Occurrence of Phthalates in Bottled Drinks in the Chinese Market and Its Implications for Dietary Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Sample Collection and Analysis
2.3. Quality Assurance/Quality Control
2.4. Statistical Analysis
2.5. Exposure Doses and Health Risk Assessment of PAEs through Consumption of Bottled Drinks
3. Results and Discussion
3.1. Concentrations of Phthalates in Bottled Drinks
3.2. Factors Influencing Phthalates Concentrations in Bottled Drinks
3.3. Principal Component Analysis (PCA) of Phthalates in Bottled Drinks
3.4. Dietary Exposure to PAEs through Consumption of Bottled Drinks in China
3.5. Health Risk Assessment of Select PAEs through Consumption of Bottled Drinks in China
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Guo, Y.; Alomirah, H.; Cho, H.S.; Minh, T.B.; Mohd, M.A.; Nakata, H.; Kannan, K. Occurrence of phthalate metabolites in human urine from several Asian countries. Environ. Sci. Technol. 2011, 45, 3138–3144. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhang, H.H.; Zhang, J.; Wang, Q.W.; Yang, G.P. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area. Sci. Total Environ. 2018, 619, 93–102. [Google Scholar] [CrossRef]
- Antian, J. Toxicity and health threats of phthalate esters: Review of the literature. Environ. Health Perspect. 1973, 4, 1–26. [Google Scholar]
- Gu, S.; Zheng, H.; Xu, Q.; Sun, C.; Shi, M.; Wang, Z.; Li, F. Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. Aquat. Toxicol. 2017, 191, 122–130. [Google Scholar] [CrossRef]
- Karaconji, I.B.; Jurica, S.A.; Lasic, D.; Jurica, K. Facts about phthalate toxicity in humans and their occurrence in alcoholic beverages. Arh. Hig. Rada. Toksikol. 2017, 68, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.Q. SVHCs Their Toxic and Uses. Dyest. Color. 2011, 48, 47–52. [Google Scholar]
- Guo, Y.; Kannan, K. Challenges encountered in the analysis of phthalate esters in foodstuffs and other biological matrices. Anal. Bioanal. Chem. 2012, 404, 2539–2554. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, G.; Lei, K.; LeBlanc, A.G.; An, L. Phthalate esters and their potential Risk in PET bottled water stored under common conditions. Int. J. Environ. Res. Public Health 2020, 17, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irvin, E.A.; Calafat, A.M.; Silva, M.J.; Aguilar-Villalobos, M.; Needham, L.L.; Hall, D.B.; Cassidy, B.; Naeher, L.P. An estimate of phthalate exposure among pregnant women living in Trujillo, Peru. Chemosphere 2010, 80, 1301–1307. [Google Scholar] [CrossRef]
- Fromme, H.; Gruber, L.; Seckin, E.; Raab, U.; Zimmermann, S.; Kiranoglu, M.; Schlummer, M.; Schwegler, U.; Smolic, S.; Volkel, W. Phthalates and their metabolites in breast milk--results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ. Int. 2011, 37, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R.C.; Faisal, P.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater. 2017, 340, 360–383. [Google Scholar] [CrossRef]
- Grindler, N.M.; Vanderlinden, L.; Karthikraj, R.; Kannan, K.; Teal, S.; Polotsky, A.J.; Powell, T.L.; Yang, I.V.; Jansson, T. Exposure to phthalate, an endocrine disrupting chemical, alters the first trimester placental methylome and transcriptome in women. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, H. Phthalates and their impacts on human health. Healthcare 2021, 9, 603. [Google Scholar] [CrossRef]
- Hurst, C.H.; Waxman, D.J. Activation of PPARα and PPARγ by environmental phthalate monoesters. Toxicol. Sci. 2003, 74, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Maloney, E.K.; Waxman, D.J. Trans-activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol. Appl. Pharmacol. 1999, 161, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Praveena, S.M.; Teh, S.W.; Rajendran, R.K.; Kannan, N.; Lin, C.C.; Abdullah, R.; Kumar, S. Recent updates on phthalate exposure and human health: A special focus on liver toxicity and stem cell regeneration. Environ. Sci. Pollut. Res. 2018, 25, 11333–11342. [Google Scholar] [CrossRef] [PubMed]
- European Plasticisers: Comments to the Annex XV-CLH Dossier for DIOP, CAS No. 27554-26-3, Provided by ANSES. Available online: https://echa.europa.eu/documents/10162/e6e57e58-33ce-5e76-22c8-1c9f68842cb9 (accessed on 13 September 2021).
