Tandem Solid-Phase Extraction Columns for Simultaneous Aroma Extraction and Fractionation of Wuliangye and Other Baijiu
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction by LiChrolut EN Resins
2.2. Fractionation of Simulated Baijiu Sample
2.2.1. Simulated Baijiu Sample
2.2.2. Ester Distribution
2.2.3. More Polar Fractions
2.3. Simultaneous Extraction and Fractionation of Baijiu by Tandem Lichrolut EN and Silica Gel SPE Columns
3. Materials and Methods
3.1. Material
3.1.1. Materials
3.1.2. Chemicals
3.2. Recovery of Volatile Compounds Extracted by LiChrolut EN Resin
3.3. Preparation of Simulated Baijiu
3.4. Simultaneous Extraction and Fractionation Using Tandem SPE Columns
3.4.1. Step 1: Extraction of Volatile Compounds Using LiChrolut EN SPE Column
3.4.2. Step 2: Installation of the Anhydrous Sodium Sulfate Column
3.4.3. Step 3: Connection of the Silica Gel SPE Column and Simultaneous Fractionation on the Tandem SPE Columns
3.5. Gas Chromatography–Mass Spectrometry Analysis
3.6. Volatile Compound Identification
3.7. Application of Fractionation in Baijiu
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, H.; Sun, B. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef]
- Fan, W.; Xu, Y.; Qian, M.C. Current Practice and Future Trends of Aroma and Flavor Research in Chinese Baijiu. In Sex, Smoke, and Spirits: The Role of Chemistry; Guthrie, B., Beauchamp, J.D., Buettner, A., Toth, S., Qian, M.C., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2019; pp. 145–175. [Google Scholar]
- Fan, W.; Qian, M.C. Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese “Yanghe Daqu” liquors. J. Agric. Food Chem. 2005, 53, 7931–7938. [Google Scholar] [CrossRef]
- Fan, W.; Qian, M.C. Characterization of aroma compounds of Chinese “Wuliangye” and “Jiannanchun” liquors by aroma extract dilution analysis. J. Agric. Food Chem. 2006, 54, 2695–2704. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Qian, M.C. Identification of aroma compounds in Chinese “Yanghe Daqu“ liquor by normal phase chromatography fractionation followed by gas chromatography olfactometry. Flavour Frag. J. 2010, 21, 333–342. [Google Scholar] [CrossRef]
- Qian, Y.L.; An, Y.; Chen, S.; Qian, M.C. Characterization of Qingke liquor aroma from Tibet. J. Agric. Food Chem. 2019, 67, 13870–13881. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, Z.; Qian, M.C.; Yu, X.; Xu, Y.; Chen, S. Unraveling the chemosensory characteristics of strong-aroma type Baijiu from different regions using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry and descriptive sensory analysis. Food Chem. 2020, 331, 127335. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fan, W.; Qian, M.C. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction. J. Agric. Food Chem. 2007, 55, 3051–3057. [Google Scholar] [CrossRef]
- Gao, W.; Fan, W.; Xu, Y. Characterization of the key odorants in light aroma type Chinese liquor by gas chromatography–olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2014, 62, 5796–5804. [Google Scholar] [CrossRef]
- Fan, W.; Hu, G.; Xu, Y.; Jia, Q.; Ran, X. Analysis of aroma components in Chinese herbaceous aroma type liquor. J. Food Sci. Biotechnol. 2012, 31, 810–819. [Google Scholar]
- Fan, W.; Xu, Y. Identification of volatile compounds of Fenjiu and Langjiu by liquid-liquid extraction coupled with normal phase liquid chromatography(Part One). Liquor. Mak. Sci. Technol. 2013, 02, 17–26. [Google Scholar]
- Fan, W.; Xu, Y. Identification of volatile compounds of Fenjiu and Langjiu by liquid-liquid extraction coupled with normal phase liquid chromatography (Last Part). Liquor. Mak. Sci. Technol. 2013, 03, 17–27. [Google Scholar]
- Chen, S.; Xu, Y.; Qian, M.C. Aroma characterization of Chinese rice wine by gas chromatography-olfactometry, chemical quantitative analysis, and aroma reconstitution. J. Agric. Food Chem. 2013, 61, 11295–11302. [Google Scholar] [CrossRef]
