Rollover Cyclometalation as a Valuable Tool for Regioselective C–H Bond Activation and Functionalization
Abstract
:1. Introduction
- roll-over cyclometalation is favored by the presence of one weak M–E bond in the starting chelated complex. The weakness may be related to steric or electronic factors: as a consequence, the reaction will be favored by bulky substituents in adjacent position to E, electron-withdrawing groups in the ring and ligands with strong trans-influence coordinated in trans to E. Trans-influence and trans-effect may have dramatic effect on the behavior of some ligands and in catalytic applications;
- formation of a strong M–C bond will thermodynamically favor the rollover process toward classic chelation. For this reason, late and heavy transition metals such as iridium and platinum are favored;
- a second peculiarity of rollover cyclometalation is found in the mechanism of the cyclometalation reaction: in the step from chelate to monodentate coordination, one vacant coordination site is formed. This free site for coordination lacks in the classical cyclometalation reaction;
- the final rollover product has a free heteroatom (N in the majority of cases) able to undergo successive reactions or interactions: coordination, protonation, hydrogen-bond interactions, return to initial chelation, etc. Here lies the crucial difference between rollover and classical cyclometalated complexes: three consequences of this aspect are:
- -
- the retro-rollover process, i.e., the reverse reaction of rollover cyclometalation (see Section 4.1.5): In these steps, one hydrogen is lost and regained, with interesting applications in catalytic hydrogen transfer reactions (see Section 6.2).
- -
- The double rollover cyclometalation, which allows for the synthesis of planar, highly delocalized bi- or polynuclear complexes (see Section 4.1.3).
- -
- The protonation of the free donor usually allows the formation of uncommon NHC (nitrogen heterocyclic carbenes), formally neutral ligands, which are isomers of the neutral starting ligand. This option enters rollover complexes into the family of “ligands with multiple personalities” [8] rather than being mere spectator ligands (see Section 4.1.5).
- Finally, it should be noted that “rollover” ligands are deprotonated forms of the starting neutral ligands, whose chelated complexes are usually stable and difficult to activate. The strength of the M–E and M–C bonds, as well as mechanisms of C–H bond activation vary from metal to metal, so that each metal will have a different story. This accounts for the difficulties to find general rules for rollover cyclometalation.
2. History of Rollover Cyclometalation
3. Mechanism of Rollover Cyclometalation
4. C–H Bond Activation Through Rollover Cyclometalation
4.1. Bipyridine Complexes
4.1.1. Platinum and Palladium Complexes
Regioselectivity
4.1.2. N-Functionalized Bipyridines
4.1.3. Double Rollover Activation and Dinuclear Complexes (Delocalized Planar Systems)
4.1.4. Gas Phase Studies
4.1.5. Protonation and Retro-Rollover
Ligands with Multiple Personalities
4.1.6. Reactivity of Rollover Complexes
4.1.7. Other Metals
Osmium
4.2. Ligands Other than Bipyridine
4.2.1. Platinum and Palladium Complexes
4.2.2. Iridium and Rhodium Complexes
5. Organic Synthesis (Stochiometric Functionalization)
5.1. Palladium-Mediated Functionalization
5.2. Platinum-Mediated Functionalization
5.3. Ruthenium-Mediated Functionalization
6. Catalysis
6.1. Rollover Complexes as Catalysts
6.1.1. Platinum Catalyzed Reactions
6.1.2. Ruthenium Catalyzed Reactions
6.1.3. Palladium-Catalyzed Reactions
6.2. Rollover Pathways in Catalytic Cycles
6.2.1. Rhodium
C–C Couplings
Cycloannulation Reactions
Rotation of a Phenyl Ring
6.2.2. Palladium
6.2.3. Rhenium
7. Applications of Rollover Complexes
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Albrecht, M. Cyclometalation using d-block transition metals: Fundamental aspects and recent trends. Chem. Rev. 2010, 110, 576–623. [Google Scholar] [CrossRef] [PubMed]
- Ryabov, A.D. Mechanisms of Intramolecular Activation of C-H Bonds in Transition-Metal Complexes. Chem. Rev. 1990, 90, 403–424. [Google Scholar] [CrossRef]
- Snieckus, V. Directed Ortho Metalation. Tertiary Amide and O-Carbamate Directors in Synthetic Strategies for Polysubstituted Aromatics. Chem. Rev. 1990, 90, 879–933. [Google Scholar] [CrossRef]
- Bähr, G.; Müller, G.E. Metallorganische Innerkomplexe; I. Aluminiumorganische Innerkomplexe. Chem. Ber. 1955, 88, 251–264. [Google Scholar] [CrossRef]
- Trofimenko, S. Some Studies of the Cyclopalladation Reaction. Inorg. Chem. 1973, 12, 1215–1221. [Google Scholar] [CrossRef]
- Van Koten, G. Tuning the reactivity of metals held in a rigid ligand environment. Pure Appl. Chem. 1989, 61, 1681. [Google Scholar] [CrossRef] [Green Version]
- Butschke, B.; Schwarz, H. “rollover” cyclometallation—Early history, recent developments, mechanistic insights and application aspects. Chem. Sci. 2012, 3, 308–326. [Google Scholar] [CrossRef] [Green Version]
- Crabtree, R.H. Creating ligands with multiple personalities. Science 2010, 330, 455–456. [Google Scholar] [CrossRef]
- Giordano, T.J.; Rasmussen, P.G. Platinum and palladium complexes of thienylpyridine. I. Compounds containing metal-carbon bonds. Inorg. Chem. 1975, 14, 1628–1634. [Google Scholar] [CrossRef]
- Watts, R.J.; Harrington, J.S.; Van Houten, J. A stable monodentate 2,2′-bipyridine complex of iridium(III): A model for reactive intermediates in ligand displacement reactions of tris-2,2′-bipyridine metal complexes. J. Am. Chem. Soc. 1977, 99, 2179–2187. [Google Scholar] [CrossRef]
