Selected β2-, β3- and β2,3-Amino Acid Heterocyclic Derivatives and Their Biological Perspective
Abstract
:1. Introduction
2. Biological Activity
2.1. Antiviral Activity
2.2. Anti-Inflammatory
2.3. Antibacterial
2.4. ALK Inhibitors
2.5. Agonists and Antagonists of Receptors
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hossain, M. A Review on Heterocyclic: Synthesis and Their Application in Medicinal Chemistry of Imidazole Moiety. Sci. J. Chem. 2018, 6, 83. [Google Scholar] [CrossRef]
- Cabrele, C.; Martinek, T.A.; Reiser, O.; Berlicki, Ł. Peptides Containing β-Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. J. Med. Chem. 2014, 57, 9718–9739. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules 2019, 24, 3839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seebach, D.; Lelais, G. β2-amino acids—Syntheses, occurrence in natural products, and components of β-peptides1,2. Biopolym. Pept. Sci. 2004, 76, 206–243. [Google Scholar] [CrossRef]
- Suginome, M.; Tanaka, Y.; Hasui, T. Diarylborinic Acid Derivatives as a Catalytic Iminium Ion Generator in the Mannich-Type Reaction Using Secondary Amines, Aldehydes, and Ketene Silyl Acetals. Synlett 2008, 2008, 1239–1242. [Google Scholar] [CrossRef]
- Müller, A.; Vogt, C.; Sewald, N. Synthesis of Fmoc-β-Homoamino Acids by Ultrasound-Promoted Wolff Rearrangement. Synthesis 1998, 1998, 837–841. [Google Scholar] [CrossRef]
- Sibi, M.P.; Deshpande, P.K. A new methodology for the synthesis of β-amino acids. J. Chem. Soc. Perkin Trans. 1 2000, 1, 1461–1466. [Google Scholar] [CrossRef]
- Del Borgo, M.P.; Kulkarni, K.P.; Aguilar, M.-I.; Del Borgo, K.K.A.M.-I.A.M.P. Using β-Amino Acids and β-Peptide Templates to Create Bioactive Ligands and Biomaterials. Curr. Pharm. Des. 2017, 23, 3772–3785. [Google Scholar] [CrossRef]
- Cheng, R.P.; Gellman, S.H.; DeGrado, W.F. β-Peptides: From Structure to Function. Chem. Rev. 2001, 101, 3219–3232. [Google Scholar] [CrossRef]
- Kiss, L.; Fülöp, F. Synthesis of Carbocyclic and Heterocyclic β-Aminocarboxylic Acids. Chem. Rev. 2013, 114, 1116–1169. [Google Scholar] [CrossRef] [Green Version]
- Venepally, V.; Prasad, R.; Poornachandra, Y.; Kumar, C.G.; Jala, R.C.R. Synthesis of novel ethyl 1-ethyl-6-fluoro-7-(fatty amido)-1,4-dihydro-4-oxoquinoline-3-carboxylate derivatives and their biological evaluation. Bioorgan. Med. Chem. Lett. 2016, 26, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Treptow, T.G.; Figueiró, F.; Jandrey, E.H.; Battastini, A.M.; Salbego, C.G.; Hoppe, J.B.; Taborda, P.S.; Rosa, S.B.; Piovesan, L.A.; D’Oca, C.D.R.M.; et al. Novel hybrid DHPM-fatty acids: Synthesis and activity against glioma cell growth in vitro. Eur. J. Med. Chem. 2015, 95, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Patocka, J. β-Amino acids and their natural biologically active derivatives. 5. derivatives of unusual alicyclic and heterocyclic β-amimo acids. Mil. Med. Sci. Lett. 2011, 80, 2–11. [Google Scholar] [CrossRef]
- Kiss, L.; Mándity, I.; Fülöp, F. Highly functionalized cyclic β-amino acid moieties as promising scaffolds in peptide research and drug design. Amino Acids 2017, 49, 1441–1455. [Google Scholar] [CrossRef] [PubMed]
- Kati, W.M.; Montgomery, D.; Maring, C.J.; Stoll, V.S.; Giranda, V.L.; Chen, X.; Laver, W.G.; E Kohlbrenner, W.; Norbeck, D.W. Novel α- and β-Amino Acid Inhibitors of Influenza Virus Neuraminidase. Antimicrob. Agents Chemother. 2001, 45, 2563–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanessian, S.; Bayrakdarian, M.; Luo, X. Total Synthesis of A-315675: A Potent Inhibitor of Influenza Neuraminidase. J. Am. Chem. Soc. 2002, 124, 4716–4721. [Google Scholar] [CrossRef] [PubMed]