- Gamoh, K.; Nakashima, K. Liquid chromatography/mass spectrometric determination oftrans-resveratrol in wine using a tandem solid-phase extraction method. Rapid Commun. Mass Spectrom. 1999, 13, 1112–1115. [Google Scholar] [CrossRef]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Villiers, A.D.; Lynen, F.; Crouch, A.; Sandra, P. Development of a solid-phase extraction procedure for the simultaneous determination of polyphenols, organic acids and sugars in wine. Chromatographia 2004, 59, 403–409. [Google Scholar] [CrossRef]
- Li, T.; Hui, R.; Hou, D. Analysis of volatile compounds from Chinese wine by solid phase extraction and GC/MS. J. Chin. Mass Spectrom. Soc. 2007, 28, 96–100. [Google Scholar]
- Nie, Q.; Fan, W.; Xu, Y. Quantification of γ-lactones in Baijiu with solid phase extraction (SPE)-gas chromatography mass spectrometry (GC-MS). Food Ferment. Ind. 2012, 38, 159–164. [Google Scholar]
- Aznar, M.; Cacho, J.; Ferreira, V. Fast fractionation of complex organic extracts by normal-phase chromatography on a solid-phase extraction polymeric sorbent: Optimization of a method to fractionate wine flavor extracts. J. Chromatogr. A 2003, 1017, 17–26. [Google Scholar]
- Gun’Ko, V.M.; Turov, V.V.; Zarko, V.I.; Nychiporuk, Y.M.; Turov, A.V. Structural features of polymer adsorbent LiChrolut EN and interfacial behavior of water and water/organic mixtures. J. Colloid Interface Sci. 2008, 323, 6–17. [Google Scholar] [CrossRef]
- Fiehn, O.; Jekel, M. Comparison of sorbents using semipolar to highly hydrophilic compounds for a sequential solid-phase extraction procedure of industrial wastewaters. Anal. Chem. 1996, 68, 3083–3089. [Google Scholar] [CrossRef]
- López, P.; Batlle, R.; Nerín, C.; Cacho, J.; Ferreira, V. Use of new generation poly(styrene-divinylbenzene) resins for gas-phase trapping-thermal desorption. Application to the retention of seven volatile organic compounds. J. Chromatogr. A 2007, 1139, 36–44. [Google Scholar] [CrossRef]
- Qian, M.C.; Reineccius, G. Identification of aroma compounds in parmigiano-reggiano cheese by gas chromatography/olfactometry. J. Dairy Sci. 2002, 85, 1362–1369. [Google Scholar] [CrossRef]
- Etievant, P.X.; Bayonove, C.L. Aroma components of pomaces and wine from the variety muscat de frontignan. J. Sci. Food Agric. 2010, 34, 393–403. [Google Scholar] [CrossRef]
- Ferreira, V.; Fernández, P.; Gracia, J.P.; Cacho, J.F. Identification of volatile constituents in wines from Vitis vinifera var vidadillo and sensory contribution of the different wine flavour fractions. J. Sci. Food Agric. 2010, 69, 299–310. [Google Scholar] [CrossRef]
- Shen, Y. Handbook of Chinese Baijiu Making Technology; China Light Industry Press: Beijing, China, 2007. [Google Scholar]
- Zheng, J.; Zhao, D.; Peng, Z.; Yang, K.; Zhang, Q.; Zhang, Y. Variation of aroma profile in fermentation process of Wuliangye baobaoqu starter. Food Res. Int. 2018, 114, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kam, S.F.; Chung, H.Y. Comparison of the volatile components in two Chinese wines, Moutai and Wuliangye. J. Korean Soc. Appl. Biol. Chem 2009, 52, 275–282. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, D.; Yang, K.; Zhang, J.; Liu, F. Research progress in production of Wuliangye by microbial ecology and flavor chemistry. Liquor. Mak. Sci. Technol. 2019, 112–116. [Google Scholar]
- Peng, Z.; Zhao, D.; Zheng, J.; Yuan, J.; Cao, H.; Peng, Z. Comparison of flavor characteristics between low-alcohol and high-alcohol Wuliangye by using modern flavor chemistry technology. Liquor. Mak. Sci. Technol. 2019, 12, 17–22. [Google Scholar]
- Zhao, D.; Zheng, J. Research progress on aroma compounds in Wuliangye. In Sex, Smoke, and Spirits: The Role of Chemistry; Guthrie, B., Beauchamp, J.D., Buettner, A., Toth, S., Qian, M.C., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2019; pp. 253–261. [Google Scholar]
- Cheng, J.; Hu, G. Determination of lactic acid and fatty acids in Chinese spirits by direct-injection technique with packed column gas chromatography. Liquor. Mak. Sci. Technol. 2019, 77–78. [Google Scholar]
- Wang, X.; Fan, W.; Xu, Y. Comparison on aroma compounds in Chinese soy sauce and strong aroma type liquors by gas chromatography–olfactometry, chemical quantitative and odor activity values analysis. Eur. Food Res. Technol. 2014, 239, 813–825. [Google Scholar] [CrossRef]