- Specht, I.O.; Toft, G.; Hougaard, K.S.; Lindh, C.H.; Lenters, V.; Jonsson, B.A.G.; Heederik, D.; Giwercman, A.; Bonde, J.P.E. Associations between serum phthalates and biomarkers of reproductive function in 589 adult men. Environ. Int. 2014, 66, 146–156. [Google Scholar] [CrossRef]
- Suzuki, Y.; Niwa, M.; Yoshinaga, J. Exposure assessment of phthalate esters in Japanese pregnant women by using urinary metabolite analysis. Environ. Health Prev. Med. 2009, 14, 180–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Wu, Q.; Kannan, K. Phthalate metabolites in urine from China, and implications for human exposures. Environ. Int. 2011, 37, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.; Meeker, J.D.; Duty, S.; Silva, M.J.; Calafat, A.M. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology 2006, 17, 682–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.P.; Phillips, S.P.; Feng, Y.L.; Yang, X.F. Phthalate esters in human milk: Concentration variations over a 6-month postpartum time. Environ. Sci. Technol. 2006, 40, 5276–5281. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D.; Aljarrah, A.; Miller, W.R.; Coldham, N.G.; Sauer, M.J.; Pope, G.S. Concentrations of parabens in human breast tumours. J. Appl. Toxicol. 2004, 24, 5–13. [Google Scholar] [CrossRef]
- Guo, Y.; Kannan, K. A Survey Phthalates and Parabens in Personal Care Products from the United States and Its Implications for Human Exposure. Environ. Sci. Technol. 2013, 47, 14442–14449. [Google Scholar] [CrossRef] [PubMed]
- Schettler, T. Human exposure to phthalates via consumer products. Int. J. Androl. 2006, 29, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Škrbić, B.D.; Ji, Y.; Živančev, J.R.; Jovanović, G.G.; Zhao, J. Mycotoxins, trace elements, and phthalates in marketed rice of different origin and exposure assessment. Food Addit. Contam. Part. B Surveill. 2017, 10, 256–267. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Liu, L.; Li, Y.; Ren, N.; Kannan, K. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. J. Agric. Food Chem. 2012, 60, 6913–6919. [Google Scholar] [CrossRef]
- Škrbić, B.D.; Ji, Y.; Đurišić-Mladenović, N.; Zhao, J. Occurrence of the phthalate esters in soil and street dust samples from the Novi Sad city area, Serbia, and the influence on the children’s and adults’ xposure. J. Hazard. Mater. 2016, 312, 272–279. [Google Scholar] [CrossRef]
- Škrbić, B.D.; Kadokami, K.; Antić, I. Survey on the micro-pollutants presence in surface water system of orthern Serbia and environmental and health risk assessment. Environ. Res. 2018, 166, 130–140. [Google Scholar] [CrossRef]
- Guo, Y.; Kannan, K. Comparative assessment of human exposure to phthalate ethers from house dust in China and the United States. Environ. Sci. Technol. 2011, 45, 3788–3794. [Google Scholar] [CrossRef]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbuhler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Cousins, I.T.; Mackay, D. Assessment of critical exposure pathways. Handb. Environ. Chem. 2003, 3, 227–262. [Google Scholar]
- Itoh, H.; Yoshida, K.; Masunaga, S. Quantitative identification of unknown exposure pathways of phthalates based on measuring their metabolites in human urine. Environ. Sci. Technol. 2007, 41, 4542–4547. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Shi, J.H.; Bo, T. Occurrence and risk assessment of selected phthalates in drinking water from waterworks in China. Environ. Sci. Pollut. Res. 2015, 22, 10690–10698. [Google Scholar] [CrossRef]
- Le, T.M.; Nguyen, h.m.n.; Nguyen, V.K.; Nguyen, A.V.; Vu, N.D.; Yen, N.T.H.; Hoang, A.Q.; Minh, T.B.; Kannan, K.; Tran, T.M. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam. Sci. Total Environ. 2021, 788, 147831. [Google Scholar] [CrossRef] [PubMed]
- Škrbic’, B.; Zˇivancˇev, J.; Mrmoš, N. Concentrations of arsenic, cadmium and lead in selected foodstuffs from Serbian market basket: Estimated intake by the population from the Serbia. Food Chem. Toxicol. 2013, 58, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Škrbić, B.; Đurišić-Mladenović, N.; Cvejanov, J. Principal component analysis of trace elements in Serbian wheat. J. Agric. Food Chem. 2005, 53, 2171–2175. [Google Scholar] [CrossRef]
- Škrbić, B.; Đurišić-Mladenović, N.; Živančev, J.; Tadić, Đ. Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. Sci. Total Environ. 2019, 647, 191–203. [Google Scholar] [CrossRef]
- Anderson, M.J.; Robinson, J. Generalized discriminant analysis based on distances. Aust. New Zealand J. Stat. 2003, 45, 301–318. [Google Scholar] [CrossRef]
- Wang, C.; Huang, P.; Qiu, C.; Li, J.; Hu, S.; Sun, L.; Bai, Y.; Gao, F.; Li, C.; Liu, N.; et al. Occurrence, migration and health risk of phthalates in tap water, barreled water and bottled water in Tianjin, China. J. Hazard. Mater. 2021, 408, 124891. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Integrated Risk Information System (IRIS). Available online: https://www.epa.gov/iris (accessed on 13 September 2021).