- Zimecki, M.; Bąchor, U.; Mączyński, M. Isoxazole Derivatives as Regulators of Immune Functions. Molecules 2018, 23, 2724. [Google Scholar] [CrossRef] [Green Version]
- Mączyński, M.; Borska, S.; Mieszała, K.; Kocięba, M.; Zaczyńska, E.; Kochanowska, I.; Zimecki, M. Synthesis, Immunosuppresive Properties, and Mechanism of Action of a New Isoxazole Derivative. Molecules 2018, 23, 1545. [Google Scholar] [CrossRef] [Green Version]
- Saravolatz, L.D.; Leggett, J. Gatifloxacin, Gemifloxacin, and Moxifloxacin: The Role of 3 Newer Fluoroquinolones. Clin. Infect. Dis. 2003, 37, 1210–1215. [Google Scholar] [CrossRef]
- Fishman, P.; Madi, L.; Bar-Yehuda, S.; Barer, F.; Del Valle, L.; Khalili, K. Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene 2002, 21, 4060–4064. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.T.; Jacobson, K.A. A physiological role of the adenosine A3 receptor: Sustained cardioprotection. Proc. Natl. Acad. Sci. USA 1998, 95, 6995–6999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auchampach, J.A.; Ge, Z.-D.; Wan, T.C.; Moore, J.; Gross, G.J. A3adenosine receptor agonist IB-MECA reduces myocardial ischemia-reperfusion injury in dogs. Am. J. Physiol. Circ. Physiol. 2003, 285, H607–H613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Lubitz, D.K.; Lin, R.C.-S.; Popik, P.; Carter, M.F.; Jacobson, K.A. Adenosine A3 receptor stimulation and cerebral ischemia. Eur. J. Pharmacol. 1994, 263, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Fedorova, I.M.; Jacobson, M.A.; Basile, A.S.; Jacobson, K.A. Behavioral characterization of mice lacking the A3 adenosine receptor: Sensitivity to hypoxic neurodegeneration. Cell. Mol. Neurobiol. 2003, 23, 431–447. [Google Scholar] [CrossRef]
- Jacobson, K.A. Adenosine A3 receptors: Novel ligands and paradoxical effects. Trends Pharmacol. Sci. 1998, 19, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Hamzeh, A. ALK Inhibitors in NSCLC- Crizotinib and Beyond. J. Cancer Prev. Curr. Res. 2017, 8, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Magid, A.F.; A Maryanoff, C.; Mehrman, S.J. Synthesis of influenza neuraminidase inhibitors. Curr. Opin. Drug Discov. Dev. 2001, 4, 776–791. [Google Scholar]
- De Clercq, E. Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discov. 2006, 5, 1015–1025. [Google Scholar] [CrossRef]
- Wang, G.T.; Chen, Y.; Wang, S.; Gentles, R.; Sowin, T.; Kati, W.; Muchmore, S.; Giranda, V.; Stewart, K.D.; Sham, H.; et al. Design, synthesis, and structural analysis of influenza neuraminidase inhibitors containing pyrrolidine cores. J. Med. Chem. 2001, 44, 1192–1201. [Google Scholar] [CrossRef]
- Bai, S.; Liu, S.; Zhu, Y.; Wu, Q. Asymmetric synthesis and antiviral activity of novel chiral amino-pyrimidine derivatives. Tetrahedron Lett. 2018, 59, 3179–3183. [Google Scholar] [CrossRef]
- Bernardino, A.M.; De Azevedo, A.R.; Pinheiro, L.C.D.S.; Borges, J.C.; Carvalho, V.L.; Miranda, M.D.; De Meneses, M.D.F.; Nascimento, M.; Ferreira, D.; Rebello, M.A.; et al. Synthesis and antiviral activity of new 4-(phenylamino)/4-[(methylpyridin-2-yl)amino]-1-phenyl-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acids derivatives. Med. Chem. Res. 2007, 16, 352–369. [Google Scholar] [CrossRef]
- El-Helw, E.A.E.; Gado, M.M.; El-Ziaty, A.K. Synthesis and anti-rotavirus activity of some nitrogen heterocycles integrated with pyrazole scaffold. J. Iran. Chem. Soc. 2020, 17, 1479–1492. [Google Scholar] [CrossRef]
- Salem, M.S.; Sakr, S.I.; El-Senousy, W.M.; Madkour, L.H. Synthesis, Antibacterial, and Antiviral Evaluation of New Heterocycles Containing the Pyridine Moiety. Arch. Pharm. 2013, 346, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Sriram, D.; Srichakravarthy, N.; Bal, T.R.; Yogeeswari, P. Nevirapine derivatives with broad-spectrum chemotherapeutic properties for the effective treatment of HIV/AIDS. Biomed. Pharmacother. 2005, 59, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Vachal, P.; Raheem, I.; Guo, Z.; Hartingh, T.J. ω-Transaminases as Promising Biocatalysts for the Chiral Synthesis of β-Amino Acids. WO 2017/027434. 18 October 2018. [Google Scholar]