- Fan, H.; Fan, W.; Xu, Y. Characterization of key odorants in Chinese chixiang aroma-type liquor by gas chromatography–olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2015, 63, 3660–3668. [Google Scholar] [CrossRef] [PubMed]
- Roland, T.; Friese, L.; Fendesack, F.; Koppler, H. Gas chromatographic-mass spectrometric investigation of hop aroma constituents in beer. J. Agric. Food Chem. 1978, 26, 1422–1426. [Google Scholar]
- Akio, Y. Identification of volatile compounds in poultry manure by gas chromatography-mass spectrometry. J. Chromatogr. 1987, 387, 371–378. [Google Scholar]
- Cho, I.H.; Choi, H.K.; Kim, Y.S. Difference in the volatile composition of pine-mushrooms (Tricholoma matsutake Sing.) according to their grades. J. Agric. Food Chem. 2006, 54, 4820–4825. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.C.; Wang, Y. Seasonal Variation of volatile composition and odor activity value of ‘Marion’ (Rubus Spp. Hyb) and ‘Thornless Evergreen’ (R. Laciniatus L.) blackberries. J. Food Sci. 2005, 70, C13–C20. [Google Scholar] [CrossRef]
- Mallia, S.; Ferna’ndez-Garcı´a, E.; Bosset, J.O. Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses. Int. Dairy J. 2005, 15, 741–758. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Y.; Li, J.; Fan, W.; Jiang, W. Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. J. Food Sci. 2009, 74, C90–C99. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
RI (HP-Innowax) | Compounds | Quantifier Ion (Qualifier Ions) (m/z) | Recovery | Standard Deviation |
---|---|---|---|---|
900 | Ethyl acetate | 43 (61, 70) | 138% | 2% |
1064 | Ethyl 3-methylbutanoate | 88 (85, 60) | 103% | 5% |
1137 | Ethyl pentanoate | 88 (85, 73) | 118% | 10% |
1244 | Ethyl hexanoate | 88 (99, 60) | 124% | 4% |
1329 | Ethyl heptanoate | 88 (113, 101) | 107% | 9% |
1446 | Ethyl octanoate | 88 (101, 127) | 96% | 1% |
1538 | Ethyl nonanoate | 88 (101, 141) | 96% | 7% |
1630 | Ethyl decanoate | 88 (101, 155) | 95% | 5% |
1358 | Ethyl lactate | 45 (75) | 99% | 8% |
1410 | Ethyl 2-hydroxybutanoate | 59 (75, 89) | 98% | 10% |
1442 | Ethyl 2-hydroxypentanoate | 73 (55, 104) | 104% | 7% |
1468 | Butyl lactate | 45 (57, 85) | 98% | 8% |
1545 | Ethyl 2-hydroxy-4-methylpentanoate | 69 (87, 104) | 101% | 5% |
1583 | Isoamyl lactate | 45 (70, 55) | 99% | 7% |
1635 | γ-Butyrolactone | 42 (56, 86) | 35% | 2% |
1615 | γ-Pentalactone | 56 (85, 41) | 106% | 4% |
1726 | γ-Hexanolactone | 85 (56, 70) | 111% | 4% |
1785 | γ-Heptalactone | 85 (56, 110) | 111% | 4% |
1883 | γ-Octalactone | 85 (56, 100) | 124% | 3% |
2129 | γ-Decalactone | 85 (56, 128) | 113% | 1% |
2376 | γ-Dodecalactone | 85 (41, 55) | 107% | 2% |
1882 | Guaiacol | 109 (81, 124) | 108% | 6% |
1931 | 2,6-Dimethylphenol | 122 (107, 77) | 112% | 4% |
1979 | 4-Methylguaiacol | 138 (123, 95) | 107% | 5% |
2007 | Phenol | 94 (66, 39) | 97% | 7% |
2079 | p-Cresol | 107 (108, 77) | 100% | 5% |
2132 | 4-Ethylphenol | 107 (122, 77) | 100% | 5% |
2211 | 4-Vinylguaiacol | 135 (150, 107) | 102% | 4% |
1094 | 2-Methylpropanol | 43 (41, 74) | 92% | 4% |
1149 | 1-Butanol | 56 (41, 43) | 117% | 14% |
1224 | 3-Methyl-1-butanol | 55 (70, 42) | 109% | 2% |
1265 | 1-Pentanol | 42 (55, 70) | 106% | 5% |
1366 | 1-Hexanol | 56 (69, 43) | 111% | 5% |
1465 | 1-Heptanol | 70 (56, 43) | 117% | 6% |
1556 | 1-Octanol | 56 (70, 84) | 113% | 4% |
1427 | Acetic acid | 60 (43, 45) | 6% | 4% |
1526 | Propanoic acid | 74 (45, 57) | 19% | 5% |
1565 | 2-Methylpropanoic acid | 43 (73, 88) | 78% | 2% |
1644 | Butanoic acid | 60 (73, 55) | 67% | 3% |
1686 | 3-Methylbutanoic acid | 60 (43, 87) | 74% | 1% |
1753 | Pentanoic acid | 60 (73, 55) | 67% | 4% |
1866 | Hexanoic acid | 60 (73, 87) | 68% | 3% |
1112 | 2-n-Butyl furan | 81 (53, 124) | 82% | 9% |
1518 | 2-Acetylfuran | 95 (110, 43) | 119% | 5% |
1477 | Furfural | 96 + 95 (39, 67) | 119% | 7% |
1659 | 3-Furanmethanol | 98 (69, 81) | 102% | 5% |
1665 | Furfuryl butanoate | 81 (98, 168) | 109% | 4% |
1228 | Pyrazine | 80 (53, 81) | 73% | 5% |
1283 | 2-Methylpyrazine | 94 (67, 53) | 108% | 1% |
1319 | 2,5-Dimethylpyrazine | 108 (42, 81) | 103% | 2% |
1346 | 2,6-Dimethylpyrazine | 108 (42, 40) | 109% | 0% |
1292 | 2-Ethylpyrazine | 107 (108, 80) | 119% | 3% |