- Moazzen, M.; Mahvi, H.A.; Shariatifar, N.; Khaniki, J.G.; Nazmara, S.; Alimohammadi, M.; Ahmadkhaniha, R.; Rastkari, N.; Ahmadloo, M.; Akbarzadeh, A.; et al. Determination of phthalate acid esters (PAEs) in carbonated soft drinks with MSPE/GC-MS method. Toxin Rev. 2018, 37, 319–326. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, Z.H.; Yin, H.; Dang, Z.; Wu, P.Z.; Zhu, N.W.; Lin, Z.; Liu, Y. Migration and potential risk of trace phthalates in bottled water: A global situation. Water Res. 2018, 147, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, M.; Dobaradaran, S.; Torabbeigi, M.; Jorfi, S.; Gholamnia, R.; Koolivand, A.; Darabi, H.; Kavousi, A.; Saeedi, R. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in Tehran, Iran. Environ. Res. 2019, 173, 469–479. [Google Scholar] [CrossRef]
- Santana, J.; Giraudi, C.; Marengo, E.; Robotti, E.; Pires, S.; Nunes, I.; Gaspar, M.E. Preliminary toxicological assessment of phthalate esters from drinking water consumed in Portugal. Environ. Sci. Pollut. Res. 2013, 21, 1380–1390. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, C.; An, L.; Deng, C.; Su, H.; Wang, L.; Jiang, Z.; Zhou, J.; Wang, J.; Zhang, C.; et al. Phthalate ester in bottled drinking water and their human exposure in Beijing, China. Food Addit. Contam. Part. B Surveill. 2019, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- National Standard of the People’s Republic of China (NSC) (2006) China’s Standard for Drinking Water Quality. Ministry of Health of the People’s Republic of China and Standardization Administration of the People’s Republic of China, GB 5749–2006. Available online: http://tradechina.dairyaustralia.com.au/wp-content/uploads/2018/08/GB-5749-2006-Standards-for-Drinking-Water-Quality.pdf (accessed on 13 September 2021). (In Chinese).
- WHO. Guidelines for Drinking-Water Quality-4th ed. WHO Press, Geneva, Switzerland. 2011. Available online: https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf (accessed on 13 September 2021).
- US EPA. 2006 Edition of the drinking water standards and health advisories. Office of Water. US Environmental Protection Agency, Washington, DC, USA. 2006. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1004X78.txt (accessed on 13 September 2021).
- US EPA (US Environmental Protection Agency). National Recommended Water Quality Criteria–Human Health Criteria Table. US Environmental Protection Agency, Washington, DC, USA. 2015. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table (accessed on 13 September 2021).
- US FDA (US Food & Drug Administration). Limiting the Use of Certain Phthalates as Excipients in Center for Drug Evaluation and Research-Regulated Products. US Food & Drug Administration, Washington, DC, USA. 2012. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/limiting-use-certain-phthalates-excipients-cder-regulated-products (accessed on 13 September 2021).