- Ray, A.S.; Fordyce, M.W.; Hitchcock, M.J. Tenofovir alafenamide: A novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antivir. Res. 2016, 125, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, A.; Onnis, V.; Deplano, A.; Bianco, G.; Demurtas, M.; Distinto, S.; Cheng, Y.-C.; Alcaro, S.; Esposito, F.; Tramontano, E. Design, synthesis and antiviral evaluation of novel heteroarylcarbothioamide derivatives as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and RDDP functions. Pathog. Dis. 2017, 75, 078. [Google Scholar] [CrossRef] [Green Version]
- Abdu, N.; Mosazghi, A.; Teweldemedhin, S.; Asfaha, L.; Teshale, M.; Kibreab, M.; Anand, I.S.; Tesfamariam, E.H.; Russom, M. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs): Usage and co-prescription with other potentially interacting drugs in elderly: A cross-sectional study. PLoS ONE 2020, 15, e0238868. [Google Scholar] [CrossRef]
- Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res. 1998, 47, 78–87. [Google Scholar] [CrossRef]
- Steele, C.E.; Jefferson, W.L. A multi-centre study of zomepirac in painful conditions: An analysis of clinical data for 15,484 patients. Curr. Med. Res. Opin. 1983, 8, 382–391. [Google Scholar] [CrossRef]
- Calin, A. Clinical Use of Tolmetin Sodium in Patients with Ankylosing Spondylitis: A Review. J. Clin. Pharmacol. 1983, 23, 301–308. [Google Scholar] [CrossRef]
- Macario, A.; Lipman, A.G. Ketorolac in the Era of Cyclo-Oxygenase-2 Selective Nonsteroidal Anti-Inflammatory Drugs: A Systematic Review of Efficacy, Side Effects, and Regulatory Issues. Pain Med. 2001, 2, 336–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bąchor, U.; Ryng, S.; Mączyński, M.; Artym, J.; Kocięba, M.; Zaczyńska, E.; Kochanowska, I.; Tykarska, E.; Zimecki, M. Synthesis, immunosuppressive properties, mechanism of action and X-ray analysis of a new class of isoxazole derivatives. Acta Pol. Pharm. Drug Res. 2019, 76, 251–263. [Google Scholar] [CrossRef]
- Machoń, Z.; Ryng, S. Synthesis and biological properties of 5-benzoylamino-3-methyl-4-isoxazolocarboxylic acid derivatives. Arch. Immunol. Ther. Exp. 1981, 29, 813–821. [Google Scholar]
- Mączyński, M.; Artym, J.; Kocięba, M.; Kochanowska, I.; Ryng, S.; Zimecki, M. Anti-inflammatory properties of an isoxazole derivative—MZO-2. Pharmacol. Rep. 2016, 68, 894–902. [Google Scholar] [CrossRef]
- Rice, L.B. Unmet medical needs in antibacterial therapy. Biochem. Pharmacol. 2006, 71, 991–995. [Google Scholar] [CrossRef]
- Gootz, T.D.; Zaniewski, R.; Haskell, S.; Schmieder, B.; Tankovic, J.; Girard, D.; Courvalin, P.; Polzer, R.J. Activity of the new fluoroquinolone trovafloxacin (CP-99,219) against DNA gyrase and topoisomerase IV mutants of Streptococcus pneumoniae selected in vitro. Antimicrob. Agents Chemother. 1996, 40, 2691–2697. [Google Scholar] [CrossRef] [Green Version]
- Burka, J.M.; Bower, K.S.; Vanroekel, R.C.; Stutzman, R.D.; Kuzmowych, C.P.; Howard, R.S. The Effect of Fourth-Generation Fluoroquinolones Gatifloxacin and Moxifloxacin on Epithelial Healing Following Photorefractive Keratectomy. Am. J. Ophthalmol. 2005, 140, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Fontaine, S.; Adam, H.; Schurek, K.; Mayer, M.; Noreddin, A.M.; Gin, A.; Rubinstein, E.; Hoban, D.J. A Review of New Fluoroquinolones. Treat. Respir. Med. 2006, 5, 437–465. [Google Scholar] [CrossRef]