1330 | 2,3-Dimethylpyrazine | 67 (108, 40) | 107% | 2% |
1418 | Trimethylpyrazine | 122 (42, 81) | 108% | 4% |
1434 | 3-Ethyl-2,5-dimethylpyrazine | 135 (56, 108) | 113% | 1% |
1447 | 2,3-Dimethyl-5-ethylpyrazine | 135 (108, 136) | 118% | 2% |
1463 | 2-Ethenyl-6-methylpyrazine | 120 (52, 94) | 114% | 5% |
1480 | Tetramethylpyrazine | 136 (54, 42) | 113% | 3% |
1491 | 2,3,5-Trimethyl-6-ethylpyrazine | 149 (150, 122) | 109% | 5% |
1501 | 2,3-Diethyl-5-methylpyrazine | 150 (135, 121) | 109% | 5% |
1665 | Ethyl benzoate | 105 (77, 122) | 109% | 4% |
1789 | Ethyl phenylacetate | 91 (164, 65) | 113% | 5% |
1896 | Benzyl alcohol | 79 (108, 91) | 107% | 6% |
1907 | Ethyl 3-phenylpropanoate | 104 (91, 178) | 111% | 4% |
1931 | Phenylethyl alcohol | 91 (122, 65) | 112% | 4% |
1958 | Phenethyl butanoate | 104 (105, 71) | 112% | 1% |
2160 | Phenethyl hexanoate | 104 (105, 99) | 104% | 4% |
RI (HP-Innowax) | Compounds | Less Polar Fractions | More Polar Fractions | |||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | ||
900 | Ethyl acetate | 0% | 0% | 0% | 0% | 0% | 100% | 0% |
1032 | Ethyl butanoate | 0% | 0% | 10% | 44% | 44% | 2% | 0% |
1049 | Ethyl 2-methylbutanoate | 0% | 0% | 40% | 60% | 0% | 0% | 0% |
1064 | Ethyl 3-methylbutanoate | 0% | 0% | 27% | 49% | 24% | 0% | 0% |
1075 | Butyl acetate | 0% | 0% | 0% | 0% | 70% | 30% | 0% |
1122 | Isopentyl acetate | 0% | 0% | 0% | 11% | 70% | 19% | 0% |
1137 | Ethyl pentanoate | 0% | 0% | 17% | 49% | 32% | 2% | 0% |
1191 | Ethyl 4-methylpentanoate | 0% | 0% | 26% | 53% | 21% | 0% | 0% |
1227 | Butyl butanoate | 0% | 1% | 36% | 52% | 11% | 0% | 0% |
1244 | Ethyl hexanoate | 0% | 2% | 28% | 46% | 22% | 2% | 0% |
1272 | Isopentyl butanoate | 0% | 0% | 43% | 50% | 7% | 0% | 0% |
1277 | Hexyl acetate | 0% | 0% | 0% | 5% | 83% | 13% | 0% |
1317 | Propyl hexanoate | 0% | 4% | 36% | 50% | 10% | 0% | 0% |
1329 | Ethyl heptanoate | 0% | 2% | 30% | 53% | 16% | 0% | 0% |
1351 | Isobutyl hexanoate | 0% | 7% | 46% | 45% | 3% | 0% | 0% |
1376 | Isoamyl isovalerate | 0% | 6% | 43% | 47% | 4% | 0% | 0% |
1417 | Butyl hexanoate | 0% | 5% | 40% | 49% | 7% | 0% | 0% |
1428 | Hexyl butanoate | 0% | 6% | 38% | 47% | 9% | 0% | 0% |
1446 | Ethyl octanoate | 0% | 2% | 30% | 53% | 14% | 0% | 0% |
1469 | Isopentyl hexanoate | 0% | 6% | 45% | 46% | 3% | 0% | 0% |
1505 | Pentyl hexanoate | 0% | 5% | 40% | 49% | 5% | 0% | 0% |
1538 | Ethyl nonanoate | 0% | 3% | 30% | 55% | 12% | 0% | 0% |
1605 | Hexyl hexanoate | 0% | 0% | 43% | 52% | 6% | 0% | 0% |
1630 | Ethyl decanoate | 0% | 3% | 29% | 56% | 12% | 0% | 0% |
2052 | Ethyl tetradecanoate | 0% | 7% | 46% | 38% | 9% | 0% | 0% |
2158 | Ethyl pentadecanoate | 0% | 0% | 56% | 44% | 0% | 0% | 0% |
2252 | Ethyl palmitate | 0% | 0% | 49% | 40% | 10% | 0% | 0% |
2421 | Ethyl stearate | 0% | 0% | 68% | 32% | 0% | 0% | 0% |
RI (HP-Innowax) | Compounds | Less Polar Fractions | More Polar Fractions | |||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | ||
Acids | ||||||||
1565 | 2-Methylpropanoic acid | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1644 | Butanoic acid | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1686 | 3-Methylbutanoic acid | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1753 | Pentanoic acid | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1866 | Hexanoic acid | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
Alcohols | ||||||||
1094 | 2-Methyl-1-propanol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1118 | 2-Pentanol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1149 | 1-Butanol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1224 | 3-Methyl-1-butanol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1265 | 1-Pentanol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1366 | 1-Hexanol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1465 | 1-Heptanol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1556 | 1-Octanol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
Pyrazines | ||||||||
