Room Temperature Ionic Liquids in Asymmetric Hetero-Ene Type Reactions: Improving Organocatalyst Performance at Lower Temperatures
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Materials and Methods
3.2. Typical Procedure for the Hetero-Ene Reaction Catalyzed by (Thio)Ureas I–III
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, S.K.; Savory, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112028. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids: A brief story. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Thomas, M.L.; Zhang, S.G.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 2017, 117, 7190–7239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawant, A.D.; Raut, D.G.; Darvatkar, N.B.; Salunkhe, M.M. Recent developments of task-specific ionic liquids in organic synthesis. Green Chem. Lett. Rev. 2011, 4, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef]
- Jindal, R.; Surya, A.S. Preparation and applications of room temperature ionic liquids in organic synthesis: A review on recent efforts. Curr. Green Chem. 2015, 2, 135–155. [Google Scholar] [CrossRef]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef]
- Muzart, J. Ionic liquids as solvents for catalyzed oxidations of organic compounds. Adv. Synth. Catal. 2006, 348, 275–295. [Google Scholar] [CrossRef]
- Dupont, J.; Kollar, L. (Eds.) Ionic Liquids (ILs) in Organometallic Catalysis; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Itoh, T. Ionic liquids as tool to improve enzymatic organic synthesis. Chem. Rev. 2017, 117, 10567–10607. [Google Scholar] [CrossRef]
- Lozano, P.; Alvárez, E.; Bernal, J.M.; Nieto, S.; Gómez, C.; Sánchez-Gómez, G. Ionic liquids for clean biocatalytic processes. Curr. Green Chem. 2017, 4, 116–129. [Google Scholar] [CrossRef]
- Domínguez de María, P.; Maugeri, Z. Ionic liquids in biotransformations: From proof-of-concept to emerging deep-eutectic-solvents. Curr. Opin. Chem. Biol. 2011, 15, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, C.; Fraaije, M.W.; de Gonzalo, G.; Gotor, V. Ionic liquids for enhancing the enantioselectivity of isolated BVMO-catalysed oxidations. Green Chem. 2010, 12, 2255–2260. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Headley, A.D. Ionic liquid immobilized organocatalysts for asymmetric reactions in aqueous media. Catalysts 2013, 3, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Toma, S.; Šebesta, R. Ionic Liquids as (co-)solvents and (co-)catalysts for organocatalytic reactions. In Ionic Liquids in Biotransformations and Organocatalysis: Solvents and Beyond; Domínguez de María, P., Ed.; John Wiley & Sons: New York, NY, USA, 2012; pp. 333–359. [Google Scholar]
- Tukhvatshin, R.S.; Kucherenko, A.S.; Nelyubina, Y.V.; Zlotin, S.G. Stereoselective synthesis of tetrahydroquinolines via asymmetric domino reaction catalyzed by a recyclable ionic-liquid-supported bifunctional tertiary amine. Eur. J. Org. Chem. 2018, 2018, 7000–7008. [Google Scholar] [CrossRef]
- Tukhvatshin, R.S.; Kucherenko, A.S.; Nelyubina, Y.V.; Zlotin, S.G. Tertiary amine-derived ionic liquid-supported squaramide as a recyclable organocatalyst for noncovalent “on water” catalysis. ACS Catal. 2017, 7, 2981–2989. [Google Scholar] [CrossRef]