- Calvo, A.; Gimenez, M.-J.; Alou, L.; Gómez-Lus, M.L.; Aguilar, L.; Prieto, J. Ex vivo serum activity (killing rates) after gemifloxacin 320 mg versus trovafloxacin 200 mg single doses against ciprofloxacin-susceptible and -resistant Streptococcus pneumoniae. Int. J. Antimicrob. Agents 2002, 20, 144–146. [Google Scholar] [CrossRef]
- Wilson, R.; Langan, C.; Ball, P.; Bateman, K.; Pypstra, R. Oral gemifloxacin once daily for 5 days compared with sequential therapy with i.v. ceftriaxone/oral cefuroxime (maximum of 10 days) in the treatment of hospitalized patients with acute exacerbations of chronic bronchitis. Respir. Med. 2003, 97, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Schentag, J.J.; Ball, P.; Mandell, L. A comparison of gemifloxacin and clarithromycin in acute exacerbations of chronic bronchitis and long-term clinical outcomes. Clin. Ther. 2002, 24, 639–652. [Google Scholar] [CrossRef]
- Choroszy-Krol, I.; Frej-Madrzak, I.M.; Teryks-Wołyniec, D.; Jama-Kmiecik, A.; Gosciniak, G.; Pirogowicz, I.; Pokorski, M. Respiratory infection caused by chlamydophila pneumoniae in children and adolescents in the lower silesia region of poland. Eur. J. Med. Res. 2010, 15, 112–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammerschlag, M.R.; Roblin, P.M. Microbiologic efficacy of moxifloxacin for the treatment of community-acquired pneumonia due to Chlamydia pneumoniae. Int. J. Antimicrob. Agents 2000, 15, 149–152. [Google Scholar] [CrossRef]
- Lepej, S. Židovec Comparative analysis of azithromycin and ciprofloxacin in the treatment of chronic prostatitis caused by Chlamydia trachomatis. Int. J. Antimicrob. Agents 2003, 21, 457–462. [Google Scholar] [CrossRef]
- Kawahata, Y.; Takatsuto, S.; Ikekawa, N.; Murata, M.; Omura, S. Synthesis of a new amino acid-antibiotic, oxetin and its three stereoisomers. Chem. Pharm. Bull. 1986, 34, 3102–3110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grotenbreg, G.M.; Kronemeijer, M.; Timmer, M.S.M.; El Oualid, F.; Van Well, R.M.; Verdoes, M.; Spalburg, E.; Van Hooft, P.A.V.; De Neeling, A.J.; Noort, D.; et al. A Practical Synthesis of Gramicidin S and Sugar Amino Acid Containing Analogues. J. Org. Chem. 2004, 69, 7851–7859. [Google Scholar] [CrossRef]
- Suhara, Y.; Ichikawa, M.; Hildreth, J.E.; Ichikawa, Y. Synthesis of sulfated β-1,6-linked oligosaccharide mimetics: A novel potent inhibitor of HIV replication. Tetrahedron Lett. 1996, 37, 2549–2552. [Google Scholar] [CrossRef]
- Mickevicius, V.; Voskienė, A.; Jonuškienė, I.; Kolosej, R.; Šiugždaitė, J.; Venskutonis, P.R.; Kazernavičiūtė, R.; Brazienė, Z.; Jakienė, E. Synthesis and Biological Activity of 3-[Phenyl(1,3-thiazol-2-yl)-amino]propanoic Acids and Their Derivatives. Molecules 2013, 18, 15000–15018. [Google Scholar] [CrossRef] [Green Version]
- Mickevičienė, K.; Baranauskaitė, R.; Kantminienė, K.; Stasevych, M.; Komarovska-Porokhnyavets, O.; Novikov, V.P. Synthesis and Antimicrobial Activity of N-Substituted-β-amino Acid Derivatives Containing 2-Hydroxyphenyl, Benzo[b]phenoxazine and Quinoxaline Moieties. Molecules 2015, 20, 3170–3189. [Google Scholar] [CrossRef] [Green Version]
- Klevens, R.M. Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States. JAMA 2007, 298, 1763–1771. [Google Scholar] [CrossRef] [Green Version]
- Abraham, E.P.; Chain, E. An Enzyme from Bacteria able to Destroy Penicillin. Nat. Cell Biol. 2008, 146, 837. [Google Scholar] [CrossRef]
- Ness, S.; Martin, R.; Kindler, A.M.; Paetzel, M.; Gold, M.; Jensen, S.E.; Jones, J.B.; Strynadka, N.C.J. Structure-Based Design Guides the Improved Efficacy of Deacylation Transition State Analogue Inhibitors of TEM-1 β-Lactamase. Biochemistry 2000, 39, 5312–5321. [Google Scholar] [CrossRef] [PubMed]