1283 | 2-Methylpyrazine | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1346 | 2,6-Dimethylpyrazine | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1418 | Trimethylpyrazine | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1480 | Tetramethylpyrazine | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
Lactones | ||||||||
1615 | γ-Pentalactone | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
2024 | γ-Nonanolactone | 0% | 0% | 0% | 0% | 0% | 3% | 97% |
Furans | ||||||||
1477 | Furfural | 0% | 0% | 0% | 0% | 0% | 74% | 26% |
1518 | 2-Acety furan | 0% | 0% | 0% | 0% | 0% | 9% | 91% |
1659 | 3-Furanmethanol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
Phenolics | ||||||||
1882 | Guaiacol | 0% | 0% | 0% | 0% | 0% | 1% | 99% |
1931 | 2,6-Dimethylphenol | 0% | 0% | 0% | 9% | 83% | 8% | 0% |
1979 | 4-Methylguaiacol | 0% | 0% | 0% | 0% | 0% | 3% | 97% |
2007 | Phenol | 0% | 0% | 0% | 0% | 0% | 7% | 93% |
2050 | 4-Ethylguaiacol | 0% | 0% | 0% | 0% | 0% | 2% | 98% |
2079 | p-Cresol | 0% | 0% | 0% | 0% | 0% | 5% | 95% |
2132 | 4-Ethylphenol | 0% | 0% | 0% | 0% | 0% | 7% | 93% |
Hydroxyesters and dibasic esters | ||||||||
1358 | Ethyl lactate | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1410 | Ethyl 2-hydroxybutanoate | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1468 | Butyl lactate | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1545 | Ethyl 2-hydroxy-4-methylpentanoate | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1669 | Diehtyl butanedioate | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
Aldehydes and ketones | ||||||||
986 | 2-Pentone | 0% | 0% | 0% | 0% | 0% | 100% | 0% |
1083 | Hexanal | 0% | 0% | 0% | 0% | 100% | 0% | 0% |
1193 | Heptanal | 0% | 0% | 0% | 0% | 85% | 15% | 0% |
1409 | Nonanal | 0% | 0% | 0% | 20% | 60% | 15% | 5% |
Aromatics | ||||||||
1665 | Ethyl benzoate | 0% | 2% | 28% | 61% | 9% | 0% | 0% |
1652 | Benzeneacetaldehyde | 0% | 0% | 0% | 0% | 0% | 39% | 61% |
1789 | Ethyl phenylacetate | 0% | 0% | 0% | 0% | 32% | 68% | 0% |
1896 | Benzyl alcohol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
1907 | Ethyl 3-phenylpropanoate | 0% | 0% | 0% | 0% | 19% | 81% | 0% |
1931 | Phenylethyl alcohol | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
RI a (RIL) | Compounds | Quantifier Ion (Qualifier Ions) (m/z) | Identification Basis b | Wuliangye | Moutai | Fenjiu | |||
---|---|---|---|---|---|---|---|---|---|
F1–F5 Combined Fractions | F6–F7 Combined Fractions | F1–F5 Combined Fractions | F6–F7 Combines Fractions | F1–F5 Combined Fractions | F6–F7 Combined Fractions | ||||
Esters | |||||||||
900 | Ethyl acetate | 43 (61, 70) | MS, RI | 100% | 0% | 100% | 0% | 100% | 0% |
1032 | Ethyl butanoate | 71 (88, 60) | MS, RI | 100% | 0% | 100% | 0% | 100% | 0% |
1049 | Ethyl 2-methylbutanoate | 57 (102, 85) | MS, RI | 100% | 0% | 100% | 0% | 100% | 0% |
1064 | Ethyl 3-methylbutanoate | 88 (85, 60) | MS, RI | 100% | 0% | 100% | 0% | 100% | 0% |
1122 (1126 [35]) | Isopentyl acetate | 70 (55, 87) | MS, RIL | 100% | 0% | 100% | 0% | 100% | 0% |
1137 | Ethyl pentanoate | 88 (85, 73) | MS, RI | 100% | 0% | 100% | 0% | 100% | 0% |
1191 | Ethyl 4-methylpentanoate | 74 (101, 86) | MS, RI | 100% | 0% | – | – | – | – |
1244 | Ethyl hexanoate | 88 (99, 60) | MS, RI | 98% | 2% | 94% | 6% | 83% | 17% |
1279 (1305 [36]) | Pentyl butanoate | 71 (55, 89) | MS, RIL | 100% | 0% | – | – | – | – |
1287 | Hexyl acetate | 56 (61, 84) | MS, RI | 100% | 0% | 100% | 0% | – | – |
1333 | Propyl hexanoate | 99 (117, 61) | MS, RI | 100% | 0% | 100% | 0% | – | – |
1338 | Butyl hexanoate | 99 (117, 71) | MS, RI | 100% | 0% | – | – | – | – |
1348 | Ethyl heptanoate | 88 (113, 101) | MS, RI | 100% | 0% | 96% | 4% | 91% | 9% |
1366 | Isobutyl hexanoate | 99 (117, 71) | MS, RI | 100% | 0% | – | – | – | – |
1376 | Isopentyl isopentanoate | 70 (85, 57) | MS, RI | 100% | 0% | – | – | – | – |
1428 | Hexyl butanoate | 71 (89, 84) | MS, RI | 100% | 0% | – | – | – | – |
1446 | Ethyl octanoate | 88 (101, 127) | MS, RI | 99% | 1% | 97% | 3% | 100% | 0% |
1469 | Isopentyl hexanoate | 70 (99, 117) | MS, RI | 100% | 0% | 100% | 0% | – | – |
1538 | Ethyl nonanoate | 88 (101, 141) | MS, RI | 91% | 9% | 89% | 11% | 82% | 18% |
1561 (1552 [35]) | Isopentyl heptanoate | 70 (55, 85) | MS, RIL | 100% | 0% | – | – | – | – |