- Wickramasinghe, W.A.; Bird, P.H.; Serpone, N. Nature of the ‘[Ir(bpy)2(H2O)(bpy)]3+’, (bipy = 2,2′-bipyridine) cation. Monodentate or covalently hydrated bipyridine ligand? X-Ray crystal structure of the perchlorate salt. J. Chem. Soc. Chem. Commun. 1981, 24, 1284–1286. [Google Scholar] [CrossRef]
- Nord, G.; Hazell, A.C.; Hazell, R.G.; Farver, O. A Carbon-Bonded Tris (2,2′-bipyridine) iridium (III) Complex: (2,2′-bipyridinyl- C3,N′) bis(2,2′-bipyridine-N,N′)iridium(III) Perchlorate-Water (3/1). Inorg. Chem. 1983, 22, 3429–3434. [Google Scholar] [CrossRef]
- Braterman, P.S.; Heath, G.A.; Mackenzie, A.J.; Noble, B.C.; Peacock, R.D.; Yellowlees, L.J. Solution Structure and Properties of the (2,2′-Bipyridinyl- C3,″) bis (2,2′-bipyridine-N,″) iridium-(111) Hydrate Ion, “Pseudo-[1r(bpy)(OH)]2+”. Inorg. Chem. 1984, 23, 3425–3426. [Google Scholar] [CrossRef]
- Hazell, A.C.; Hazell, R.G. The structure of two yellow tris(2,2′-bipyridine)iridium(III) complexes: Bis(2,2′-bipyridine-N,N′)(NH+-2,2′-bipyridinium-3-yl-N′)iridium(III) trisperchlorate-water(1/1), [Ir(C10H8N2)3]-(ClO4)3.H2O, and tris(2,2′-bipyridine-N,N′)iridium(III) trisperchlorate-water(1/2.33), [Ir(C10H8N2)3](ClO4)3.2.33H2O. Acta Crystallogr. C 1984, 40, 806–811. [Google Scholar]
- Spellane, P.J.; Watts, R.J.; Curtis, C.J. Analysis of the 1H and 13C NMR Spectra of [Ir(Hbpy-C3,N´)(bpy-N,N´)2]3+: Evidence for a Carbon-Bonded Structure. Inorg. Chem. 1983, 22, 4060–4062. [Google Scholar] [CrossRef]
- Skapski, A.C.; Sutcliffe, V.F.; Young, B. ‘Roll-over’ 3-Metallation of Co-ordinated 2,2′-Bipyridyl in the Thermal Rearrangement of Diaryl(bipyridyl)platinum(II) Complexes: Molecular- Structure of (m-bidyl)[PtPh(Butpy)]2. J. Chem. Soc. Chem. Commun. 1985, 9, 609–611. [Google Scholar] [CrossRef]
- Minghetti, G.; Doppiu, A.; Zucca, A.; Stoccoro, S.; Cinellu, M.A.; Manassero, M.; Sansoni, M. Palladium(II) and platinum(II)-C(3)-substituted 2,2′-bipyridines. Chem. Heterocycl. Compd. 1999, 35, 992–1000. [Google Scholar] [CrossRef]
- Leist, M.; Kerner, C.; Ghoochany, L.T.; Farsadpour, S.; Fizia, A.; Neu, J.P.; Schön, F.; Sun, Y.; Oelkers, B.; Lang, J.; et al. Roll-over cyclometalation: A versatile tool to enhance the catalytic activity of transition metal complexes. J. Organomet. Chem. 2018, 863, 30–43. [Google Scholar] [CrossRef]
- Omae, I. Unconventional Cyclometalation Reactions. Curr. Org. Chem. 2014, 18, 2776–2795. [Google Scholar] [CrossRef]
- Balcells, D.; Clot, E.; Eisenstein, O. C-H bond activation in transition metal species from a computational perspective. Chem. Rev. 2010, 110, 749–823. [Google Scholar] [CrossRef]
- Butschke, B.; Schwarz, H. Mechanistic study on the gas-phase generation of “rollover”- Cyclometalated [M(bipy-H)]+ (M = Ni, Pd, Pt). Organometallics 2010, 29, 6002–6011. [Google Scholar] [CrossRef]
- Minghetti, G.; Stoccoro, S.; Cinellu, M.A.; Soro, B.; Zucca, A. Activation of a C-H Bond in a Pyridine Ring. Reaction of 6-Substituted 2,2 ′ Bipyridines with Methyl and Phenyl Platinum(II) Derivatives: N ′,C(3)-“Rollover” Cyclometalation. Organometallics 2003, 22, 4770–4777. [Google Scholar] [CrossRef]
- Keske, E.C.; Moore, B.D.; Zenkina, O.V.; Wang, R.; Schatte, G.; Crudden, C.M. Highly selective directed arylation reactions via back-to-back dehydrogenative C–H borylation/arylation reactions. Chem. Commun. 2014, 50, 9883–9886. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.-B.; Wang, R.-Y.; Wang, S. Intramolecular C-H activation directed self-assembly of an organoplatinum(II) molecular square. J. Am. Chem. Soc. 2007, 129, 3092–3093. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Pérez, L.; Iglesias, M.; Castarlenas, R.; Polo, V.; Pérez-Torrente, J.J.; Oro, L.A. Selective C–H Bond Functionalization of 2-(2-Thienyl)pyridine by a Rhodium N-Heterocyclic Carbene Catalyst. ChemCatChem 2014, 6, 3192–3199. [Google Scholar] [CrossRef]
- Doppiu, A.; Minghetti, G.; Cinellu, M.A.; Stoccoro, S.; Zucca, A.; Chimica, D.; Manassero, M. Dinuclear Platinum (II) Derivatives with a New N,C∧C,N Bridging Ligand. Organometallics 2001, 20, 1148–1152. [Google Scholar] [CrossRef]
- Kerner, C.; Neu, J.P.; Gaffga, M.; Lang, J.; Oelkers, B.; Sun, Y.; Niedner-Schatteburg, G.; Thiel, W.R. Gas-phase reactivity of Cp* group IX metal complexes bearing aromatic N,N′-chelating ligands. New J. Chem. 2017, 41, 6995–7006. [Google Scholar] [CrossRef]
- Bailey, W.D.; Luconi, L.; Rossin, A.; Yakhvarov, D.; Flowers, S.E.; Kaminsky, W.; Kemp, R.A.; Giambastiani, G.; Goldberg, K.I. Pyrazole-Based PCN Pincer Complexes of Palladium(II): Mono- and Dinuclear Hydroxide Complexes and Ligand Rollover C–H Activation. Organometallics 2015, 34, 3998–4010. [Google Scholar] [CrossRef]
- Cancela, L.; Esteruelas, M.A.; López, A.M.; Oliván, M.; Oñate, E.; San-Torcuato, A.; Vélez, A. Osmium- And Iridium-Promoted C-H Bond Activation of 2,2′-Bipyridines and Related Heterocycles: Kinetic and Thermodynamic Preferences. Organometallics 2020, 39, 2102–2115. [Google Scholar] [CrossRef]
- Kaes, C.; Katz, A.; Hosseini, M.W. Bipyridine: The most widely used ligand. A review of molecules comprising at least two 2,2′-bipyridine units. Chem. Rev. 2000, 100, 3553–3590. [Google Scholar] [CrossRef]
- Stoccoro, S.; Chelucci, G.; Cinellu, M.A.; Zucca, A.; Minghetti, G. Cyclometallated Derivatives of Palladium(II) and Platinum(II) derived from 6-(t-butyl)-2,2′-bipyridine. J. Organomet. Chem. 1993, 450, C15–C16. [Google Scholar] [CrossRef]
- Minghetti, G.; Cinellu, A.; Stoccoro, S.; Zucca, A.; Manassero, M. Cyclometallated Derivatives of Platinum(II) derived from 6-(tert-butyl)2,2′-bipiridine (HL). Crystal and Molecular Structure of [Pt(L)Cl]. J. Chem. Soc. Dalton Trans. 1995, 5, 777–781. [Google Scholar] [CrossRef]