Chemical | DRa (%) | Mean (ng/L) | SDb (ng/L) | GMc (ng/L) | Median (ng/L) | Range (ng/L) | Ratiod (%) |
---|---|---|---|---|---|---|---|
DMP | 75.2 | 277 | 837 | 64.9 | 65 | <LOQe–7300 | 3.0 |
DEP | 59.0 | 32.9 | 44.2 | 20.3 | 17 | <LOQ–390 | 0.4 |
DIBP | 87.6 | 2825 | 2796 | 1491 | 2100 | <LOQ–16000 | 30.7 |
DBP | 83.8 | 1097 | 1119 | 551 | 820 | <LOQ–4900 | 11.9 |
BMEP | 87.6 | 404 | 2074 | 36.5 | 39 | <LOQ–17000 | 4.4 |
DAP | 61.0 | 41.0 | 174 | 5.12 | 3.5 | <LOQ–1400 | 0.5 |
BEEP | 84.8 | 63.4 | 61.2 | 32.8 | 50 | <LOQ–270 | 0.7 |
BBP | 81.9 | 97.6 | 464 | 13.3 | 12 | <LOQ–3800 | 1.1 |
DCP | 76.2 | 14.6 | 15.8 | 9.4 | 9.5 | <LOQ–110 | 0.2 |
DHP | 60.0 | 6.88 | 8.46 | 4.16 | 3.7 | <LOQ–51 | 0.1 |
BMPP | 75.2 | 16.4 | 39.2 | 6.6 | 6.2 | <LOQ–280 | 0.2 |
BBEP | 87.6 | 92.0 | 111 | 48.4 | 61 | <LOQ–760 | 1.0 |
DEHP | 96.2 | 4193 | 6949 | 2025 | 2000 | <LOQ–41000 | 45.5 |
DOP | 78.1 | 10.6 | 13.0 | 6.28 | 7 | <LOQ–86.0 | 0.1 |
DNP | 81.0 | 35.9 | 137 | 9.45 | 9.8 | <LOQ–1300 | 0.4 |
∑(sum) | 100 | 9207 | 8952 | 6127 | 6286 | 770–48004 |
Sample Type | Location | n | DEHP | DIBP | DBP | BMEP | Reference |
---|---|---|---|---|---|---|---|
mineral water | Dalian, China | 19 | 3351 (500–15000) | 375 (<LOQb-940) | 110 (<LOQ-320) | 63 (<LOQ-310) | this study |
tea drink | Dalian, China | 22 | 2660 (500–12000) | 3770 (<LOQ-9900) | 1197 (<LOQ-3600) | 1701 (<LOQ-17000) | this study |
energy drink | Dalian, China | 15 | 4738 (<LOQ-34000) | 1539 (<LOQ-4300) | 630 (<LOQ-2900) | 63 (<LOQ-220) | this study |
juice drink | Dalian, China | 15 | 3682 (440–27000) | 4521 (240–16000) | 2363 (290–4900) | 73 (8.9–190) | this study |
soft drink | Dalian, China | 25 | 7198 (<LOQ-41000) | 3916 (1000–7200) | 1290 (93–3000) | 56 (<LOQ-330) | this study |
beer | Dalian, China | 9 | 1317 (440–3700) | 1974 (330–4100) | 1064 (210–3000) | 37 ((<LOQ-130) | this study |
total | Dalian, China | 105 | 4193 (<LOQ-41000) | 2825 (<LOQ-16000) | 1097 (<LOQ-4900) | 404 (<LOQ-17000) | this study |
non-carbonated water | Hanoi, Vietnam | 11 | 873 (227–1950) | 1100 (94.0–3930) | 1150 (145–3070) | - | Le et al. (2021) [36] |
carbonated water | Hanoi, Vietnam | 10 | 1120 (103–2710) | 1790 (123–5190) | 1740 (93.0–4710) | - | Le et al. (2021) [36] |
carbonated soft drinks | Tehran, Iran | 4 | 8423 (6767–14008) | - | - | - | Moazzen et al. (2018) [43] |
bottled water | Tianjin, China | 6 | 1074 (880–1257) | - | 486 (465–517) | - | Wang et al. (2021) [41] |
bottled water | 21 global countries | 367–379 | 3420 (ndc-9410) | - | 5350 (nd-2220) | - | Luo et al. (2018) [44] |
bottled water | Tehran, Iran | 10 | 100 (70–120) | - | 70 (nd-120) | - | Abtahi et al. (2019) [45] |
bottled water | Portugal | 7 | 100 (20–180) | 959 (100–1890) | 1574 (60–6500) | - | Santana et al. (2013) [46] |
tap water | Tehran, Iran | 40 | 150 (nd-380) | - | 90 (nd-140) | - | Abtahi et al. (2019) [45] |
tap water | Hanoi, Vietnam | 7 | 5340 (1010–14500) | 456 (27.0–1390) | 796 (14.0–2560) | - | Le et al. (2021) [36] |