1605 | Hexyl hexanoate | 117 (99, 84) | MS, RI | 99% | 1% | 84% | 16% | 0% | 100% |
1630 | Ethyl decanoate | 88 (101, 155) | MS, RI | 93% | 7% | 92% | 8% | 96% | 4% |
1850 | Ethyl dodecanoate | 88 (101, 183) | MS, RI | 99% | 1% | 97% | 3% | 100% | 0% |
2052 | Ethyl tetradecanoate | 88 (101, 157) | MS, RI | 99% | 1% | 99% | 1% | 100% | 0% |
2252 | Ethyl palmitate | 88 (101, 157) | MS, RI | 98% | 2% | 99% | 1% | 96% | 4% |
2477 | Ethyl Oleate | 55 (95, 109) | MS, RI | 82% | 18% | 100% | 0% | 100% | 0% |
2525 | Ethyl linoleate | 67 (95, 109) | MS, RI | 99% | 1% | 100% | 0% | 100% | 0% |
Acids | |||||||||
1468 | Acetic acid | 60 (43, 45) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1565 | 2-Methylpropanoic acid | 43 (73, 88) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1644 | Butanoic acid | 60 (73, 55) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1686 | 3-Methylbutanoic acid | 60 (43, 87) | MS, RI | 0% | 100% | 0% | 100% | – | – |
1753 | Pentanoic acid | 60 (73, 55) | MS, RI | 0% | 100% | 0% | 100% | – | – |
1816 (1817 [36]) | 4-Methylpentanoic acid | 57 (74, 83) | MS, RIL | 0% | 100% | 0% | 100% | – | – |
1866 | Hexanoic acid | 60 (73, 87) | MS, RI | 0% | 100% | 0% | 100% | – | – |
1978 | Heptanoic acid | 60 (73, 87) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
2067 | Octanoic acid | 60 (73, 101) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
2138 | Nonanoic acid | 60 (73, 115) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
Alcohols | |||||||||
1033 | 2-Butanol | 45 (59, 41) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1094 | 2-Methyl-1-propanol | 43 (74, 41) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1118 (1118 [36]) | 3-Methyl-2-butanol | 45 (55, 73) | MS, RIL | 0% | 100% | 0% | 100% | 0% | 100% |
1149 | 1-Butanol | 56 (41, 43) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1168 (1170 [37]) | 3-Penten-2-ol | 71 (43, 86) | MS, RIL | 0% | 100% | 0% | 100% | 0% | 100% |
1215 (1220 [38]) | 2-Methyl-1-butanol | 57 (41, 70) | MS, RIL | 0% | 100% | 0% | 100% | 0% | 100% |
1224 | 3-Methyl-1-butanol | 55 (70, 42) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1244 | 2-Hexanol | 45 (69, 87) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1265 | 1-Pentanol | 42 (55, 70) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1340 | 2-Heptanol | 45 (55, 83) | MS, RI | 0% | 100% | 0% | 100% | – | – |
1366 | 1-Hexanol | 56 (69, 43) | MS, RI | 0% | 100% | 0% | 100% | – | – |
1393 (1396 [37]) | 3-Octanol | 59 (83, 101) | MS, RIL | 0% | 100% | 0% | 100% | 0% | 100% |
1458 | 1-Octen-3-ol | 57 (85, 71) | MS, RI | 0% | 100% | – | – | – | – |
1465 | 1-Heptanol | 70 (56, 43) | MS, RI | 0% | 100% | 0% | 100% | – | – |
1496 (1495 [5]) | 2-Ethyl-1-hexanol | 57 (70, 83) | MS, RIL | 0% | 100% | 0% | 100% | 0% | 100% |
1556 | 1-Octanol | 56 (70, 84) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1605 (1605 [39]) | 1,2-Propanediol | 45 (43, 61) | MS, RIL | 0% | 100% | 0% | 100% | 0% | 100% |
Pyrazines | |||||||||
1283 | 2-Methylpyrazine | 94 (67, 53) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1346 | 2,6-Dimethylpyrazine | 108 (42, 40) | MS, RI | 0% | 100% | 0% | 100% | – | – |
1400 | 2-Ethyl-6-methylpyrazine | 121 (94, 56) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1418 | Trimethylpyrazine | 122 (42, 81) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1469 | 2-Ethyl-3,5-dimethyl-pyrazine | 135 (54, 108) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1480 | Tetramethylpyrazine | 136 (54, 42) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
Furans | |||||||||
1477 | Furfural | 96 + 95 (39, 67) | MS, RI | 14% | 86% | 9% | 91% | 25% | 75% |
1518 | 2-Acetylfuran | 95 (110, 39) | MS, RI | 0% | 100% | 0% | 100% | – | – |
1618 | 2-Acetyl-5-methylfuran | 109 (124, 53) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1659 | 3-Furanmethanol | 98 (69, 81) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
Phenolics | |||||||||
2007 | Phenol | 94 (66, 65) | MS, RI | 12% | 88% | 18% | 82% | 25% | 75% |
2079 | p-Cresol | 107 (108, 77) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