- Zucca, A.; Cinellu, M.A.; Pinna, M.V.; Stoccoro, S.; Minghetti, G.; Chimica, D.; Manassero, M.; Sansoni, M. Cyclopalladation of 6-substituted-2,2′-bipyridines. Metallation of unactivated methyl groups vs. aromatic C-H activation. Organometallics 2000, 4, 4295–4304. [Google Scholar] [CrossRef]
- Zucca, A.; Stoccoro, S.; Cinellu, A.; Minghetti, G.; Manassero, M.; Sansoni, M. Metallation of Unactivated Methyl Groups of Platinum (II) Derivatives with 6-Alkyl-2,2¡-bipyridines. Eur. J. Inorg. Chem. 2002, 12, 3336–3346. [Google Scholar] [CrossRef]
- Stoccoro, S.; Maidich, L.; Ruiu, T.; Cinellu, M.A.; Clarkson, G.J.; Zucca, A. Chiral cyclometalation of 6-(1-phenylbenzyl)-2,2′-bipyridine. Dalton Trans. 2015, 44, 18001–18011. [Google Scholar] [CrossRef] [Green Version]
- Zucca, A.; Petretto, G.L.; Stoccoro, S.; Cinellu, M.A.; Manassero, M.; Manassero, C.; Minghetti, G. Cyclometalation of 2,2′-Bipyridine. Mono- and Dinuclear C,N Platinum(II) Derivatives. Organometallics 2009, 28, 2150–2159. [Google Scholar] [CrossRef]
- Zucca, A.; Cordeschi, D.; Maidich, L.; Pilo, M.I.; Masolo, E.; Stoccoro, S.; Cinellu, M.A.; Galli, S. Rollover cyclometalation with 2-(2′-pyridyl)quinoline. Inorg. Chem. 2013, 52, 7717–7731. [Google Scholar] [CrossRef]
- Zucca, A.; Cordeschi, D.; Stoccoro, S.; Cinellu, M.A.; Minghetti, G.; Chelucci, G.; Manassero, M. Platinum(II)-Cyclometalated “Roll-over” Complexes with a Chiral Pinene-Derived 2,2′-bipiridine. Organometallics 2011, 30, 3064–3074. [Google Scholar] [CrossRef]
- Maidich, L.; Dettori, G.; Stoccoro, S.; Cinellu, M.A.; Rourke, J.P.; Zucca, A. Electronic and Steric Effects in Rollover C–H Bond Activation. Organometallics 2015, 34, 817–828. [Google Scholar] [CrossRef]
- Maidich, L.; Cinellu, M.A.; Cocco, F.; Stoccoro, S.; Sedda, M.; Galli, S.; Zucca, A. Platinum(II), palladium(II) and gold(III) adducts and cyclometalated derivatives of 6-methoxy-2,2′-bipyridine: A comparative study. J. Organomet. Chem. 2016, 819, 76–86. [Google Scholar] [CrossRef]
- Zucca, A.; Maidich, L.; Pilo, M.I.; Pischedda, S.; Sedda, M.; Stoccoro, S. Pt(II) derivatives with rollover-coordinated 6-substituted 2,2′-bipyridines: Ligands with multiple personalities. Appl. Sci. 2020, 10, 6665. [Google Scholar] [CrossRef]
- Cocco, F.; Zucca, A.; Stoccoro, S.; Serratrice, M.; Guerri, A.; Cinellu, M.A. Synthesis and characterization of palladium(II) and platinum(II) adducts and cyclometalated complexes of 6,6′-dimethoxy-2,2′-bipyridine: C(sp3)-H and C(sp2)-H bond activation. Organometallics 2014, 33, 3414–3424. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Taylor, R.A.; Sunley, G.J.; Law, D.J.; White, A.J.P. Protonation of platinum(II) dialkyl complexes containing ligands with proximate H-bonding substituents. Organometallics 2006, 25, 2074–2079. [Google Scholar] [CrossRef]
- Sanna, G.; Minghetti, G.; Zucca, A.; Pilo, M.I.; Seeber, R.; Laschi, F. Platinum complexes with N-N-C ligands. Syntheses, electrochemical and spectroscopic characterizations of Platinum(II) and relevant electroreduced species. Inorg. Chim. Acta 2000, 305, 189–205. [Google Scholar] [CrossRef]
- Stoccoro, S.; Soro, B.; Minghetti, G.; Zucca, A.; Cinellu, M.A. Reactivity of 6-(2-tolyl)- and 6-(2,6-xilyl)-2,2′-bipyridines with palladium derivatives. Selective C(sp3)-H vs. C(sp2)-H activation. J. Organomet. Chem. 2003, 679, 1–9. [Google Scholar] [CrossRef]
- Abedi, A.; Amani, V.; Safari, N.; Ostad, S.N.; Notash, B. From proton transferred to cyclometalated platinum(IV) complex: Crystal structure and biological activity. J. Organomet. Chem. 2015, 799, 30–37. [Google Scholar] [CrossRef]
- Dholakia, S.; Gillard, R.D.; Wimmer, F.L. N-Methyl-2,2′-Bipyridylium Complexes: Synthesis and Cyclometallation of M(bpyMe)X3 (M = Pt, Pd; X = Cl, Br). Inorg. Chim. Acta 1983, 69, 179–181. [Google Scholar] [CrossRef]
- Wimmer, F.L.; Wimmer, S.; Delhi, N.; Facility, S.I.; Griffith, P.; Ten, R.W.M.; Langhout, J.P.; Gowda, N.M.N.; Gowda, M.N.; Naikar, S.B. Substitution of [M(bpyMe)C13] and [M(bpyMe-H)C12] (M = Pd or Pt; bpyMe = N-methyl-2,2′-bipyridylium ion) with N-heterocycles. Transition Met. Chem. 1985, 240, 238–240. [Google Scholar] [CrossRef]
- Schuster, O.; Yang, L.; Raubenheimer, H.G.; Albrecht, M. Beyond Conventional N-Heterocyclic Carbenes: Abnormal, Remote, and Other Classes of NHC Ligands with Reduced Heteroatom Stabilization Beyond Conventional N-Heterocyclic Carbenes: Abnormal, Remote, and Other Classes of NHC Ligands with Reduced Hetero. Chem. Rev. 2009, 109, 3445–3478. [Google Scholar] [CrossRef] [Green Version]
- Crabtree, R.H. Abnormal, mesoionic and remote N-heterocyclic carbene complexes. Coord. Chem. Rev. 2013, 257, 755–766. [Google Scholar] [CrossRef]
- Vivancos, Á.; Segarra, C.; Albrecht, M. Mesoionic and Related Less Heteroatom-Stabilized N-Heterocyclic Carbene Complexes: Synthesis, Catalysis, and Other Applications. Chem. Rev. 2018, 118, 9493–9586. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, M.E.; Boyle, P.D.; Puddephatt, R.J. Carbon—Hydrogen versus Nitrogen—Oxygen Bond Activation in Reactions of N-Oxide Derivatives of 2,2′-Bipyridine and 1,10- Phenanthroline with a Dimethylplatinum(II) Complex. Organometallics 2014, 33, 5402–5413. [Google Scholar] [CrossRef]
- Fereidoonnezhad, M.; Niazi, M.; Shahmohammadi Beni, M.; Mohammadi, S.; Faghih, Z.; Faghih, Z.; Shahsavari, H.R. Synthesis, Biological Evaluation, and Molecular Docking Studies on the DNA Binding Interactions of Platinum(II) Rollover Complexes Containing Phosphorus Donor Ligands. ChemMedChem 2017, 12, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Stoccoro, S.; Zucca, A.; Luigi, G.; Agostina, M.; Minghetti, G.; Manassero, M. Dinuclear platinum (II) complexes with bridging twofold (L = neutral ligand; X = halide)—Crystal and molecular structure of [Pt2(terpy-2H) (Cl)2(PPh3)2]. J. Organomet. Chem. 2006, 691, 4135–4146. [Google Scholar] [CrossRef]