- Xu, F.; Cheng, W.; Yao, X.; Sun, J.; Sun, W.; Zhang, S. Thiourea-based bifunctional ionic liquids as highly efficient catalysts for the cycloaddition of CO2 to epoxides. Catal. Lett. 2017, 147, 1654–1664. [Google Scholar] [CrossRef]
- Liu, X.F.; Song, Q.W.; Zhang, S.; He, L.N. Hydrogen bonding-inspired organocatalysts for CO2 fixation with epoxides to cyclic carbonates. Catal. Lett. 2016, 263, 69–74. [Google Scholar]
- Luo, W.; Zhao, J.; Yin, C.; Liu, X.; Lin, L.; Feng, X. Catalytic hetero-ene reactions of 5-methyleneoxazolines: Highly enantioselective synthesis of 2, 5-disubstituted oxazole derivatives. Chem. Commun. 2014, 50, 7524–7526. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, K.; Feng, X. Advancements in catalytic asymmetric intermolecular ene-type reactions. Synthesis 2014, 46, 2241–2257. [Google Scholar]
- Niu, D.; Hoye, T.R. The aromatic ene reaction. Nat. Chem. 2014, 6, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-L.; Ton, X.-Y. Recent advances in catalytic asymmetric synthesis of tertiary alcohols via nucleophilic addition to ketones. Adv. Synth. Catal. 2019, 361, 876–918. [Google Scholar] [CrossRef]
- Aikawa, K.; Yoshida, S.; Kondo, D.; Asai, Y.; Mikami, K. Catalytic asymmetric synthesis of tertiary alcohols and oxetenes bearing a difluoromethyl group. Org. Lett. 2015, 17, 5108–5111. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Shi, J.; Liu, X.; Feng, X. Asymmetric carbonyl-ene reaction catalyzed by chiral N,N′-dioxide-nickel(II) complex: Remarkably broad substrate scope. J. Am. Chem. Soc. 2008, 130, 15770–15771. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Evans, D.A. Chiral bis (oxazoline) copper (II) complexes: Versatile catalysts for enantioselective cycloaddition, aldol, Michael, and carbonyl ene reactions. Acc. Chem. Res. 2000, 33, 325–335. [Google Scholar] [CrossRef]
- Retamosa, M.G.; Matador, E.; Monge, D.; Lassaletta, J.M.; Fernández, R. Hydrazones as singular reagents in asymmetric organocatalysis. Chem. Eur. J. 2016, 22, 13430–13445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueping, M.; Theissmann, T.; Kuenkel, A.; Koenigs, R.M. Highly enantioselective organocatalytic carbonyl-ene reaction with strongly acidic, chiral Brønsted acids as efficient catalysts. Angew. Chem. Int. Ed. 2008, 47, 6798–6801. [Google Scholar] [CrossRef] [PubMed]
- Carmona, J.A.; de Gonzalo, G.; Serrano, I.; Crespo-Peña, A.M.; Simek, M.; Monge, D.; Fernández, R.; Lassaletta, J.M. Asymmetric organocatalytic synthesis of tertiary azomethyl alcohols: Key intermediates towards azoxy compounds and α-hydroxy-β-amino esters. Org. Biomol. Chem. 2017, 15, 2993–3005. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Peña, A.; Monge, D.; Martín-Zamora, E.; Álvarez, E.; Fernández, R.; Lassaletta, J.M. Asymmetric formal carbonyl-ene reactions of formaldehyde tert-butyl hydrazone with α-keto esters: Dual activation by Bis-urea catalysts. J. Am. Chem. Soc. 2012, 134, 12912–12915. [Google Scholar] [CrossRef]
- Monge, D.; Crespo-Peña, A.; Martín-Zamora, E.; Álvarez, E.; Fernández, R.; Lassaletta, J.M. Dual organocatalytic activation of ssatins and formaldehyde tert-butyl hydrazone: Asymmetric sSynthesis of functionalized 3-hydroxy-2-oxindoles. Chem. Eur. J. 2013, 19, 8421–8425. [Google Scholar] [CrossRef]