- Powers, R.A.; Caselli, E.; Focia, P.J.; Prati, F.; Shoichet, B.K. Structures of Ceftazidime and Its Transition-State Analogue in Complex with AmpC β-Lactamase: Implications for Resistance Mutations and Inhibitor Design. Biochemistry 2001, 40, 9207–9214. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; Bonomo, R.A. New β-Lactamase Inhibitors in the Clinic. Infect. Dis. Clin. N. Am. 2016, 30, 441–464. [Google Scholar] [CrossRef] [PubMed]
- Tondi, D.; Calò, S.; Shoichet, B.K.; Costi, M.P. Structural study of phenyl boronic acid derivatives as AmpC β-lactamase inhibitors. Bioorganic Med. Chem. Lett. 2010, 20, 3416–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caselli, E.; Powers, R.A.; Blasczcak, L.C.; Wu, C.Y.E.; Prati, F.; Shoichet, B.K. Energetic, structural, and antimicrobial analyses of β-lactam side chain recognition by β-lactamases. Chem. Biol. 2001, 8, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem. 2019, 168, 357–372. [Google Scholar] [CrossRef]
- Suresha, G.; Suhas, R.; Kapfo, W.; Gowda, D.C. Urea/thiourea derivatives of quinazolinone–lysine conjugates: Synthesis and structure–activity relationships of a new series of antimicrobials. Eur. J. Med. Chem. 2011, 46, 2530–2540. [Google Scholar] [CrossRef]
- Law, R.H.; Zhang, Q.; McGowan, S.; Buckle, A.M.; A Silverman, G.; Wong, W.; Rosado, C.J.; Langendorf, C.G.; Pike, R.N.; Bird, P.I.; et al. An overview of the serpin superfamily. Genome Biol. 2006, 7, 216. [Google Scholar] [CrossRef] [Green Version]
- Almonte, A.G.; Sweatt, J.D. Serine proteases, serine protease inhibitors, and protease-activated receptors: Roles in synaptic function and behavior. Brain Res. 2011, 1407, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Dembitsky, V.M.; Srebnik, M. Synthesis and biological activity of α-aminoboronic acids, amine-carboxyboranes and their derivatives. Tetrahedron 2003, 59, 579–593. [Google Scholar] [CrossRef]
- Sullivan, I.; Planchard, D. ALKinhibitors in non-small cell lung cancer: The latest evidence and developments. Ther. Adv. Med. Oncol. 2015, 8, 32–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latif, M.; Ashraf, Z.; Basit, S.; Ghaffar, A.; Zafar, M.S.; Saeed, A.; Meo, S.A. Latest perspectives of orally bioavailable 2,4-diarylaminopyrimidine analogues (DAAPalogues) as anaplastic lymphoma kinase inhibitors: Discovery and clinical developments. RSC Adv. 2018, 8, 16470–16493. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Li, J.-Y. GSK1838705a, an IGF-1R/ALK Inhibitor, Overcomes Resistance to Crizotinib in ALK-Positive ALCL. Blood 2019, 134, 4069. [Google Scholar] [CrossRef]
- Sabbatini, P.; Korenchuk, S.; Rowand, J.L.; Groy, A.; Liu, Q.; Leperi, D.; Atkins, C.; Dumble, M.; Yang, J.; Anderson, K.; et al. GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol. Cancer Ther. 2009, 8, 2811–2820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borea, P.A.; Varani, K.; Vincenzi, F.; Baraldi, P.G.; Tabrizi, M.A.; Merighi, S.; Gessi, S. The A3Adenosine Receptor: History and Perspectives. Pharmacol. Rev. 2015, 67, 74–102. [Google Scholar] [CrossRef] [Green Version]
- Mangano, D.T. Perioperative Cardiac Morbidity. Anesthesiology 1990, 72, 153–184. [Google Scholar] [CrossRef]
- Patel, A.Y.; Eagle, K.A.; Vaishnava, P. Cardiac Risk of Noncardiac Surgery. J. Am. Coll. Cardiol. 2015, 66, 2140–2148. [Google Scholar] [CrossRef]
- Liu, G.S.; Richards, S.C.; A Olsson, R.; Mullane, K.; Walsh, R.S.; Downey, J.M. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovasc. Res. 1994, 28, 1057–1061. [Google Scholar] [CrossRef]
- DeNinno, M.P.; Masamune, H.; Chenard, L.K.; Dirico, K.J.; Eller, C.; Etienne, J.B.; Tickner, J.E.; Kennedy, S.P.; Knight, D.R.; Kong, J.; et al. 3‘-Aminoadenosine-5‘-uronamides: Discovery of the First Highly Selective Agonist at the Human Adenosine A3Receptor. J. Med. Chem. 2003, 46, 353–355. [Google Scholar] [CrossRef]