- Zucca, A.; Doppiu, A.; Cinellu, M.A.; Stoccoro, S.; Minghetti, G.; Manassero, M. Multiple C-H Bond Activation. Threefold-Deprotonated 6-Phenyl-2,2′-bipyridine as a Bridging Ligand in Dinuclear Platinum (II) Derivatives. Organometallics 2002, 21, 783–785. [Google Scholar] [CrossRef]
- Zucca, A.; Cinellu, M.; Minghetti, G.; Stoccoro, S.; Manassero, M. Dinuclear, Tricyclometallated Platinum(II) Derivatives. Substitution Reactions and Reactivity of the Platinum-Carbon Bonds. Eur. J. Inorg. Chem. 2004, 2004, 4484–4490. [Google Scholar] [CrossRef]
- Zucca, A.; Petretto, G.L.; Stoccoro, S.; Cinellu, M.A.; Minghetti, G.; Manassero, M.; Manassero, C.; Male, L.; Albinati, A. Dinuclear C,N,C cyclometalated platinum derivatives with bridging delocalized ligands. Fourfold deprotonation of 6,6′-diphenyl-2,2′-bipyridine, H4L, promoted by “Pt(R)2” fragments (R = Me, Ph). Crystal structures of [Pt2(L)(3,5-Me2py)2]. Organometallics 2006, 25, 2253–2265. [Google Scholar] [CrossRef]
- Adamski, A.; Wałȩsa-Chorab, M.; Kubicki, M.; Hnatejko, Z.; Patroniak, V. Absorption spectra, luminescence properties and electrochemical behavior of Mn(II), Fe(III) and Pt(II) complexes with quaterpyridine ligand. Polyhedron 2014, 81, 188–195. [Google Scholar] [CrossRef]
- Petretto, G.L.; Rourke, J.P.; Maidich, L.; Stoccoro, S.; Cinellu, M.A.; Minghetti, G.; Clarkson, G.J.; Zucca, A. Heterobimetallic rollover derivatives. Organometallics 2012, 31, 2971–2977. [Google Scholar] [CrossRef]
- Aghakhanpour, R.B.; Nabavizadeh, S.M.; Rashidi, M. Newly designed luminescent di- and tetra-nuclear double rollover cycloplatinated(II) complexes. J. Organomet. Chem. 2016, 819, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Paziresh, S.; Babadi Aghakhanpour, R.; Fuertes, S.; Sicilia, V.; Niroomand Hosseini, F.; Nabavizadeh, S.M. A double rollover cycloplatinated(ii) skeleton: A versatile platform for tuning emission by chelating and non-chelating ancillary ligand systems. Dalt. Trans. 2019, 48, 5713–5724. [Google Scholar] [CrossRef] [PubMed]
- Cerny, R.L.; Sullivan, B.P.; Bursey, M.M.; Meyer, T.J. Comparison of fast atom bombardment and field desorption mass spectrometry of coordination complexes. Anal. Chem. 1983, 55, 1954–1958. [Google Scholar] [CrossRef]
- Cerny, R.L.; Sullivan, B.P.; Bursey, M.M.; Meyer, T.J. Fast Atom Bombardment and Field Desorption Mass Spectrometry of Organometallic Derivatives of Ruthenium(I1) and Osmium(I1). Inorg. Chem. 1985, 24, 397–401. [Google Scholar] [CrossRef]
- Butschke, B.; Schlangen, M.; Schröder, D.; Schwarz, H. “Roll-over” cyclometalation of 2,2′-bipyridine platinum(II) complexes in the gas phase: A combined experimental and computational study. Chemistry 2008, 14, 11050–11060. [Google Scholar] [CrossRef]
- Butschke, B.; Schlangen, M.; Schröder, D.; Schwarz, H. Platinum (II)-mediated dehydrosulfurization and oxidative carbon—carbon coupling in the gas-phase decomposition of thioethers. Int. J. Mass Spectrom. 2009, 283, 3–8. [Google Scholar] [CrossRef]
- Butschke, B.; Schröder, D.; Schwarz, H. Thermal C-H bond activation of benzene with cationic [Pt(CX 3)(L)]+ complexes in the gas phase: A combined experimental/theoretical study (X = H, D.; L = 1,10-phenanthroline, 2,2′-bipyrimidine, 2,2′-Bipyridine, and (o,o′-Cl 2C6H3)N=C(CH3)-C(CH 3)=N(o,o′-Cl. Organometallics 2009, 28, 4340–4349. [Google Scholar] [CrossRef]
- Butschke, B.; Tabrizi, S.G.; Schwarz, H. Ion-molecule reactions of “rollover” cyclometalated [Pt(bipy-H)]+ (bipy = 2,2′-bipyridine) with dimethyl ether in comparison with dimethyl sulfide: An experimental/computational study. Chem. A Eur. J. 2010, 16, 3962–3969. [Google Scholar] [CrossRef]
- Butschke, B.; Tabrizi, S.G.; Schwarz, H. On the gas-phase decomposition of acyclic ethers mediated by “rollover” a mechanistic study. Int. J. Mass Spectrom. 2010, 291, 125–132. [Google Scholar] [CrossRef]
- Butschke, B.; Schwarz, H. On the activation of chloromethanes by cyclometalated [Pt(bipy-H)]+ in the gas phase: A mechanistic study. Int. J. Mass Spectrom. 2011, 306, 108–113. [Google Scholar] [CrossRef]
- Butschke, B.; Schwarz, H. Mechanistic studies on the gas-phase dehydrogenation of alkanes at cyclometalated platinum complexes. Chem. A Eur. J. 2012, 18, 14055–14062. [Google Scholar] [CrossRef]
- Imanbaew, D.; Nosenko, Y.; Kerner, C.; Chevalier, K.; Rupp, F.; Riehn, C.; Thiel, W.R.; Diller, R. Excited-state dynamics of a ruthenium(II) catalyst studied by transient photofragmentation in gas phase and transient absorption in solution. Chem. Phys. 2014, 442, 53–61. [Google Scholar] [CrossRef]
- Menges, F.S.; Lang, J.; Nosenko, Y.; Kerner, C.; Gaffga, M.; Ghoochany, L.T.; Thiel, W.R.; Riehn, C.; Niedner-Schatteburg, G. Exploring the Gas-Phase Activation and Reactivity of a Ruthenium Transfer Hydrogenation Catalyst by Experiment and Theory in Concert. J. Phys. Chem. A 2017, 121, 4422–4434. [Google Scholar] [CrossRef] [PubMed]
- Tyo, E.C.; Castleman, A.W.; Schröder, D.; Milko, P.; Roithova, J.; Ortega, J.M.; Cinellu, M.A.; Cocco, F.; Minghetti, G. Large effect of a small substitution: Competition of dehydration with charge retention and coulomb explosion in gaseous [(bipyR)Au(μ-O)2Au(bipyR)]2+dications. J. Am. Chem. Soc. 2009, 131, 13009–13019. [Google Scholar] [CrossRef] [PubMed]
- Maidich, L.; Zuri, G.; Stoccoro, S.; Cinellu, M.A.; Masia, M.; Zucca, A. Mesoionic complexes of platinum(II) derived from “rollover” cyclometalation: A delicate balance between Pt-C(sp3) and Pt-C(sp2) bond cleavage as a result of different reaction conditions. Organometallics 2013, 32, 438–448. [Google Scholar] [CrossRef]