tap water | China | 225 | 770 (<LOQ-5510) | - | 350 (<LOQ-1560) | - | Liu et al. (2015) [35] |
tap water | Tianjin, China | 6 | 1338 (1097–1780) | - | 541 (380–679) | - | Wang et al. (2021) [41] |
DMP | DEP | DIBP | DBP | BMEP | DAP | BEEP | BBP | DCP | DHP | BMPP | BBEP | DEHP | DOP | DNP | ∑(sum) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mineral water (n = 19) | ||||||||||||||||
DRa | 26 | 5 | 58 | 37 | 53 | 5 | 32 | 42 | 21 | 11 | 5 | 53 | 100 | 47 | 53 | 100 |
mean | 13.7 | 9.8 | 375 | 110 | 62.9 | 1.8 | 9.5 | 4.9 | 3.1 | 2.6 | 1.5 | 24.2 | 3351 | 3.8 | 5.9 | 3980 |
SDb | 6.7 | 7.8 | 337 | 80.8 | 103 | 1.0 | 20.9 | 8.7 | 1.0 | 4.0 | 0.2 | 51.2 | 4321 | 3.0 | 5.4 | 4637 |
GMc | 12.6 | 8.7 | 249 | 89.3 | 13.7 | 1.7 | 4.8 | 3.0 | 2.9 | 1.9 | 1.5 | 10.8 | 1989 | 3.0 | 3.8 | 2546 |
median | 10.0 | 8.0 | 170 | 57.0 | 7.0 | 1.6 | 3.1 | 1.9 | 2.6 | 1.6 | 1.5 | 6.5 | 1600 | 1.6 | 4.4 | 1805 |
range | <LOQe-31.0 | <LOQ-42.0 | <LOQ-940 | <LOQ-320 | <LOQ-310 | <LOQ-6.00 | <LOQ-95.0 | <LOQ-40.0 | <LOQ-5.80 | <LOQ-19.0 | <LOQ-2.30 | <LOQ-230 | 500–15,000 | <LOQ-12.0 | <LOQ-19.0 | 770–16,301 |
ratiod | 0.3 | 0.3 | 9.4 | 2.8 | 1.6 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.04 | 0.6 | 84.2 | 0.1 | 0.2 | |
tea drink (n = 22) | ||||||||||||||||
DR | 77 | 86 | 82 | 91 | 95 | 77 | 91 | 82 | 77 | 55 | 86 | 95 | 100 | 73 | 86 | 100 |
mean | 177 | 38.1 | 3770 | 1197 | 1701 | 12.8 | 53.5 | 26.8 | 22.6 | 7.5 | 12.7 | 143 | 2660 | 16.0 | 105 | 9942 |
SD | 291 | 30.0 | 2712 | 1037 | 4366 | 21.6 | 44.4 | 40.5 | 23.7 | 11.1 | 14.3 | 193 | 2380 | 21.4 | 274 | 7045 |
GM | 68.2 | 28.4 | 2092 | 673 | 100 | 6.1 | 31.5 | 12.7 | 13.4 | 3.9 | 7.0 | 72.5 | 2043 | 7.2 | 21.6 | 7553 |
median | 86.0 | 28.5 | 3550 | 1060 | 79.5 | 5.6 | 45.5 | 15.0 | 20.0 | 2.5 | 6.0 | 74.5 | 2050 | 7.4 | 25.0 | 8459 |
range | <LOQ-1300 | <LOQ-110 | <LOQ-9900 | <LOQ-3600 | <LOQ-17,000 | <LOQ-100 | <LOQ-150 | <LOQ-190 | <LOQ-110 | <LOQ-49 | <LOQ-55.0 | <LOQ-760 | 500–12,000 | <LOQ-86.0 | <LOQ-1300 | 1277–27,298 |
ratio | 1.8 | 0.4 | 37.9 | 12.0 | 17.1 | 0.1 | 0.5 | 0.3 | 0.2 | 0.1 | 0.1 | 1.4 | 26.8 | 0.2 | 1.1 | |
energy drink (n = 15) | ||||||||||||||||
DR | 87 | 53 | 93 | 80 | 93 | 73 | 100 | 100 | 100 | 100 | 93 | 100 | 80 | 100 | 67 | 100 |
mean | 232 | 27.5 | 1539 | 630 | 63.3 | 13.7 | 94.7 | 80.8 | 19.1 | 10.5 | 13.7 | 140 | 4738 | 17.4 | 10.1 | 7629 |
SD | 304 | 26.6 | 955 | 700 | 64.5 | 37.8 | 62.1 | 214 | 10.0 | 5.6 | 10.3 | 56.2 | 9893 | 14.2 | 13.6 | 10,072 |
GM | 104 | 18.4 | 1230 | 372 | 37.9 | 4.4 | 78.4 | 26.2 | 16.9 | 9.1 | 10.0 | 129 | 1276 | 14.1 | 5.0 | 4688 |
median | 98.0 | 14.0 | 1500 | 510 | 42.0 | 3.5 | 92.0 | 23.0 | 17.0 | 9.2 | 12.0 | 130 | 1100 | 14.0 | 3.0 | 3972 |
range | <LOQ-1100 | <LOQ-98.0 | <LOQ-4300 | <LOQ-2900 | <LOQ-220 | <LOQ-150 | 22.0–270 | 5.7–850 | 9.1–37.0 | 3.7–20 | <LOQ-37.0 | 52–250 | <LOQ-34,000 | 6.2–63.0 | <LOQ-53.0 | 1184–36,505 |
ratio | 3.0 | 0.4 | 20.2 | 8.3 | 0.8 | 0.2 | 1.2 | 1.1 | 0.3 | 0.1 | 0.2 | 1.8 | 62.1 | 0.2 | 0.1 | |