2132 | 2-Ethylphenol | 107 (122, 77) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
Hydroxy esters and dibasic esters | |||||||||
1358 | Ethyl lactate | 45 (75) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1446 (1443 [6]) | Ethyl 2-hydroxy-3-methylbutanoate | 73 (55, 104) | MS, RIL | 0% | 100% | 0% | 100% | 0% | 100% |
1468 | Butyl lactate | 45 (57, 85) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1545 | Ethyl 2-hydroxy-4-methylpentanoate | 69 (87, 104) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1562 (1540 [38]) | Ethyl 3-hydroxybutanoate | 45 (60, 87) | MS, RIL | 0% | 100% | 0% | 100% | – | – |
1565 | Isoamyl lactate | 45 (70, 55) | MS, RI | 0% | 100% | – | – | – | – |
1612 (1607 [40]) | Ethyl 4-oxopentanoate | 99 (74, 129) | MS, RIL | 0% | 100% | – | – | – | – |
1669 | Butanedioic acid, diethyl ester | 101 (129, 73) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
Aldehydes and ketones | |||||||||
1409 | Nonanal | 57 (43, 98) | MS, RI | 0% | 100% | 0% | 100% | – | – |
986 | 2-Pentanone | 43 (86, 71) | MS, RI | 0% | 100% | 0% | 100% | – | – |
1081 (1083 [36]) | 2-Hexanone | 58 (43, 85) | MS, RIL | 43% | 57% | – | – | – | – |
1203 (1200 [38]) | 2-Heptanone | 58 (43, 71) | MS, RIL | 86% | 14% | 0% | 100% | – | – |
1304 | Acetoin | 45 (88) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1301 (1283 [35]) | 2-Octanone | 58 (71, 43) | MS, RIL | 100% | 0% | – | – | – | – |
1409 (1417 [38]) | 2-Nonanone | 58 (71, 142) | MS, RIL | 100% | 0% | – | – | – | – |
1595 (1608 [38]) | 2-Undecanone | 58 (43, 71) | MS, RIL | – | – | 100% | 0% | – | – |
Acetals | |||||||||
903 | 1,1-Diethoxyethane | 45 (73, 103) | MS, RI | – | – | 100% | 0% | – | – |
1069 (1068 [4]) | 1,1-Diethoxy-3-methylbutane | 103 (75, 115) | MS, RIL | 100% | 0% | 63% | 37% | 100% | 0% |
1244 | 1,1-Diethoxyhexane | 103 (129, 75) | MS, RI | 0% | 100% | 61% | 39% | 100% | 0% |
1319 | 1,1,3-Triethoxypropane | 103 (87, 75) | MS, RI | 30% | 70% | 1% | 99% | 0% | 100% |
Aromatics | |||||||||
1534 (1537 [6]) | Benzaldehyde | 106 (77, 51) | MS, RIL | 98% | 2% | 99% | 1% | 98% | 2% |
1665 | Ethyl benzoate | 105 (77, 122) | MS, RI | 97% | 3% | 82% | 18% | 97% | 3% |
1652 | Benzeneacetaldehyde | 91 (120, 65) | MS, RI | 0% | 100% | 0% | 100% | 18% | 82% |
1789 | Ethyl phenylacetate | 91 (164, 65) | MS, RI | 75% | 25% | 98% | 2% | 95% | 5% |
1896 | Benzyl alcohol | 79 (108, 91) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1907 | Ethyl 3-phenylpropanoate | 104 (91, 178) | MS, RI | 68% | 32% | 95% | 5% | 96% | 4% |
1931 | Phenylethyl alcohol | 91 (122, 65) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
Others | |||||||||
1191 | Pyridine | 79 (52, 78) | MS, RI | 0% | 100% | 0% | 100% | 0% | 100% |
1994 | 2-Acetylpyrrole | 109 (94, 66) | MS, RI | 0% | 100% | 0% | 100% | – | – |
Compounds | Company | Purity | Quantifier Ion (Qualifier Ions) (m/z) | Concentration (ppm) |
---|---|---|---|---|
Esters | ||||
Ethyl acetate | J&K | 99.90% | 43 (61, 70) | 5 |
Ethyl butanoate | J&K | 99.00% | 71 (88, 60) | 200 |
Ethyl 2-methylbutanoate | TCI | >98.0% | 57 (102, 85) | 5 |
Ethyl 3-methylbutanoate | TCI | >99.0% | 88 (85, 60) | 5 |
Butyl acetate | TCI | >99.0% | 43 (56, 73) | 5 |
Isopentyl acetate | TCI | >98.0% | 70 (55, 87) | 5 |
Ethyl pentanoate | TCI | >98.0% | 88 (85, 73) | 5 |
Ethyl 4-methylpentanoate | Sigma | ≥97.0% | 74 (101, 86) | 5 |
Butyl butanoate | TCI | >99.0% | 71 (56, 89) | 5 |
Ethyl hexanoate | J&K | 99.00% | 88 (99, 60) | 2000 |
Isopentyl butanoate | TCI | >98.0% | 71 (70, 55) | 5 |
Isoamyl isovalerate | Sigma | ≥98.0% | 70 (85, 57) | 5 |
Hexyl acetate | TCI | >99.0% | 56 (61, 84) | 5 |
Propyl hexanoate | TCI | >98.0% | 99 (117, 61) | 5 |
Ethyl heptanoate | TCI | >97.0% | 88 (113, 101) | 20 |
Isobutyl hexanoate | TCI | >98.0% | 99 (117, 71) | 5 |
Butyl hexanoate | TCI | >98.0% | 99 (117, 71) | 5 |
Hexyl butanoate | TCI | >98.0% | 71 (89, 84) | 5 |
Ethyl octanoate | TCI | >98.0% | 88 (101, 127) | 5 |
Isopentyl hexanoate | TCI | >98.0% | 70 (99, 117) | 5 |
Pentyl hexanoate | TCI | >98.0% | 70 (99, 117) | 5 |
Ethyl nonanoate | TCI | >95.0% | 88 (101, 141) | 5 |
Hexyl hexanoate | TCI | >98.0% | 117 (99, 84) | 5 |