- Saleh, N.; Moore, B.; Srebro, M.; Vanthuyne, N.; Toupet, L.; Williams, J.A.G.; Roussel, C.; Deol, K.K.; Muller, G.; Autschbach, J.; et al. Acid/base-triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes. Chem. A Eur. J. 2015, 21, 1673–1681. [Google Scholar] [CrossRef]
- Maidich, L.; Zuri, G.; Stoccoro, S.; Cinellu, M.A.; Zucca, A. Assembly of symmetrical and unsymmetrical platinum(II) rollover complexes with bidentate phosphine ligands. Dalton Trans. 2014, 43, 14806–14815. [Google Scholar] [CrossRef]
- Shahsavari, H.R.; Fereidoonnezhad, M.; Niazi, M.; Mosavi, S.T.; Kazemi, S.H.; Kia, R.; Shirkhan, S.; Aghdam, S.A.; Raithby, P.R. Cyclometalated platinum(II) complexes of 2,2′-bipyridine N-oxide containing a 1,1′-bis(diphenylphosphino)ferrocene ligand: Structural, computational and electrochemical studies. Dalt. Trans. 2017, 46, 2013–2022. [Google Scholar] [CrossRef] [Green Version]
- Shahsavari, H.R.; Babadi Aghakhanpour, R.; Hossein-Abadi, M.; Kia, R.; Halvagar, M.R.; Raithby, P.R. Reactivity of a new aryl cycloplatinated(ii) complex containing rollover 2,2′-bipyridine: N-oxide toward a series of diphosphine ligands. New J. Chem. 2018, 42, 9159–9167. [Google Scholar] [CrossRef]
- Paziresh, S.; Babadi Aghakhanpour, R.; Rashidi, M.; Nabavizadeh, S.M. Simple tuning of the luminescence properties of the double rollover cycloplatinated(II) structure by halide ligands. New J. Chem. 2018, 42, 1337–1346. [Google Scholar] [CrossRef]
- Minghetti, G.; Stoccoro, S.; Cinellu, M.A.; Petretto, G.L.; Zucca, A.N.C. “Rollover” Cyclometalated Platinum(II) Hydrides: Mono- and Polynuclear Derivatives. Organometallics 2008, 27, 3415–3421. [Google Scholar] [CrossRef]
- Garces, F.O.; Watts, R.J. A New Ortho-Metalated Dichloro-Bridged Complex ofIridium(III) with 2,2′-Bipyridine: [{Ir(bpy-C3,N′)(bpy-N,N′)Cl}+2Cl]2. Inorg. Chem. 1990, 29, 582–584. [Google Scholar] [CrossRef]
- Young, K.J.H.; Mironov, O.; Periana, R. Stoichiometric Oxy Functionalization and CH Activation Studies of Cyclometalated Iridium(III) 6-Phenyl-2,2′-Bipyridine Hydrocarbyl Complexes. Organometallics 2007, 26, 2137–2140. [Google Scholar] [CrossRef]
- Young, K.J.H.; Yousufuddin, M.; Ess, D.H.; Periana, R.A. Cyclometalation of 6-Phenyl-2,2′-Bipyridine and Iridium: Synthesis, Characterization, and Reactivity Studies. Organometallics 2009, 28, 3395–3406. [Google Scholar] [CrossRef]
- Schön, F.; Leist, M.; Neuba, A.; Lang, J.; Braun, C.; Sun, Y.; Niedner-Schatteburg, G.; Bräse, S.; Thiel, W.R. A direct access to heterobimetallic complexes by roll-over cyclometallation. Chem. Commun. 2017, 53, 12016–12019. [Google Scholar] [CrossRef] [PubMed]
- Mamo, A.; Stefio, I.; Parisi, M.F.; Credi, A.; Venturi, M.; Di Pietro, C.; Campagna, S. Luminescent and Redox-Active Iridium(III)-Cyclometalated Compounds with Terdentate Ligands. Inorg. Chem. 1997, 36, 5947–5950. [Google Scholar] [CrossRef]
- Bexon, A.J.S.; Williams, J.A.G. Luminescent complexes of iridium (III) with 6′-phenyl-2,2′-bipyridine and 4′-aryl derivatives: N ^ C versus N ^ N coordination. C. R. Chem. 2005, 8, 1326–1335. [Google Scholar] [CrossRef]
- Ionkin, A.S.; Wang, Y.; Marshall, W.J.; Petrov, V.A. Synthesis, structural characterization, and initial electroluminescent properties of bis-cycloiridiated complexes of 2-(3,5-bis(trifluoromethyl)phenyl)-4-methylpyridine. J. Organomet. Chem. 2007, 692, 4809–4827. [Google Scholar] [CrossRef]
- Zuber, M.; Pruchnik, F.P. Hydridobipyridine rhodium complexes as a result of the C-H bond activation in coordinated ligand, NMR studies. Polyhedron 2006, 25, 2773–2777. [Google Scholar] [CrossRef]
- Manbeck, K.A.; Brennessel, W.W.; Jones, W.D. Examination of a dicationic rhodium methyl aquo complex. Inorg. Chim. Acta 2013, 397, 140–143. [Google Scholar] [CrossRef]
- Ghoochany, L.T.; Kerner, C.; Farsadpour, S.; Menges, F.; Sun, Y.; Niedner-schatteburg, G.; Thiel, W.R. C-H Activation at a Ruthenium (II) Complex—The Key Step for a Base-Free Catalytic Transfer Hydrogenation? Eur. J. Inorg. Chem. 2013, 4305–4317. [Google Scholar] [CrossRef]
- Zhao, J.W.; Wang, C.M.; Zhang, J.; Zheng, S.T.; Yang, G.Y. Combination of lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: IX. A series of novel polyoxotungstates sandwiched by octa-copper clusters. Chem. A Eur. J. 2008, 14, 9223–9239. [Google Scholar] [CrossRef] [PubMed]
- Cocco, F.; Cinellu, M.; Minghetti, G.; Zucca, A.; Stoccoro, S.; Maiore, L.; Manassero, M. Intramolecular C(sp 2)−H Bond Activation in 6,6′-Dimethoxy-2,2′-Bipyridine with Gold(III). Crystal and Molecular Structure of the First N′,C(3) “Rollover” Cycloaurated Derivative. Organometallics 2010, 29, 1064–1066. [Google Scholar] [CrossRef]
- Vogler, A.; Shenderovich, I.G. Photochemistry of deprotonated rhenium(I) (3,30-dihydroxy-2,20-bipyridine) tricarbonyl chloride. Photoisomerization at the chelate in basic solution. Inorg. Chim. Acta 2014, 421, 496–499. [Google Scholar] [CrossRef]
- Taylor, J.O.; Neri, G.; Banerji, L.; Cowan, A.J.; Hartl, F. Strong Impact of Intramolecular Hydrogen Bonding on the Cathodic Path of [Re(3,3′-dihydroxy-2,2′-bipyridine)(CO)3Cl] and Catalytic Reduction of Carbon Dioxide. Inorg. Chem. 2020, 59, 5564–5578. [Google Scholar] [CrossRef] [Green Version]
- Chassot, L.; von Zelewsky, A. Cyclometalated Complexes of Platinum (II): Homoleptic Compounds with Aromatic C,N Ligands. Inorg. Chem. 1987, 26, 2814–2818. [Google Scholar] [CrossRef]
- Canty, A.J.; Honeyman, R.T. Cyclometallation of polydentate ligands containing pyrazole groups, including the synthesis of platinum (IV) complexes with tripodal [N–C–N]− ligand systems. J. Organomet. Chem. 1990, 387, 247–263. [Google Scholar] [CrossRef]
