem. 2003, 51, 582–586. [Google Scholar] [CrossRef]
- Gaffield, W.; Keeler, R.F. Implication of C-5, C-6 Unsaturation as a Key Structural Factor in Steroidal Alkaloid-Induced Mammalian Teratogenesis. Experientia 1993, 49, 922–924. [Google Scholar] [CrossRef]
- Saito, K.; Suginome, H.; Takaoka, M. On The Alkaloids Of White Hellebore. III. Experiments On The Constitution Of Jervine. Bull. Chem. Soc. Jpn. 1936, 11, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, W.A.; Craig, L.C. The Veratrine Alkaloids XVI. The Formulation Of Jervine. J. Biol. Chem. 1943, 148, 51–55. [Google Scholar] [CrossRef]
- Incardona, J.P.; Gaffield, W.; Lange, Y.; Cooney, A.; Pentchev, P.G.; Liu, S.; Watson, J.A.; Kapur, R.P.; Roelink, H. Cyclopamine Inhibition of Sonic Hedgehog Signal Transduction Is Not Mediated through Effects on Cholesterol Transport. Dev. Biol. 2000, 224, 440–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iselin, B.M.; Moore, M.; Wintersteiner, O. Jervine. IX. Miscellaneous New Derivatives. J. Am. Chem. Soc. 1956, 78, 403–407. [Google Scholar] [CrossRef]
- Gaffield, W.; Benson, M.; Lundin, R.E.; Keeler, R.F. Carbon-13 and Proton Nuclear Magnetic Resonance Spectra of Veratrum Alkaloids. J. Nat. Prod. 1986, 49, 286–292. [Google Scholar] [CrossRef]
- Bailly, B.; Richard, C.A.; Sharma, G.; Wang, L.; Johansen, L.; Cao, J.; Pendharkar, V.; Sharma, D.C.; Galloux, M.; Wang, Y.; et al. Targeting Human Respiratory Syncytial Virus Transcription Anti-Termination Factor M2-1 to Inhibit In Vivo Viral Replication. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ohta, M.; Narahashi, T.; Keeler, R.F. Effects Of Veratrum Alkaloids On Membrane Potential And Conductance Of Squid And Crayfish Giant Axons. J. Pharmacol. Exp. Ther. 1973, 184, 143–154. [Google Scholar]
Species | Flower | Region | Alkaloid(s) | Other Bioactive Components | Reference |
---|---|---|---|---|---|
V. album var. lobelianum | Northern Asia, parts of Europe | Verabenzoamine, veratroilzigadenine, 15-O-(2-Methylbutyroyl)germine, veralosinine, veranigrine, 7, jervine, pseudojervine, rubijervine, veralosine, veralosidine | Et linoleate, β-Sitosterol, resveratrol, oxyresveratrol | [4,5,6,7] | |
V. album var. grandiflorum | Asia | 2 | Resveratrol | [2,3,8,9,10,11,12,13,14,15,16,17] | |
V. album var. oxysepalum | Parts of Europe and northeastern Asia | 2, veratridine, cevadine | [18,19,20,21,22,23,24] | ||
V. maackii | Asia | Verussurine, verabenzoamine, 7, isoverazine, verazinine, 23-methoxycyclopamine 3-O-β-D-glucopyranoside, isoecliptalbine | Stilbenes, flavonoids, phenols, glyceride | [25,26,27] | |
V. nigrum | Europe and Asia | 7, epiverazine, 2 | [28,29,30,31] | ||
V. taliense | Europe and Asia | Alkaloids including isorubijervine and rubijervine | [13,14,15,32,33] | ||
V. viride var. viride | North America | 2 | [1,34,35] | ||
V. viride var. eschscholtzii | North America | Isorubijervosine, pseudojervine, 6 | [1,36,37,38,39] | ||
V. californicum var. californicum | North America | 1, 2, 3, 4, 5, 6 | [1,40,41,42] |
Identity * | [M+H]+ (m/z) | Predicted Molecular Formula |
---|---|---|
Cyclopamine (1) | 412.326 | C27H41NO2 |
Veratramine (2) | 410.312 | C27H39NO2 |
Isorubijervine (3) | 414.343 | C27H43NO2 |
Muldamine (4) | 458.370 | C29H47NO3 |
Cycloposine (5) | 574.381 | C33H51NO7 |
Veratrosine (6) | 572.365 | C33H49NO7 |
Verazine (7) | 398.347 | C27H43NO |
Etioline (8) | 414.342 | C27H43NO2 |
Tetrahydrojervine (9) | 430.337 | C27H43NO3 |
Dihydrojervine (10) | 428.320 | C27H41NO3 |
22-keto-26-aminocholesterol (11) | 416.357 | C27H45NO2 |
N/A | 576.396 | C33H53NO7 |
N/A | 574.381 | C33H51NO7 |
N/A | 576.397 | C33H53NO7 |
N/A | 410.311 | C27H39NO2 |
N/A | 412.326 | C27H41NO2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirks, M.L.; Seale, J.T.; Collins, J.M.; McDougal, O.M. Review: Veratrum californicum Alkaloids. Molecules 2021, 26, 5934. https://doi.org/10.3390/molecules26195934
Dirks ML, Seale JT, Collins JM, McDougal OM. Review: Veratrum californicum Alkaloids. Molecules. 2021; 26(19):5934. https://doi.org/10.3390/molecules26195934
Chicago/Turabian StyleDirks, Madison L., Jared T. Seale, Joseph M. Collins, and Owen M. McDougal. 2021. "Review: Veratrum californicum Alkaloids" Molecules 26, no. 19: 5934. https://doi.org/10.3390/molecules26195934
APA StyleDirks, M. L., Seale, J. T., Collins, J. M., & McDougal, O. M. (2021). Review: Veratrum californicum Alkaloids. Molecules, 26(19), 5934. https://doi.org/10.3390/molecules26195934