juice drink (n = 15) | ||||||||||||||||
DR | 100 | 73 | 100 | 100 | 100 | 80 | 100 | 87 | 87 | 93 | 100 | 100 | 100 | 93 | 93 | 100 |
mean | 820 | 38.2 | 4521 | 2363 | 72.9 | 202 | 115 | 51.5 | 16.2 | 9.2 | 16.9 | 88.6 | 3682 | 10.3 | 48.9 | 12,057 |
SD | 1875 | 31.5 | 4654 | 1499 | 57.4 | 425 | 76.6 | 102 | 14.9 | 6.6 | 9.2 | 64.6 | 6617 | 8.2 | 125 | 11,012 |
GM | 167 | 25.8 | 2631 | 1827 | 51.3 | 18.1 | 90.6 | 18.0 | 11.5 | 7.1 | 14.3 | 69.0 | 1823 | 7.7 | 16.5 | 8792 |
median | 167 | 27 | 3400 | 2200 | 57 | 11 | 71 | 17 | 12 | 8.3 | 15 | 61 | 1600 | 8.7 | 14 | 10,179 |
range | 18–7300 | <LOQ-87 | 240–16,000 | 290–4900 | 8.9–190 | <LOQ-1400 | 26.0–240 | <LOQ-410 | <LOQ-62 | <LOQ-24 | 2.7–37.0 | 18–220 | 440–27,000 | <LOQ-32 | <LOQ-500 | 1635–46,541 |
ratio | 6.8 | 0.3 | 37.5 | 19.6 | 0.6 | 1.7 | 1.0 | 0.4 | 0.1 | 0.1 | 0.1 | 0.7 | 30.5 | 0.1 | 0.4 | |
soft drink (n = 25) | ||||||||||||||||
DR | 84 | 68 | 100 | 100 | 96 | 72 | 96 | 96 | 92 | 56 | 84 | 88 | 96 | 84 | 96 | 100 |
mean | 326 | 44.7 | 3916 | 1290 | 55.7 | 28.0 | 64.2 | 298 | 15.1 | 6.8 | 35.1 | 74.4 | 7200 | 8.6 | 15.6 | 13,376 |
SD | 768 | 76.1 | 1957 | 826 | 71.8 | 70.9 | 58.9 | 917 | 14.2 | 10.7 | 76.0 | 59.7 | 9572 | 7.3 | 12.4 | 10,077 |
GM | 92 | 24.3 | 3385 | 991 | 30.3 | 5.7 | 39.3 | 26.7 | 11.2 | 3.8 | 8.9 | 46.4 | 3705 | 6.0 | 11.2 | 10,710 |
median | 110 | 22 | 3300 | 1100 | 36.0 | 4.6 | 39 | 20 | 10 | 3.4 | 7.0 | 66 | 2900 | 6.2 | 12.0 | 10,534 |
range | <LOQ-3100 | <LOQ-390 | 1000–7200 | 93–3000 | <LOQ-330 | <LOQ-310 | <LOQ-220 | <LOQ-3800 | <LOQ-71.0 | <LOQ-51.0 | <LOQ-280 | <LOQ-210 | <LOQ-41,000 | <LOQ-30.0 | <LOQ-52.0 | 1991–48,004 |
ratio | 2.4 | 0.3 | 29.3 | 9.6 | 0.4 | 0.2 | 0.5 | 2.2 | 0.1 | 0.1 | 0.3 | 0.6 | 53.8 | 0.1 | 0.1 | |
beer (n = 9) | ||||||||||||||||
DR | 89 | 67 | 100 | 100 | 89 | 56 | 100 | 89 | 89 | 67 | 100 | 100 | 100 | 78 | 89 | 100 |
mean | 113 | 35.8 | 1974 | 1064 | 36.8 | 5.3 | 61.0 | 13.1 | 8.2 | 4.7 | 8.3 | 84.0 | 1317 | 6.0 | 8.4 | 4740 |
SD | 105 | 26.4 | 1157 | 861 | 38.6 | 4.4 | 32.8 | 10.8 | 4.3 | 3.1 | 6.3 | 97.8 | 1172 | 4.9 | 7.0 | 2374 |
GM | 66.7 | 25.5 | 1572 | 801 | 21.9 | 3.9 | 54.2 | 9.7 | 7.2 | 3.7 | 7.0 | 52.0 | 989 | 4.5 | 6.0 | 4253 |
median | 64 | 31 | 2000 | 980 | 30 | 5.0 | 52 | 8.3 | 7.1 | 4.9 | 6.8 | 59 | 780 | 4.9 | 6.7 | 4111 |
range | <LOQ-290 | <LOQ-73 | 330–4100 | 210–3000 | <LOQ-130 | <LOQ-14.0 | 28.0–130 | <LOQ-36.0 | <LOQ-16.0 | <LOQ-9.80 | 3.0–24.0 | 7.10–330 | 440–3700 | <LOQ-17.0 | <LOQ-20.0 | 1895–9104 |
ratio | 2.4 | 0.8 | 41.7 | 22.5 | 0.8 | 0.1 | 1.3 | 0.3 | 0.2 | 0.1 | 0.2 | 1.8 | 27.8 | 0.1 | 0.2 |
DMP | DEP | DIBP | DBP | BMEP | DAP | BEEP | BBP | DCP | DHP | BMPP | BBEP | DEHP | DOP | DNP | ∑(sum) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
plastic (n = 56) | ||||||||||||||||
DRa | 73 | 57 | 77 | 70 | 82 | 59 | 75 | 75 | 71 | 59 | 64 | 84 | 93 | 71 | 77 | 100 |