- Hudson, Z.M.; Zhao, S.B.; Wang, R.Y.; Wang, S. Switchable ambient-temperature singlet-triplet dual emission in nonconjugated donor-acceptor triarylboron-Pt complexes. Chem. A Eur. J. 2009, 15, 6131–6137. [Google Scholar] [CrossRef]
- Crosby, S.H.; Clarkson, G.J.; Rourke, J.P. Reactions of a Platinum (II) Agostic Complex: Decyclometalation, Dicyclometalation, and Solvent-Switchable Formation of a Rollover Complex. Organometallics 2011, 30, 3603–3609. [Google Scholar] [CrossRef]
- Fizia, A.; Gaffga, M.; Lang, J.; Sun, Y.; Niedner-Schatteburg, G.; Fizia, A.; Gaffga, M.; Lang, J.; Sun, Y.; Niedner-Schatteburg, G.; et al. Cyclopalladation in the Periphery of a NHC Ligand as the Crucial Step in the Synthesis of Highly Active Suzuki–Miyaura Cross-CouplingCatalysts. Chem. Eur. J. 2017, 23, 14563–14575. [Google Scholar] [CrossRef]
- Schuster, E.M.; Botoshansky, M.; Gandelman, M. Versatile, Selective, and Switchable Coordination Modes of Pincer Click Ligands. Organometallics 2009, 28, 7001–7005. [Google Scholar] [CrossRef]
- Bailey, W.D.; Phearman, A.S.; Luconi, L.; Rossin, A.; Yakhvarov, D.G.; Accolti, L.D.; Flowers, S.E.; Kaminsky, W.; Kemp, R.A.; Giambastiani, G.; et al. Hydrogenolysis of Dinuclear PCNR Ligated PdII m-Hydroxides and Their Mononuclear PdII Hydroxide Analogues. Chem. Eur. J. 2019, 9920–9929. [Google Scholar] [CrossRef] [PubMed]
- Scheuermann, M.L.; Grice, K.A.; Ruppel, M.J.; Roselló-Merino, M.; Kaminsky, W.; Goldberg, K.I. Hemilability of P(X)N-type ligands (X = O, N-H): Rollover cyclometalation and benzene C-H activation from (P(X)N)PtMe2 complexes. Dalt. Trans. 2014, 43, 12018–12025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tovar-Ramírez, M.E.; Ramírez-Zúńiga, R.; Nicasio-Collazo, J.; Wrobel, K.; Alvarado-Rodríguez, J.G.; Wrobel, K.; Serrano, O. Rollover Cyclopalladation via Remote C-H Bond Activation of Br-Pyridinbenzothiazole: An Experimental Study. Chem. Sel. 2018, 3, 4133–4139. [Google Scholar] [CrossRef]
- Danopoulos, A.A.; Winston, S.; Hursthouse, M.B. C-H activation with N-heterocyclic carbene complexes of iridium and rhodium. J. Chem. Soc. Dalton Trans. 2002, 3090–3091. [Google Scholar] [CrossRef]
- Tan, T.T.Y.; Schick, S.; Hahn, F.E. Synthesis and Reactivity of IrIII Complexes Bearing C-Metalated Pyrazolato Ligands. Organometallics 2019, 38, 567–574. [Google Scholar] [CrossRef]
- Xue, M.; Zhuang, D.; Li, H.; He, P.; Liu, C.; Zhu, J.; Yi, X. Formation of Iridium (III) Complexes via Selective Activation of the Activation of the C–H and N−H Bonds of a Dipyridylpyrrole Ligand. Inorg. Chem. 2020, 59, 960–963. [Google Scholar] [CrossRef]
- Luconi, L.; Rossin, A.; Tuci, G.; Gafurov, Z.; Lyubov, D.M.; Trifonov, A.A.; Stefano Cicchi, S.; Ba, H.; Pham-Huu, C.; Yakhvarov, D.; et al. Benzoimidazole-Pyridylamido Zirconium and Hafnium Alkyl Complexes as Homogeneous Catalysts for Tandem Carbon Dioxide Hydrosilylation to Methane. Che. Cat. Chem. 2019, 495–510. [Google Scholar] [CrossRef]
- Joslin, E.E.; Quillian, B.; Gunnoe, T.B.; Cundari, T.R.; Sabat, M.; Myers, W.H. C-H activation of pyrazolyl ligands by Ru(II). Inorg. Chem. 2014, 53, 6270–6279. [Google Scholar] [CrossRef]
- Ghannam, J.; Sun, Z.; Cundari, T.R.; Zeller, M.; Lugosan, A.; Stanek, C.M.; Lee, W. Intramolecular C–H Functionalization Followed by a [2σ + 2π] Addition via an Intermediate Nickel–Nitridyl Complex. Inorg. Chem. 2019, 58, 7131–7135. [Google Scholar] [CrossRef]
- Lin, H.-J.; Lutz, S.; O’Kane, C.; Zeller, M.; Chen, C.-H.; Al Assil, T.; Lee, W.-T. Synthesis and Characterization of an Iron Complex Bearing a Hemilabile NNN-Pincer for Catalytic Hydrosilylation of Organic Carbonyl Compounds. Dalton Trans. 2018, 47, 3243–3247. [Google Scholar] [CrossRef]
- Petretto, G.L.; Zucca, A.; Stoccoro, S.; Cinellu, M.A.; Minghetti, G. Step by step Palladium mediated syntheses of new 2-(pyridin-2-yl)-6-R-nicotinic acids and esters. J. Organomet. Chem. 2010, 695, 256–259. [Google Scholar] [CrossRef]
- Maidich, L.; Zucca, A.; Clarkson, G.J.; Rourke, J.P. Isolation of the Kinetic Product. Organometallics 2013, 32, 3371–3375. [Google Scholar] [CrossRef]
- Aghakhanpour, R.B.; Nabavizadeh, S.M.; Mohammadi, L.; Jahromi, S.A.; Rashidi, M. A kinetic approach to carbon-iodide bond activation by rollover cycloplatinated(II) complexes containing monodentate phosphine ligands. J. Organomet. Chem. 2015, 781, 47–52. [Google Scholar] [CrossRef]
- Aghakhanpour, R.B.; Rashidi, M.; Hosseini, F.N.; Raoof, F.; Nabavizadeh, S.M. Oxidation of a rollover cycloplatinated(ii) dimer by MeI: A kinetic study. RSC Adv. 2015, 5, 66534–66542. [Google Scholar] [CrossRef]
- Hosseini, F.N.; Nabavizadeh, S.M.; Abu-omar, M.M. Which is the Stronger Nucleophile, Platinum or Nitrogen in Rollover Cycloplatinated(II) Complexes? Inorg. Chem. 2017, 56, 14706–14713. [Google Scholar] [CrossRef]
- Shahsavari, H.R.; Babadi Aghakhanpour, R.; Fereidoonnezhad, M. An in-depth investigation on the C-I bond activation by rollover cycloplatinated(II) complexes bearing monodentate phosphane ligands: Kinetic and kinetic isotope effect. New J. Chem. 2018, 42, 2564–2573. [Google Scholar] [CrossRef]
- Chamyani, S.; Shahsavari, H.R.; Abedanzadeh, S.; Golbon Haghighi, M.; Shabani, S.; Notash, B. Carbon-iodide bond activation by cyclometalated Pt (II) complexes bearing tricyclohexylphosphine ligand: A comparative kinetic study and theoretical elucidation. Appl. Organomet. Chem. 2019, 33, e4674. [Google Scholar] [CrossRef] [Green Version]
- Zucca, A.; Maidich, L.; Canu, L.; Petretto, G.L.; Stoccoro, S.; Cinellu, M.A.; Clarkson, G.J.; Rourke, J.P. Rollover-assisted C(sp2)-C(sp3) bond formation. Chemistry. A Eur. J. 2014, 20, 5501–5510. [Google Scholar] [CrossRef]
