Investigation of Solubility Behavior of Canagliflozin Hydrate Crystals Combining Crystallographic and Hirshfeld Surface Calculations
Abstract
:1. Introduction
2. Results
2.1. Crystal Structure of CG-Hemi and CG-H2O
2.2. Solubility and Dissolution Study
2.3. Hirshfeld Surface Analysis
2.4. PXRD
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Single Crystal X-ray Structural Analysis
4.3. Hirshfeld Surface Analysis
4.4. Powder X-ray Diffraction
4.5. Solubility Measurements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, Y.; Kariuki, B.M.; Hughes, C.E.; Logsdail, A.J.; Harris, K.D.M. Polymorphism in a Multicomponent Crystal System of Trimesic Acid andt-Butylamine. Cryst. Growth Des. 2020, 20, 5736–5744. [Google Scholar] [CrossRef]
- Hao, C.; Chen, Y.; Xiong, J.; Yang, Z.; Gao, L.; Liu, B.; Liu, X.; Jin, J.; Zhang, G. Polymorphs and pharmacokinetics of an antipsychotic drug candidate. Int. J. Pharm. 2020, 586, 119600. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Mahaffey, K.W.; Erondu, N.; Desai, M. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 7, 644–657. [Google Scholar] [CrossRef]
- Koike, Y.; Shirabe, S.; Maeda, H.; Yoshimoto, A.; Arai, K.; Kumakura, A.; Hirao, K.; Terauchi, Y. Effect of canagliflozin on the overall clinical state including insulin resistance in Japanese patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2019, 149, 140–146. [Google Scholar] [CrossRef]
- Kopp-Kubel, S. International Nonproprietary Names (INN) for pharmaceutical substances. Bull. World Health Organ. 1995, 73, 275–279. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486664/ (accessed on 8 January 2021). [PubMed]
- Benet, L.Z.; Broccatelli, F.; Oprea, T.I. BDDCS Applied to Over 900 Drugs. AAPS J. 2011, 13, 519–547. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Magid, A.F.; Chisholm, M.; Mehrman, S.; Scott, L.; Wells, K.M.; Zhang-Plasket, F. Process For The Preparation of Compounds Useful as Inhibitors of SGLT. WO2009035969A1, 19 March 2009. [Google Scholar]
- Hao, H.; Zhang, H.; Fan, C. Canagliflozin of Crystal Form B, And Crystallization Preparation Method Thereof. CN103980262A, 13 August 2014. [Google Scholar]
- Chen, M.; Lu, F.; Yang, C.; Zhang, X.; Zhang, Y.; Zhao, Y.; Zhao, Y. Crystalline Forms B, C and D of Canagliflozin. US2016280731A1, 29 September 2016. [Google Scholar]
- Chen, M.; Lu, F.; Yang, C.; Zhang, X.; Zhang, Y. Crystal Form E and Crystal Form F of Canagliflozin and Preparation Method Thereof. CN104974146A, 14 October 2014. [Google Scholar]
- Fan, Q.; Ren, H.; Sun, W.; Wang, Y.; Yan, H. Preparation Method of Canagliflozin Hemihydrate and Monocrystal Thereof. CN104744449A, 1 July 2015. [Google Scholar]
- Barik, S.; Jayaramareddy, C.V. Pharmaceutical Composition Comprising Canaglifrozin, Process of Preparation and Use Thereof. WO2017153939A1, 14 September 2017. [Google Scholar]
- Liu, K.; Gu, J.; Hu, X.; Tang, G. Crystal structure of canagliflozin hemihydrate. Acta Crystallogr. Sect. E Crystallogr. Commun. 2016, 72, 734–736. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17; University of Western Australia: Crawley, Australia, 2017. [Google Scholar]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Mckinnon, J.J.; Jayatilaka, D. Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. Cryst. Eng. Comm. 2008, 10, 377–388. [Google Scholar] [CrossRef]
- Rigaku. PROCESS-AUTO; Rigaku Corporation: Tokyo, Japan, 1998; Available online: https://journals.iucr.org/c/services/stdswrefs.html (accessed on 8 January 2021).