- Serrano, I.; Monge, E.; Alvárez, E.; Fernández, R.; Lassaletta, J.M. Asymmetric organocatalytic synthesis of quaternary α-hydroxy phosphonates: En route to α-aryl phosphaisoserines. Chem. Commun. 2015, 51, 4077–4080. [Google Scholar] [CrossRef]
- Matador, E.; Retamosa, M.G.; Monge, D.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, J.M. Bifunctional squaramide organocatalysts for the asymmetric addition of formaldehyde tert-butylhydrazone to simple aldehydes. Chem. Eur. J. 2018, 24, 6854–6860. [Google Scholar] [CrossRef] [Green Version]
- Matador, E.; Retamosa, M.G.; Jiménez-Sánchez, A.; Monge, D.; Fernández, R.; Lassaletta, J.M. Asymmetric organocatalytic synthesis of fluorinated β-hydroxy diazenes. Eur. J. Org. Chem. 2019, 2019, 130–138. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, H.S.; Yeom, C.-E.; Kim, B.M. Enhanced reactivity and enantioselectivity in catalytic glyoxylate-ene reactions using chiral bis (oxazoline)–copper complex in an ionic liquid. Tetrahedron Asymmetry 2012, 23, 1019–1022. [Google Scholar] [CrossRef]
- Zhao, J.F.; Tang, B.H.; Zhu, M.K.; Tjan, T.B.W.; Loh, T.P. Enantioselective carbonyl-ene reactions of trifluoropyruvate in ionic liquid via a recyclable Indium(III)-Pybox complex. Adv. Synth. Catal. 2010, 352, 2085–2088. [Google Scholar] [CrossRef]
- Choi, D.S.; Kim, D.H.; Shin, U.S.; Deshmukh, R.R.; Lee, S.-G.; Song, C.E. The dramatic acceleration effect of imidazolium ionic liquids on electron transfer reactions. Chem. Commun. 2007, 3467–3469. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Streitwieser, A. Basicity of a sable carbene, 1,3-di-tert-butylimidazol-2-ylidene, in THF. J. Am. Chem. Soc. 2002, 124, 5757–5761. [Google Scholar] [CrossRef]
- Zhang, Z.; Lippert, K.M.; Hausmann, H.; Kotke, M.; Schreiner, P.R. Cooperative thiourea–Brønsted acid organocatalysis: Enantioselective cyanosilylation of aldehydes with TMSCN. J. Org. Chem. 2011, 76, 9764–9776. [Google Scholar] [CrossRef]
- Ueno, K.; Tokuda, H.; Watanabe, M. Ionicity in ionic liquids: Correlation with ionic structure and physicochemical properties. Phys. Chem. Chem. Phys. 2010, 12, 1649–1658. [Google Scholar] [CrossRef]
- Lee, J.W.; Shin, J.Y.; Chun, Y.S.; Jang, H.B.; Song, C.E.; Lee, S. Toward understanding the origin of positive effects of Ionic Liquids on catalysis: Formation of more reactive catalysts and stabilization of reactive intermediates and transition States in Ionic Liquids. Acc. Chem. Res. 2010, 43, 985–994. [Google Scholar] [CrossRef]
- Gilbert, A.; Haines, R.S.; Harper, J.B. Understanding the effects of ionic liquids on a unimolecular substitution process: Correlating solvent parameters with reaction outcome. Org. Biomol. Chem. 2019, 17, 675–682. [Google Scholar] [CrossRef]
- Lehn, J.-S.M.; Javed, S.; Hoffman, D.M. Synthesis of zirconium, hafnium, and tantalum complexes with sterically demanding hydrazide ligands. Inorg. Chem. 2007, 46, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.; Leblond, C.; Frantz, D.; Matty, L.; Mitten, J.V.; Weaver, D.G.; Moore, J.C.; Kim, J.M.; Kim, P.-Y.; Gbewonyo, K.; et al. Stereoselective synthesis of a potent Thrombin inhibitor by a novel P2− P3 lactone ring opening. J. Org. Chem. 2004, 69, 3620–3627. [Google Scholar] [CrossRef] [PubMed]