- Cuesta, L.; Soler, T.; Urriolabeitia, E.P. Cycloruthenated complexes from imine-based heterocycles: Synthesis, characterization, and reactivity toward alkynes. Chem. A Eur. J. 2012, 18, 15178–15189. [Google Scholar] [CrossRef]
- Adiraju, V.A.K.; Martin, C.D. C–H addition reactivity of 2-phenylpyridine and 2,2′-bipyridine with pentaphenylborole. Dalt. Trans. 2017, 46, 10324–10331. [Google Scholar] [CrossRef] [Green Version]
- Dupont, J.; Pfeffer, M. (Eds.) Palladacycles: Synthesis, Characterization and Applications; Wiley-VCH: Weinheim, Germany, 2008; ISBN 9783527319527. [Google Scholar]
- Beletskaya, I.P.; Cheprakov, A.V. Palladacycles in catalysis—A critical survey. J. Organomet. Chem. 2004, 689, 4055–4082. [Google Scholar] [CrossRef]
- Albrecht, M.; van Koten, G. Platinum Group Organometallics Based on “Pincer” Complexes: Sensors, Switches, and Catalysts. Angew. Chem. Int. Ed. 2001, 40, 3750–3781. [Google Scholar] [CrossRef]
- Sinha, A.; Rahaman, S.M.W.; Sarkar, M.; Saha, B.; Daw, P.; Bera, J.K. Multifaceted Coordination of Naphthyridine-Functionalized N-Heterocyclic Carbene: A Novel “Ir(III)(C ^N)(C^C)” Compound and Its Evaluation as Transfer Hydrogenation Catalyst. Inorg. Chem. 2009, 11114–11122. [Google Scholar] [CrossRef] [PubMed]
- Adamski, A.; Kubicki, M.; Pawluć, P.; Grabarkiewicz, T.; Patroniak, V. New organoplatinum (IV) complex with quaterpyridine ligand: Synthesis, structure and its catalytic activity in the hydrosilylation of styrene and terminal alkynes. Catal. Commun. 2013, 42, 79–83. [Google Scholar] [CrossRef]
- Kerner, C.; Lang, J.; Gaffga, M.; Menges, F.S.; Sun, Y.; Niedner-Schatteburg, G.; Thiel, W.R. Mechanistic Studies on Ruthenium(II)-Catalyzed Base-Free Transfer Hydrogenation Triggered by Roll-Over Cyclometalation. ChemPlusChem 2017, 82, 212–224. [Google Scholar] [CrossRef]
- Kerner, C.; Straub, S.-D.; Sun, Y.; Thiel, W.R. A Rapid and Additive-Free Ruthenium-Catalyzed Reductive Amination of Aromatic Aldehydes. Eur. J. Org Chem. 2016, 18, 3060–3064. [Google Scholar] [CrossRef]
- Sung, M.M.H.; Prokopchuk, D.E.; Morris, R.H. Phosphine-free ruthenium NCN-ligand complexes and their use in catalytic CO2 hydrogenation. Dalt. Trans. 2019, 48, 16569–16577. [Google Scholar] [CrossRef]
- Perutz, R.N.; Sabo-Etienne, S. The σ‐CAM Mechanism: σ Complexes as the Basis of σ-Bond Metathesis at Late‐Transition‐Metal Centers. Angew. Chem. Int. Ed. 2007, 46, 2578–2592. [Google Scholar] [CrossRef]
- Farsadpour, S.; Ghoochany, L.T.; Sun, Y.; Thiel, W.R. Small Substituents Make Large Differences: Aminopyrimidinyl Phosphanes Undergoing C-H Activation. Eur. J. Inorg. Chem. 2011, 4603–4609. [Google Scholar] [CrossRef]
- Katagiri, T.; Mukai, T.; Satoh, T.; Hirano, K.; Miura, M. Rhodium-catalyzed and Coordination-assisted Regioselective Alkenylation of Aromatic C–H Bonds with Terminal Silylacetylenes. Chem. Lett. 2009, 38, 118–119. [Google Scholar] [CrossRef]
- Kwak, J.; Ohk, Y.; Jung, Y.; Chang, S. Rollover Cyclometalation Pathway in Rhodium Catalysis: Dramatic NHC Effects in the C–H Bond Functionalization. J. Am. Chem. Soc. 2012, 134, 17778–17788. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Y.; Kwak, J.; Chang, S. Rhodium- Catalyzed Selective C–H Functionalization of NNN Tridentate Chelating Compounds via a Rollover Pathway. Chem. Commun. 2016, 52, 3159–3162. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wen, S.; Ba, D.; Lv, W.; Chen, Y.; Cheng, G. Rhodium(III)-Catalyzed Regioselective C3–H Acylmethylation of [2,2′-Bipyridine]-6-carboxamides with Sulfoxonium Ylides. Org. Lett. 2019, 21, 6366–6369. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Brennessei, W.W.; Jones, W.D. An Efficient Low-Temperature Route to Polycyclic Isoquinoline Salt Synthesis via C–H Activation with [Cp*MCl2]2 (M = Rh, Ir). J. Am. Chem. Soc. 2008, 130, 12414–12419. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.-Z.; Gandeepan, P.; Jayakumar, J.; Parthasarathy, K.; Chang, Y.-W.; Cheng, C.-H. RhIII-Catalyzed C–H Activation: A Versatile Route towards Various Polycyclic Pyridinium Salts. Chem. Eur. J. 2013, 19, 14181–14186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yang, L.; Wang, Y.; Xie, Y.; Huang, H. An Efficient Rh/O2 Catalytic System for Oxidative C–H Activation/Annulation: Evidence for Rh(I) to Rh(III) Oxidation by Molecular Oxygen. J. Am. Chem. Soc. 2013, 135, 8850–8853. [Google Scholar] [CrossRef]
- Umeda, N.; Hirano, K.; Satoh, T.; Shibata, N.; Sato, H.; Miura, M. Rhodium-Catalyzed Oxidative 1:1, 1:2, and 1:4 Coupling Reactions of Phenylazoles with Internal Alkynes through the Regioselective Cleavages of Multiple C–H Bonds. J. Org. Chem. 2011, 76, 13–24. [Google Scholar] [CrossRef]
- Morioka, R.; Nobushige, K.; Satoh, T.; Hirano, K.; Miura, M. Synthesis of Indolo[1,2-a][1,8]naphthyridines by Rhodium(III)-Catalyzed Dehydrogenative Coupling via Rollover Cyclometalation. Org. Lett. 2015, 17, 3130–3133. [Google Scholar] [CrossRef]
- Li, S.S.; Wang, C.Q.; Lin, H.; Zhang, X.-M.; Dong, L. Rhodium(III)-Catalyzed Oxidative Annulation of 7-Azaindoles and Alkynes via Double C-H Activation. Org. Lett. 2015, 17, 3018–3021. [Google Scholar] [CrossRef]
- Qi, Z.; Yu, S.; Li, X. Rh(III)-Catalyzed Oxidative Annulation of 2-Phenylimidazo[1,2-a]pyridines with Alkynes: Mono versus Double C–H Activation. J. Org. Chem. 2015, 80, 3471–3479. [Google Scholar] [CrossRef] [PubMed]
- Ghorai, D.; Dutta, C.; Choudhury, J. Switching of “Rollover Pathway” in Rhodium(III)-Catalyzed C–H Activation of Chelating Molecules. ACS Catal. 2016, 6, 709–713. [Google Scholar] [CrossRef]