- DeNinno, M.P.; Masamune, H.; Chenard, L.K.; Dirico, K.J.; Eller, C.; Etienne, J.B.; Tickner, J.E.; Kennedy, S.P.; Knight, D.R.; Kong, J.; et al. The synthesis of highly potent, selective, and water-soluble agonists at the human adenosine A3 receptor. Bioorgan. Med. Chem. Lett. 2006, 16, 2525–2527. [Google Scholar] [CrossRef] [PubMed]
- Jeong, L.S.; Kim, M.J.; Kim, H.O.; Gao, Z.-G.; Kim, S.-K.; Jacobson, K.A.; Chun, M.W. Design and synthesis of 3′-ureidoadenosine-5′-uronamides: Effects of the 3′-ureido group on binding to the A3 adenosine receptor. Bioorgan. Med. Chem. Lett. 2004, 14, 4851–4854. [Google Scholar] [CrossRef] [PubMed]
- Van Rompaey, P.; Jacobson, K.A.; Gross, A.S.; Gao, Z.-G.; Van Calenbergh, S. Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety. Bioorgan. Med. Chem. 2005, 13, 973–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaveri, N.T.; Jiang, F.; Olsen, C.; Polgar, W.; Toll, L. Small-molecule agonists and antagonists of the opioid receptor-like receptor (ORL1, NOP): Ligand-based analysis of structural factors influencing intrinsic activity at NOP. AAPS J. 2005, 7, E345–E352. [Google Scholar] [CrossRef]
- Meunier, J.-C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J.-L.; Guillemot, J.-C.; Ferrara, P.; Monsarrat, B.; et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nat. Cell Biol. 1995, 377, 532–535. [Google Scholar] [CrossRef]
- Mogil, J.S.; Pasternak, G.W. The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol. Rev. 2001, 53, 381–415. [Google Scholar]
- Mogil, J.; Grisel, J.; Reinscheid, R.; Civelli, O.; Belknap, J.; Grandy, D. Orphanin FQ is a functional anti-opioid peptide. Neuroscience 1996, 75, 333–337. [Google Scholar] [CrossRef]
- Sandin, J.; Georgieva, J.; Schött, P.A.; Ögren, S.O.; Terenius, L. Nociceptin/Orphanin FQ Microinjected into Hippocampus Impairs Spatial Learning in Rats. Eur. J. Neurosci. 1997, 9, 194–197. [Google Scholar] [CrossRef]
- Yu, T.P.; Fein, J.; Phan, T.; Evans, C.J.; Xie, C.W. Orphanin FQ inhibits synaptic transmission and long-term potentiation in rat hippocampus. Hippocampus 1997, 7, 88–94. [Google Scholar] [CrossRef]
- Manabe, T.; Noda, Y.; Mamiya, T.; Katagiri, H.; Houtani, T.; Nishi, M.; Noda, T.; Takahashi, T.; Sugimoto, T.; Nabeshima, T.; et al. Facilitation of long-term potentiation and memory in mice lacking nociceptin receptors. Nat. Cell Biol. 1998, 394, 577–581. [Google Scholar] [CrossRef]
- Jenck, F.; Moreau, J.-L.; Martin, J.R.; Kilpatrick, G.J.; Reinscheid, R.K.; Monsma, F.J.; Nothacker, H.-P.; Civelli, O. Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc. Natl. Acad. Sci. USA 1997, 94, 14854–14858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champion, H.C.; Kadowitz, P.J. Nociceptin, an endogenous ligand for the ORL1 receptor, has novel hypotensive activity in the rat. Life Sci. 1997, 60, 241. [Google Scholar] [CrossRef]
- Gumusel, B.; Hao, Q.; Hyman, A.; Chang, J.-K.; Kapusta, D.R.; Lippton, H. Nociceptin: An endogenous agonist for central opioid like1 (ORL1) receptors possesses systemic vasorelaxant properties. Life Sci. 1997, 60, PL141–PL145. [Google Scholar] [CrossRef]
- Jona, H.; Shibata, J.; Asai, M.; Goto, Y.; Arai, S.; Nakajima, S.; Okamoto, O.; Kawamoto, H.; Iwasawa, Y. Efficient and practical asymmetric synthesis of 1-tert-butyl 3-methyl (3R,4R)-4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidine-1,3-dicarboxylate, a useful intermediate for the synthesis of nociceptin antagonists. Tetrahedron Asymmetry 2009, 20, 2439–2446. [Google Scholar] [CrossRef]
- Rogawski, M.A. Revisiting AMPA Receptors as an Antiepileptic Drug Target. Epilepsy Curr. 2011, 11, 56–63. [Google Scholar] [CrossRef]