Ethyl decanoate | TCI | >98.0% | 88 (101, 155) | 5 |
Ethyl tetradecanoate | TCI | >98.0% | 88 (101, 157) | 5 |
Ethyl pentadecanoate | TCI | >97.0% | 88 (101, 157) | 5 |
Ethyl palmitate | TCI | >97.0% | 88 (101, 157) | 5 |
Ethyl stearate | Sigma | ≥99.0% | 88 (101, 157) | 5 |
Acids | ||||
Acetic acid | Aladdin | 99.70% | 60 (43, 45) | 500 |
Propanoic acid | Sigma | ≥99.5% | 74 (45, 57) | 50 |
2-Methylpropanoic acid | TCI | >99.0% | 43 (73, 88) | 50 |
Butanoic acid | Sigma | ≥99.0% | 60 (73, 55) | 100 |
3-Methylbutanoic acid | TCI | >99.0% | 60 (43, 87) | 100 |
Pentanoic acid | Sigma | ≥99.0% | 60 (73, 55) | 50 |
Hexanoic acid | Sigma | ≥99.5% | 60 (73, 87) | 1000 |
Lactic acid | J&K | 85.00% | – | 500 |
Alcohols | ||||
1-Propanol | TCI | >99.5% | 59 (42, 60) | 200 |
2-Methyl-1-propanol | TCI | >99.0% | 43 (74, 41) | 100 |
2-Pentanol | TCI | >98.0% | 45 (55, 73) | 20 |
1-Butanol | J&K | 99.50% | 56 (41, 43) | 100 |
3-Methyl-1-butanol | TCI | >99.0% | 55 (70, 42) | 200 |
1-Pentanol | TCI | >99.0% | 42 (55, 70) | 50 |
1-Hexanol | TCI | >98.0% | 56 (69, 43) | 50 |
1-Heptanol | TCI | 98.00% | 70 (56, 43) | 20 |
1-Octanol | TCI | >99.0% | 56 (70, 84) | 20 |
Pyrazines | ||||
2-Methylpyrazine | Sigma | ≥99.0% | 94 (67, 53) | 5 |
2,6-Dimethylpyrazine | TCI | >98.0% | 108 (42, 40) | 5 |
Trimethylpyrazine | TCI | >98.0% | 122 (42, 81) | 5 |
Tetramethylpyrazine | TCI | >98.0% | 136 (54, 42) | 5 |
Lactones | ||||
γ-Valerolactone | TCI | >98.0% | 56 (85, 41) | 5 |
γ-Nonanolactone | TCI | SG 0.97 | 85 (99, 55) | 5 |
Furans | ||||
Furfural | TCI | >98.0% | 96 + 95 (39, 67) | 100 |
2-Acety furan | Sigma | ≥99.0% | 95 (110, 39) | 5 |
2-Furanmethanol | TCI | >98.0% | 98 (69, 81) | 5 |
Phenolics | ||||
Guaiacol | TCI | >98.0% | 109 (81, 124) | 5 |
2,6-Dimethylphenol | TCI | >99.0% | 122 (107, 77) | 5 |
4-Methylguaiacol | TCI | >98.0% | 138 (123, 95) | 5 |
Phenol | TCI | >99.5% | 94 (66, 39) | 5 |
4-Ethylguaiacol | TCI | >97.0% | 107 (122, 77) | 5 |
p-Cresol | TCI | >99.0% | 107 (108, 77) | 5 |
4-Ethylphenol | TCI | >97.0% | 43 (41, 74) | 5 |
Hydroxy esters and dibasic esters | ||||
Ethyl L(-)-lactate | J&K | 98.00% | 45 (75) | 1000 |
Ethyl 2-hydroxybutanoate | TCI | >95.0% | 59 (75, 89) | 5 |
Butyl lactate | TCI | >98.0% | 45 (57, 85) | 5 |
Ethyl 2-hydroxy-4-methylpentanoate | TCI | >98.0% | 69 (87, 104) | 5 |
Diehtyl butanedioate | TCI | >99.0% | 101 (129, 73) | 5 |
Aldehydes and ketones | ||||
2-Pentone | TCI | SG 0.81 | 43 (86, 71) | 20 |
Hexanal | TCI | >95.0% | 56 (44, 72) | 5 |
Heptanal | TCI | >95.0% | 70 (55, 81) | 5 |
Nonanal | TCI | >95.0% | 57 (43, 98) | 5 |
Aromatics | ||||
Ethyl benzoate | TCI | >99.0% | 105 (77, 122) | 5 |
Benzeneacetaldehyde | Aldrich | ≥90.0% | 91 (120 92) | 5 |
Ethyl phenylacetate | TCI | >99.0% | 91 (164, 65) | 5 |
Benzyl alcohol | Sigma | analytical standard | 79 (108, 91) | 5 |
Phenylethyl alcohol | TCI | >98.0% | 91 (122, 65) | 5 |
Ethyl 3-phenylpropanoate | TCI | >98.0% | 104 (91, 178) | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Yang, K.; Liu, Z.; An, M.; Qiao, Z.; Zhao, D.; Zheng, J.; Qian, M.C. Tandem Solid-Phase Extraction Columns for Simultaneous Aroma Extraction and Fractionation of Wuliangye and Other Baijiu. Molecules 2021, 26, 6030. https://doi.org/10.3390/molecules26196030
He Z, Yang K, Liu Z, An M, Qiao Z, Zhao D, Zheng J, Qian MC. Tandem Solid-Phase Extraction Columns for Simultaneous Aroma Extraction and Fractionation of Wuliangye and Other Baijiu. Molecules. 2021; 26(19):6030. https://doi.org/10.3390/molecules26196030
Chicago/Turabian StyleHe, Zhanglan, Kangzhuo Yang, Zhipeng Liu, Mingzhe An, Zongwei Qiao, Dong Zhao, Jia Zheng, and Michael C. Qian. 2021. "Tandem Solid-Phase Extraction Columns for Simultaneous Aroma Extraction and Fractionation of Wuliangye and Other Baijiu" Molecules 26, no. 19: 6030. https://doi.org/10.3390/molecules26196030
APA StyleHe, Z., Yang, K., Liu, Z., An, M., Qiao, Z., Zhao, D., Zheng, J., & Qian, M. C. (2021). Tandem Solid-Phase Extraction Columns for Simultaneous Aroma Extraction and Fractionation of Wuliangye and Other Baijiu. Molecules, 26(19), 6030. https://doi.org/10.3390/molecules26196030