- Dutta, C.; Ghorai, D.; Choudhury, J. To “Rollover” or Not? Stereoelectronically Guided C–H Functionalization Pathways from Rhodium–Abnormal NHC Intermediates. ACS Omega 2018, 3, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Thenarukandiyil, R.; Dutta, C.; Choudhury, J. Switching of Reaction Pathway from C−C Rollover to C−N Ring-Extension Annulation. Chem. A Eur. J. 2017, 23, 15529–15533. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Wang, Z.; Feng, B.; You, J. Rhodium (III)-Catalyzed Annulation of Pyridinones with Alkynes via Double C–H Activation: A Route to Functionalized Quinolizinones. Org. Lett. 2017, 19, 3083–3086. [Google Scholar] [CrossRef]
- Seoane, A.; Comanescu, C.; Casanova, N.; García-Fandiño, R.; Diz, X.; Mascareñas, J.L.; Gulías, M. Rhodium-Catalyzed Annulation of ortho-Alkenyl Anilides with Alkynes: Formation of Unexpected Naphthalene Adducts. Angew. Chemie Int. Ed. 2019, 58, 1700–1704. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Z.; Ma, D.; Chen, C.; Zhu, B. Rh(III)-Catalyzed switchable C-H functionalization of 2-(1 H-pyrazol-1-yl)pyridine with internal alkynes. Org. Chem. Front. 2020, 7, 1158–1163. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Z.; Bao, Y.; Chen, C.; Liu, K.; Zhu, B. A novel approach for rhodium(iii)-catalyzed C-H functionalization of 2,2′-bipyridine derivatives with alkynes: A significant substituent effect. Chem. Commun. 2020, 56, 4408–4411. [Google Scholar] [CrossRef]
- Ghosh, K.; Nishii, Y.; Miura, M. Oxidative C-H/C-H Annulation of Imidazopyridines and Indazoles through Rhodium-Catalyzed Vinylene Transfer. Org. Lett. 2020, 22, 3547–3550. [Google Scholar] [CrossRef]
- Martínez, Á.M.; Echavarren, J.; Alonso, I.; Rodríguez, N.; Gómez Arrayás, R.; Carretero, J.C. RhI/RhIII catalyst-controlled divergent aryl/heteroaryl C-H bond functionalization of picolinamides with alkynes. Chem. Sci. 2015, 6, 5802–5814. [Google Scholar] [CrossRef] [Green Version]
- Shibata, T.; Takayasu, S.; Yuzawa, S.; Otani, T. Rh(III)-Catalyzed C–H Bond Activation along with “Rollover” for the Synthesis of 4-Azafluorenes. Org. Lett. 2012, 14, 5106–5109. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Takayasu, S. Synthesis of Multicyclic Heterocycles Initiated by C–H Bond Activation Along with “Rollover” Using a Rh(III) Catalyst. Heteroat. Chem. 2014, 25, 379–388. [Google Scholar] [CrossRef]
- Yu, S.; Li, X. Mild synthesis of chalcones via rhodium(III)-Catalyzed C-C coupling of arenes and cyclopropenones. Org. Lett. 2014, 16, 1220–1223. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Yao, X.; Li, G.; Lu, H. Rhodium- Catalyzed Selective Mono- and Diamination of Arenes with Single Directing Site “On Water”. Org. Lett. 2016, 18, 1386–1389. [Google Scholar] [CrossRef]
- Zhu, X.; Shen, X.-J.; Tian, Z.-Y.; Lu, S.; Tian, L.-L.; Liu, W.-B.; Song, B.; Hao, X.-Q. Rhodium-Catalyzed Direct Bis-cyanation of Arylimidazo[1,2-α]pyridine via Double C–H Activation. J. Org. Chem. 2017, 82, 6022–6031. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Huang, X.; Ding, J.; Liu, M.; Wu, H. Pd-catalyzed intramolecular aerobic oxidative C-H amination of 2-aryl-3-(arylamino)quinazolinones: Synthesis of fluorescent indazolo[3,2-b]quinazolinones. Org. Lett. 2014, 16, 5418–5421. [Google Scholar] [CrossRef]
- Yu, J.; Lv, W.; Cheng, G. Palladium-Catalyzed Site-Selective C-H Arylation of 2,2′-Bipyridine-6-carboxamides via a Rollover Cyclometalation Pathway. Org. Lett. 2018, 20, 4732–4735. [Google Scholar] [CrossRef]
- Zucker, S.P.; Wossidlo, F.; Weber, M.; Lentz, D.; Tzschucke, C.C. Palladium-Catalyzed Directed Halogenation of Bipyridine N-Oxides. J. Org. Chem. 2017, 82, 5616–5635. [Google Scholar] [CrossRef]
- Su, T.C.; Liu, Y.H.; Peng, S.M.; Liu, S.T. Rhenium complexes with a pyridinyl-naphthyridine ligand: Synthesis, characterization, and catalytic activity. Eur. J. Inorg. Chem. 2013, 2362–2367. [Google Scholar] [CrossRef]
- Fereidoonnezhad, M.; Shahsavari, H.R.; Abedanzadeh, S.; Behchenari, B.; Hossein-Abadi, M.; Faghih, Z.; Hassan Beyzavi, M. Cycloplatinated(II) complexes bearing 1,1′-bis(diphenylphosphino)ferrocene ligand: Biological evaluation and molecular docking studies. New J. Chem. 2018, 42, 2385–2392. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Ebrahimi, F.; Faghih, Z.; Movahed, A. Cytotoxic Effect Two Novel Platinum Breast Cancer: An in Vitro Study. Asian. Pac. J. Cancer Biol. 2018, 3, 11–14. [Google Scholar] [CrossRef]
- Babak, M.V.; Pfaffeneder-Kmen, M.; Meier-Menches, S.M.; Legina, M.S.; Theiner, S.; Licona, C.; Orvain, C.; Hejl, M.; Hanif, M.; Jakupec, M.A.; et al. Rollover Cyclometalated Bipyridine Platinum Complexes as Potent Anticancer Agents: Impact of the Ancillary Ligands on the Mode of Action. Inorg. Chem. 2018, 57, 2851–2864. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Kaur, G.; Chakraborty, S.; Roy Choudhury, A.; Laskar, I.R. Aggregation induced phosphorescence active rollover iridium(III) complex as a multi-stimuli-responsive luminescence material. Dalt. Trans. 2015, 44, 6581–6592. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zucca, A.; Pilo, M.I. Rollover Cyclometalation as a Valuable Tool for Regioselective C–H Bond Activation and Functionalization. Molecules 2021, 26, 328. https://doi.org/10.3390/molecules26020328
Zucca A, Pilo MI. Rollover Cyclometalation as a Valuable Tool for Regioselective C–H Bond Activation and Functionalization. Molecules. 2021; 26(2):328. https://doi.org/10.3390/molecules26020328
Chicago/Turabian StyleZucca, Antonio, and Maria I. Pilo. 2021. "Rollover Cyclometalation as a Valuable Tool for Regioselective C–H Bond Activation and Functionalization" Molecules 26, no. 2: 328. https://doi.org/10.3390/molecules26020328
APA StyleZucca, A., & Pilo, M. I. (2021). Rollover Cyclometalation as a Valuable Tool for Regioselective C–H Bond Activation and Functionalization. Molecules, 26(2), 328. https://doi.org/10.3390/molecules26020328