- Dravid, S.; Yuan, H.; Traynelis, S. AMPA Receptors: Molecular Biology and Pharmacology. Encycl. Neurosci. 2009, 311–318. [Google Scholar] [CrossRef]
- Sheardown, M.; Nielsen, E.; Hansen, A.; Jacobsen, P.; Honore, T. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: A neuroprotectant for cerebral ischemia. Science 1990, 247, 571–574. [Google Scholar] [CrossRef]
- Ohmori, J.; Sakamoto, S.; Kubota, H.; Shimizu-Sasamata, M.; Okada, M.; Kawasaki, S.; Hidaka, K.; Togami, J.; Furuya, T.; Murase, K. 6-(1H-Imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) and related compounds: Structure-activity relationships for the AMPA-type non-NMDA receptor. J. Med. Chem. 1994, 37, 467–475. [Google Scholar] [CrossRef]
- Lesch, K.-P.; Aulakh, C.S.; Wolozin, B.; Hill, J.L.; Murphy, D.L. 3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid decreases NMDA receptor mRNA. Eur. J. Pharmacol. Mol. Pharmacol. 1992, 227, 109–111. [Google Scholar] [CrossRef]
- Carlson, L.A. Nicotinic acid: The broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 2005, 258, 94–114. [Google Scholar] [CrossRef]
- Offermanns, S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol. Sci. 2006, 27, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Wise, A.; Foord, S.M.; Fraser, N.J.; Barnes, A.A.; Elshourbagy, N.; Eilert, M.; Ignar, D.M.; Murdock, P.R.; Steplewski, K.; Green, A.; et al. Molecular Identification of High and Low Affinity Receptors for Nicotinic Acid. J. Biol. Chem. 2003, 278, 9869–9874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunaru, S.; Kero, J.; Schaub, A.; Wufka, C.; Blaukat, A.; Pfeffer, K.; Offermanns, S. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 2003, 9, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.G.; Kanemitsu-Parks, M.; Gaidarov, I.; Cameron, J.S.; Griffin, P.; Zheng, H.; Guerra, N.C.; Cham, L.; Maciejewski-Lenoir, D.; Behan, D.P.; et al. Nicotinic Acid Receptor Agonists Differentially Activate Downstream Effectors. J. Biol. Chem. 2007, 282, 18028–18036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.C.; Ding, F.-X.; Raghavan, S.; Deng, Q.; Luell, S.; Forrest, M.J.; Carballo-Jane, E.; Wilsie, L.C.; Krsmanovic, M.L.; Taggart, A.K.; et al. Discovery of a Biaryl Cyclohexene Carboxylic Acid (MK-6892): A Potent and Selective High Affinity Niacin Receptor Full Agonist with Reduced Flushing Profiles in Animals as a Preclinical Candidate. J. Med. Chem. 2010, 53, 2666–2670. [Google Scholar] [CrossRef]
Compound 1 A-87380 | Neuraminidase inhibitor | |
Compound 2 A-192558 | Neuraminidase inhibitor | |
Compound 3 | Antiviral activity against tobacco mosaic virus | |
Compound 4 | Antiviral activity against tobacco mosaic virus | |
Compound 5 | Anti-HSV-1 activity | |
Compound 6 a: 1-phenyl-4-(phenylamino)-1H-pyrazolo-[3,4-b]-pyridine-5-carboxylic acid b: 4-(3-chlorophenylamino)-1-phenyl-1H-pyrazolo-[3,4-b]-pyridine- 5-carboxylic acid c: 4-(3-methoxyphenylamino)-1-phenyl-1H-pyrazolo-[3,4-b]-pyridine-5-carboxylic acid | Antiviral activities against the VSV and Mayaro virus | |
Compound 7 | Anti-HAV activity | |
Compound 8 | Antiviral activities toward the rotavirus Wa and adenovirus type 7 strains | |
Compound 9 | Anti-HIV activity, inhibitor of Mycobacterium tuberculosis | |
Compound 10 | Inhibitor of ΗΓν reverse transcriptase |
Compound 11 | HIV-1 Inhibitors | ||
---|---|---|---|
R | R’ | RNase H aIC50 (μM) | |
A1 | 4-CH3C6H4 | C6H5 | 6.1 ± 1.6 |
A2 | 4-CH3C6H4 | 4-CH3C6H4 | 8.2 ± 1.7 |
A3 | 4-CH3C6H4 | 4-OCH3C6H4 | 8.0 ± 2.6 |
A4 | 4-CH3C6H4 | 4-ClC6H4 | >100 |
A5 | 4-CH3C6H4 | 4-BrC6H4 | 8.3 ± 2.0 |
A6 | 4-CH3C6H4 | 3,4-Cl2C6H3 | >100 |
A7 | 4-OCH3C6H4 | CH3 | >100 |
A8 | 4-OCH3C6H4 | C6H5 | 19 ± 3 |
A9 | 4-OCH3C6H4 | 4-CH3C6H4 | >100 |
A10 | 4-OCH3C6H4 | 4-OCH3C6H4 | >100 |
A11 | 4-OCH3C6H4 | 4-BrC6H4 | >100 |