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L.J. Win GX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Brandenburg, K.; Putz, H.; Berndt, M. DIAMOND; Crystal Impact GbR: Bonn, Germany, 1999; Available online: https://journals.iucr.org/c/services/stdswrefs.html (accessed on 8 January 2021).
Crystal Data | CG-Hemi (Reported by Liu [13]) | CG-H2O |
---|---|---|
CCDC number | 1475516 | 2022368 |
Chemical formula | 2(C24H25FO5S)·H2O | C24H25FO5S·H2O |
Molecular weight | 907.02 | 462.51 |
Crystal system | Orthorhombic | Monoclinic |
Space group | P212121 | P21 |
Temperature (K) | 296 | 296 |
a, b, c (Å) | 8.4259(4),11.4264(7), 45.706(2) | 5.1280(3), 10.0824(5), 21.0305(12) |
α, β, γ (°) | 90, 90, 90 | 90, 94.586(2), 90 |
V(Å3) | 4400.4(4) | 1083.85(10) |
Z | 4 | 2 |
Radiation type | Mo Kα | Mo Kα |
Μ (mm−1) | 0.192 | 0.198 |
Crystal size (mm) | 0.48 × 0.28 × 0.26 | 0.39 × 0.23 × 0.18 |
Data collection | ||
Diffractometer | ||
Diffraction wavelength | 0.71073 Å | 0.71073 Å |
Absorption correction | Multi-scan | Multi-scan |
Tmin,Tmax | 0.9136, 0.9518 | 0.7068, 0.7455 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 43211, 9958, 5079 | 25194, 4762, 4691 |
Rint | 0.1447 | 0.0239 |
(sinθ/λ)max(Å−1) | 0.1274 | 0.0196 |
Refinement | ||
R [F2 > 2α(F2)], ωR(F2), S | 0.0800, 0.1166, 0.999 | 0.0245, 0.0653, 1.066 |
No. of reflections | 9958 | 4762 |
No. of parameters | 575 | 292 |
H-atom treatment | constraint | constraint |
Δρmax, Δρmin (e Å−3) | 0.38, −0.29 | 0.28, −0.18 |
D–H···A | D–H (Å) | H···A (Å) | D···A (Å) | Angle (°) |
---|---|---|---|---|
O3–H3···O6i | 0.84 | 1.95 | 2.7890(18) | 178.9 |
O2–H2···O4ii | 0.84 | 2.09 | 2.9172(17) | 166.9 |
O5–H5···O6iii | 0.84 | 2.00 | 2.8087(19) | 161.9 |
O4–H4···O5iv | 0.84 | 1.95 | 2.7648(19) | 163.0 |
O6–H6A···O3 | 0.87 | 2.11 | 2.8271(18) | 139.0 |
O6–H6B···O2iii | 0.87 | 2.00 | 2.8425(19) | 162.4 |
Sample Availability: Samples of compounds CG-Hemi and CG-H2O are available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Kang, Y.; Zhu, L.; Yu, K.; Chen, S.; Tang, G.; Hu, X. Investigation of Solubility Behavior of Canagliflozin Hydrate Crystals Combining Crystallographic and Hirshfeld Surface Calculations. Molecules 2021, 26, 298. https://doi.org/10.3390/molecules26020298
Zhu Y, Kang Y, Zhu L, Yu K, Chen S, Tang G, Hu X. Investigation of Solubility Behavior of Canagliflozin Hydrate Crystals Combining Crystallographic and Hirshfeld Surface Calculations. Molecules. 2021; 26(2):298. https://doi.org/10.3390/molecules26020298
Chicago/Turabian StyleZhu, Yefen, Yanlei Kang, Ling Zhu, Kaxi Yu, Shuai Chen, Guping Tang, and Xiurong Hu. 2021. "Investigation of Solubility Behavior of Canagliflozin Hydrate Crystals Combining Crystallographic and Hirshfeld Surface Calculations" Molecules 26, no. 2: 298. https://doi.org/10.3390/molecules26020298
APA StyleZhu, Y., Kang, Y., Zhu, L., Yu, K., Chen, S., Tang, G., & Hu, X. (2021). Investigation of Solubility Behavior of Canagliflozin Hydrate Crystals Combining Crystallographic and Hirshfeld Surface Calculations. Molecules, 26(2), 298. https://doi.org/10.3390/molecules26020298