- Creary, X. Reaction of organometallic reagents with ethyl trifluoroacetate and diethyl oxalate. Formation of trifluoromethyl ketones and alpha-keto esters via stable tetrahedral adducts. J. Org. Chem. 1987, 52, 5026–5030. [Google Scholar] [CrossRef]
Entry | Ketone | RTIL | Cat. | XRTIL (%) | T (°C) | Time (h) | Conv. (%) 2 | ee (%) 3 | TOF (h−1) |
---|---|---|---|---|---|---|---|---|---|
entry 1 | 2a | None | II | 0 | −15 | 16 | 68 ± 1 | 63.5 ± 0.7 | 0.43 ± 0.01 |
entry 2 | 2a | [bmim]MeSO4 | II | 5.4 | −15 | 7 | 60 ± 1 | 13.5 ± 2.1 | 0.85 ± 0.01 |
entry 3 | 2a | [bmim]BF4 | II | 5.9 | −15 | 7 | 77 ± 4 | 63.3 ± 0.6 | 1.10 ± 0.05 |
entry 4 | 2a | [bmim]PF6 | II | 5.3 | −15 | 7 | 71 ± 1 | 56.5 ± 2.1 | 1.01 ± 0.02 |
entry 5 | 2a | [hmim]PF6 | II | 4.6 | −15 | 7 | 80 ± 1 | 64.6 ± 1.1 | 1.15 ± 0.01 |
entry 6 | 2a | [hmim]NTf2 | II | 3.5 | −15 | 7 | 48 ± 1 | 50.0 ± 1.4 | 0.59 ± 0.1 |
entry 7 | 2a | [bmp]BF4 | II | 5.6 | −15 | 7 | 45 ± 1 | 54.5 ± 2.1 | 0.64 ± 0.02 |
entry 8 | 2a | None | II | 0 | −30 | 22 | 29 ± 2 | 67.5 ± 0.7 | 0.13 ± 0.01 |
entry 9 | 2a | [bmim]BF4 | II | 5.9 | −30 | 22 | 83 ± 1 | 69.5 ± 0.7 | 0.38 ± 0.01 |
entry 10 | 2a | [hmim]PF6 | II | 4.6 | −30 | 22 | 89 ± 2 | 70.5 ± 0.7 | 0.40 ± 0.02 |
entry 11 | 2a | None | II | 0 | −45 | 24 | 21 ± 1 | 71.5 ± 2.1 | 0.09 ± 0.01 |
entry 12 | 2a | [bmim]BF4 | II | 5.9 | −45 | 24 | 68 ± 2 | 74.7 ± 0.6 | 0.28 ± 0.01 |
entry 13 | 2a | [bmim]BF4 | III | 5.9 | −45 | 24 | 57 ± 2 | 66.5 ± 0.7 | 0.24 ± 0.01 |
entry 14 | 2a | [hmim]PF6 | II | 4.6 | −45 | 24 | 74 ± 2 | 76.5 ± 0.7 | 0.31 ± 0.01 |
entry 15 | 2a | [hmim]PF6 | III | 4.6 | −45 | 24 | 69 ± 1 | 66.5 ± 0.7 | 0.29 ± 0.01 |
entry 16 | 2a | None | II | 0 | −60 | 72 | 16 ± 1 | 72.0 ± 1.4 | 0.03 ± 0.01 |
entry 17 | 2a | [hmim]PF6 | II | 4.6 | −60 | 72 | 34 ± 3 | 74.6 ± 1.5 | 0.06 ± 0.01 |
entry 18 | 2b | None | II | 0 | −45 | 24 | 29 ± 2 | 62.0 ± 1.4 | 0.12 ± 0.01 |
entry 19 | 2b | [bmim]BF4 | II | 5.9 | −45 | 24 | 61 ± 2 | 66.3 ± 1.1 | 0.26 ± 0.01 |
entry 20 | 2b | [hmim]PF6 | II | 4.6 | −45 | 24 | 75 ± 2 | 67.3 ± 0.6 | 0.31 ± 0.01 |
entry 21 | 2b | [hmim]PF6 | III | 4.6 | −45 | 30 | 61 ± 2 | 51.5 ± 2.1 | 0.25 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisogno, F.R.; Fernández, R.; Lassaletta, J.M.; de Gonzalo, G. Room Temperature Ionic Liquids in Asymmetric Hetero-Ene Type Reactions: Improving Organocatalyst Performance at Lower Temperatures. Molecules 2021, 26, 355. https://doi.org/10.3390/molecules26020355
Bisogno FR, Fernández R, Lassaletta JM, de Gonzalo G. Room Temperature Ionic Liquids in Asymmetric Hetero-Ene Type Reactions: Improving Organocatalyst Performance at Lower Temperatures. Molecules. 2021; 26(2):355. https://doi.org/10.3390/molecules26020355
Chicago/Turabian StyleBisogno, Fabricio R., Rosario Fernández, Jose María Lassaletta, and Gonzalo de Gonzalo. 2021. "Room Temperature Ionic Liquids in Asymmetric Hetero-Ene Type Reactions: Improving Organocatalyst Performance at Lower Temperatures" Molecules 26, no. 2: 355. https://doi.org/10.3390/molecules26020355
APA StyleBisogno, F. R., Fernández, R., Lassaletta, J. M., & de Gonzalo, G. (2021). Room Temperature Ionic Liquids in Asymmetric Hetero-Ene Type Reactions: Improving Organocatalyst Performance at Lower Temperatures. Molecules, 26(2), 355. https://doi.org/10.3390/molecules26020355