A12 | 4-OCH3C6H4 | 4-ClC6H4 | >100 |
A13 | 4-OCH3C6H4 | 3,4-Cl2C6H3 | >100 |
A14 | 4-ClC6H4 | C6H5 | 20 ± 4 |
A15 | 4-ClC6H4 | 4-CH3C6H4 | 9.0 ± 2.0 |
A16 | 4-ClC6H4 | 4-OCH3C6H4 | 8.0 ± 2.1 |
A17 | 4-ClC6H4 | 4-ClC6H4 | 8.2 ± 2.4 |
A18 | i-C3H7 | C6H5 | >100 |
A19 | C6H5CH2 | C6H5 | 18 ± 3 |
A20 | 4-OCH3–2-pyridyl | C6H5 | >100 |
Compound 12 Zomerpirac | Prostaglandin synthetase inhibitor | |
Compound 13 Tolmetin | Prostaglandin synthetase inhibitor | |
Compound 14 Ketorolac | Prostaglandin synthetase inhibitor | |
Compound 15 | Anti-inflammatory and antibacterial activity | |
Compound 16 | Anti-inflammatory and antibacterial activity | |
Compound 17 MZO-2 | Anti-inflammatory activity, an inhibitor of the expression of caspases 3, 8, and 9 in Jurkat cells |
Compound 18 Moxifloxacin | Activity against Chlamydia pneumonia | |
Compound 19 Ciprofloxacin | Activity against Chlamydia trachomatis | |
Compound 20 Oxetin | Inhibits Bacillus subtilis and Pyricularia oryzae exhibits a herbicidal activity and inhibits glutamine synthetase from spinach leaves | |
Compound 21 | Not active activity against bacterial strains | |
Compound 22 | Activity against the strains of S. aureus, B. cereus, E. coli and P. aeruginosa | |
Compound 23 | Activity against the strains of S. aureus, B. cereus, E. coli and P. aeruginosa | |
Compound 24 a: 3-(6,11-dioxo-6H-benzo[b] phenoxazin- 12(11H)-yl)butanoic acid b: 3-(2-methyl-6,11-dioxo-6H -benzo[b] phenoxazin-12(11H)-yl)butanoic acid c: 3-(2-chloro-6,11-dioxo -6H-benzo [b] phenoxazin-12(11H)-yl)butanoic acid | Activity against the S. aureus and M. luteum Gram-positive bacteria, inhibition of growth of A. Niger microorganisms, activity against E. coli (Compound 25c) | |
Compound 25 | Activity against the S. aureus and M. luteum Gram-positive bacteria | |
Compound 26 | Activity against the S. aureus and M. luteum Gram-positive bacteria, inhibition of growth of A. Niger microorganisms | |
Compound 27 | Activity against M. Luteum, E. coli, inhibition of growth of A. Niger microorganisms | |
Compound 28 | AmpC β-lactamase inhibitor | |
Compound 29 | Inhibits K. pneumoniae β-lactamases KPC-2 and SHV-1 | |
Compound 30 | Antimicrobial activity | |
Compound 31 | Serine protease inhibitor |
Compound 32 | Agonist of the human adenosine A3 receptor | |
Compound 33 | Agonist of the human adenosine A3 receptor | |
Compound 34 CP608039 | Selective adenosine A3 receptor agonist with 1,260-fold selectivity for the human A3 versus human A1 receptor | |
Compound 35 | Full agonist of the A3 receptor | |
Compound 36 | Agonists of the human adenosine A3 receptor | |
Compound 37 | Agonist of the human adenosine A3 receptor | |
Compound 38 | Agonist of the human adenosine A3 receptor | |
Compound 39 | Nociceptin antagonist | |
Compound 40 | Selective NMDA glutamate receptor antagonist | |
Compound 41 | Niacin receptor agonist |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bąchor, U.; Mączyński, M. Selected β2-, β3- and β2,3-Amino Acid Heterocyclic Derivatives and Their Biological Perspective. Molecules 2021, 26, 438. https://doi.org/10.3390/molecules26020438
Bąchor U, Mączyński M. Selected β2-, β3- and β2,3-Amino Acid Heterocyclic Derivatives and Their Biological Perspective. Molecules. 2021; 26(2):438. https://doi.org/10.3390/molecules26020438
Chicago/Turabian StyleBąchor, Urszula, and Marcin Mączyński. 2021. "Selected β2-, β3- and β2,3-Amino Acid Heterocyclic Derivatives and Their Biological Perspective" Molecules 26, no. 2: 438. https://doi.org/10.3390/molecules26020438
APA StyleBąchor, U., & Mączyński, M. (2021). Selected β2-, β3- and β2,3-Amino Acid Heterocyclic Derivatives and Their Biological Perspective. Molecules, 26(2), 438. https://doi.org/10.3390/molecules26020438