mean | 217 | 33.7 | 1968 | 920 | 708 | 14.9 | 54.3 | 36.3 | 17.0 | 7.7 | 13.1 | 112 | 2826 | 12.8 | 24.9 | 6964 |
SDb | 553 | 54.9 | 2205 | 1240 | 2816 | 45.3 | 51.6 | 115 | 18.4 | 8.8 | 23.2 | 136 | 3689 | 16.5 | 42.0 | 6421 |
GMc | 53.7 | 19.6 | 861 | 336 | 44.1 | 4.6 | 25.2 | 10.5 | 10.2 | 4.5 | 5.7 | 54.0 | 1637 | 6.6 | 10.0 | 4559 |
median | 45.0 | 17.0 | 1100 | 280 | 49.5 | 3.3 | 51.5 | 9.8 | 11.0 | 5.2 | 5.5 | 76.5 | 1650 | 7.4 | 11.0 | 4340 |
range | <LOQe-3100 | <LOQ-390 | <LOQ-8100 | <LOQ-4900 | <LOQ-17,000 | <LOQ- 310 | <LOQ-220 | <LOQ- 850 | <LOQ-110 | <LOQ-49.0 | <LOQ-160 | <LOQ-760 | <LOQ-17,000 | <LOQ-86.0 | <LOQ-200 | 770–27,298 |
rat iod | 3.1 | 0.5 | 28.3 | 13.2 | 10.2 | 0.2 | 0.8 | 0.5 | 0.2 | 0.1 | 0.2 | 1.6 | 40.6 | 0.2 | 0.4 | |
glass (n = 19) | ||||||||||||||||
DR | 79 | 53 | 100 | 100 | 95 | 63 | 90 | 84 | 79 | 68 | 79 | 90 | 100 | 74 | 79 | 100 |
mean | 524 | 28.8 | 3510 | 1285 | 63.0 | 5.6 | 56.3 | 222 | 8.4 | 7.2 | 20.7 | 42.3 | 6083 | 5.4 | 10.2 | 11,871 |
SD | 1653 | 26.4 | 3740 | 1042 | 75.9 | 5.6 | 75.7 | 867 | 5.7 | 11.2 | 55.9 | 31.5 | 9060 | 3.8 | 9.0 | 9584 |
GM | 94.3 | 18.8 | 2085 | 853 | 33.1 | 3.9 | 29.4 | 15.9 | 6.8 | 4.2 | 6.7 | 28.9 | 2915 | 4.2 | 6.7 | 8418 |
median | 109 | 12.0 | 2600 | 840 | 43.0 | 3.4 | 28.0 | 10.0 | 6.2 | 3.7 | 6.2 | 32.0 | 2600 | 4.1 | 8.4 | 10,190 |
range | <LOQ-7300 | <LOQ- 80 | 240–16,000 | <LOQ-3100 | <LOQ-310 | <LOQ-24.0 | <LOQ-270 | <LOQ-3800 | <LOQ-22.0 | <LOQ-51.0 | <LOQ-250 | <LOQ-100 | 440–34,000 | <LOQ-13.0 | <LOQ-36.0 | 1635–36,505 |
ratio | 4.4 | 0.2 | 29.6 | 10.8 | 0.5 | 0.1 | 0.5 | 1.9 | 0.1 | 0.1 | 0.2 | 0.4 | 51.2 | 0.1 | 0.1 | |
metal (n = 22) | ||||||||||||||||
DR | 82 | 55 | 100 | 100 | 91 | 59 | 100 | 91 | 86 | 55 | 91 | 91 | 100 | 91 | 91 | |
mean | 248 | 29.9 | 3216 | 1136 | 42.9 | 20.9 | 80.6 | 155 | 13.8 | 4.9 | 22.7 | 89.5 | 5502 | 10.1 | 12.3 | 10,584 |
SD | 486 | 29.1 | 1469 | 804 | 72.3 | 45.8 | 56.8 | 595 | 15.0 | 4.6 | 58.2 | 84.7 | 9848 | 8.2 | 11.1 | 10,841 |
GM | 72.0 | 19.4 | 2858 | 919 | 21.7 | 4.94 | 589 | 15.8 | 9.63 | 3.4 | 8.6 | 53.7 | 2220 | 7.3 | 7.6 | 7782 |
median | 58.0 | 17.0 | 3200 | 970 | 25.5 | 3.65 | 63.0 | 12.5 | 9.35 | 2.8 | 7.9 | 59.0 | 1400 | 6.3 | 8.4 | 7501 |
range | <LOQ-2100 | <LOQ-98.0 | 750- 5800 | 240–3300 | <LOQ-330 | <LOQ- 170 | 4.2–220 | <LOQ-2800 | <LOQ-71.0 | <LOQ-16.0 | <LOQ-280 | <LOQ-330 | 470–41,000 | <LOQ-30.0 | <LOQ-36.0 | 3078–48,004 |
ratio | 2.3 | 0.3 | 30.4 | 10.7 | 0.4 | 0.2 | 0.8 | 1.5 | 0.1 | 0.1 | 0.2 | 0.9 | 52.0 | 0.1 | 0.1 | |
paper (n = 8) | ||||||||||||||||
DR | 75 | 100 | 100 | 100 | 100 | 63 | 100 | 100 | 75 | 63 | 100 | 100 | 100 | 100 | 88 | 100 |
mean | 197 | 44.5 | 6125 | 1780 | 74.5 | 363 | 96.4 | 73.5 | 14.9 | 6.0 | 11.5 | 78.1 | 5680 | 8.7 | 238 | 14,791 |
SD | 245 | 28.8 | 3925 | 962 | 60.8 | 546 | 85.3 | 138 | 11.2 | 7.6 | 9.9 | 63.6 | 8714 | 4.0 | 462 | 13,292 |
GM | 76.9 | 35.2 | 5252 | 1531 | 51.0 | 23.5 | 54.7 | 27.3 | 9.9 | 3.8 | 8.2 | 57.2 | 2932 | 7.8 | 25.8 | 11,815 |
median | 109 | 44.5 | 4900 | 1750 | 66.0 | 5.6 | 82.5 | 21 | 16 | 3.2 | 6.0 | 57.0 | 3550 | 8.2 | 8.5 | 11,119 |
range | <LOQ-700 | 14- 80 | 2900–14,000 | 480- 3600 | 11- 190 | <LOQ-1400 | 4.80–240 | 5.90- 410 | <LOQ-28.0 | <LOQ-24.0 | 2.70–28.0 | 15.0–180 | 440–27,000 | 2.7–14.0 | <LOQ -1300 | 6418–46,541 |
ratio | 1.3 | 0.3 | 41.4 | 12.0 | 0.5 | 2.5 | 0.7 | 0.5 | 0.1 | 0.04 | 0.1 | 0.5 | 38.4 | 0.1 | 1.6 |
Chemical | Mineral Water | Energy Drink | Beer | Tea Drink | Juice Drink | Soft Drink |
---|---|---|---|---|---|---|
DMP | 0.45/1.03 | 7.72/36.7 | 3.77/9.67 | 5.91/43.3 | 27.3/243 | 10.9/103 |
DEP | 0.33/1.40 | 0.92/3.27 | 1.19/2.43 | 1.27/3.67 | 1.27/2.90 | 1.49/13.0 |
DIBP | 12.5/31.3 | 51.3/143 | 65.8/137 | 126/330 | 151/533 | 131/240 |
DBP | 3.67/10.7 | 21.0/96.7 | 35.5/100 | 39.9/120 | 78.8/163 | 43.0/100 |
BMEP | 2.10/10.3 | 2.11/7.33 | 1.23/4.33 | 56.7/567 | 2.43/6.33 | 1.860/11.0 |
DAP | 0.06/0.20 | 0.46/5.00 | 0.18/0.47 | 0.42/3.33 | 6.75/46.7 | 0.93/10.3 |
BEEP | 0.32/3.17 | 3.16/9.00 | 2.03/4.33 | 1.78/5.00 | 3.82/8.00 | 2.14/7.33 |
BBP | 0.16/1.33 | 2.69/28.3 | 0.44/1.20 | 0.89/6.33 | 1.72/13.7 | 9.95/127 |
DCP | 0.10/0.19 | 0.64/1.23 | 0.27/0.53 | 0.75/3.67 | 0.54/2.07 | 0.50/2.37 |
DHP | 0.09/0.63 | 0.35/0.67 | 0.16/0.33 | 0.25/1.63 | 0.31/0.80 | 0.23/1.70 |
BMPP | 0.05/0.08 | 0.46/1.23 | 0.28/0.80 | 0.42/1.83 | 0.56/1.23 | 1.17/9.33 |
BBEP | 0.81/7.67 | 4.66/8.33 | 2.80/11.0 | 4.78/25.3 | 2.95/7.33 | 2.48/7.00 |
DEHP | 112/500 | 158/1133 | 43.9/123 | 88.7/400 | 123/900 | 240/1367 |
DOP | 0.13/0.40 | 0.58/2.10 | 0.20/0.57 | 0.53/2.87 | 0.34/1.07 | 0.29/1.00 |
DNP | 0.20/0.63 | 0.34/1.77 | 0.28/0.67 | 3.49/43.3 | 1.63/16.7 | 0.52/1.73 |
∑(sum) | 133/544 | 254/1217 | 158/304 | 331/910 | 402/1551 | 446/1600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, X.; Su, Y.; Su, H.; Fan, D.; Jia, H.; Chu, X.; Song, X.; Liu, Y.; Li, F.; Xue, J.; et al. Occurrence of Phthalates in Bottled Drinks in the Chinese Market and Its Implications for Dietary Exposure. Molecules 2021, 26, 6054. https://doi.org/10.3390/molecules26196054
Xue X, Su Y, Su H, Fan D, Jia H, Chu X, Song X, Liu Y, Li F, Xue J, et al. Occurrence of Phthalates in Bottled Drinks in the Chinese Market and Its Implications for Dietary Exposure. Molecules. 2021; 26(19):6054. https://doi.org/10.3390/molecules26196054
Chicago/Turabian StyleXue, Xiaohong, Yaoming Su, Hailei Su, Dongping Fan, Hongliang Jia, Xiaoting Chu, Xiaoyang Song, Yuxian Liu, Feilong Li, Jingchuan Xue, and et al. 2021. "Occurrence of Phthalates in Bottled Drinks in the Chinese Market and Its Implications for Dietary Exposure" Molecules 26, no. 19: 6054. https://doi.org/10.3390/molecules26196054
APA StyleXue, X., Su, Y., Su, H., Fan, D., Jia, H., Chu, X., Song, X., Liu, Y., Li, F., Xue, J., & Liu, W. (2021). Occurrence of Phthalates in Bottled Drinks in the Chinese Market and Its Implications for Dietary Exposure. Molecules, 26(19), 6054. https://doi.org/10.3390/molecules26196054