ZnII and CuII-Based Coordination Polymers and Metal Organic Frameworks by the of Use of 2-Pyridyl Oximes and 1,3,5-Benzenetricarboxylic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Discussion
2.2. Description of Structures
2.3. Magnetism Studies
2.4. Reactivity Studies
3. Materials and Methods
3.1. Materials, Physical and Spectroscopic Measurements
3.2. Compound Synthesis
3.2.1. Synthesis of [Zn(H2btc)2(H2pyaox)2] 2H2O (1•2H2O)
3.2.2. Synthesis of [Zn(Hbtc)(H2pyaox)2]n (2)
3.2.3. Synthesis of [Cu(Hbtc)(H2pyaox)]n (3)
3.2.4. Synthesis of [Cu(Hbtc)(HmpKo)]n (4)
3.2.5. Synthesis of [Cu2(Hbtc)2(Hmpko)2(H2O)2] 4H2O (5•4H2O)
3.3. Single-Crystal X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Qin, J.-S.; Du, D.-Y.; Guan, W.; Bo, X.-J.; Li, Y.-F.; Guo, L.-P.; Su, Z.-M.; Wang, Y.-Y.; Lan, Y.-Q.; Zhou, H.-C. Ultrastable Polymolybdate-Based Metal–Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water. J. Am. Chem. Soc. 2015, 137, 7169–7177. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.; Matveevskaya, V.; Pavlov, D.; Yakunenkov, A.; Potapov, A. Coordination Polymers Based on Highly Emissive Ligands: Synthesis and Functional Properties. Materials 2020, 13, 2699. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescmakeent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douvali, A.; Tsipis, A.C.; Eliseeva, S.V.; Petoud, S.; Papaefstathiou, G.S.; Malliakas, C.D.; Papadas, I.; Armatas, G.S.; Margiolaki, I.; Kanatzidis, M.G.; et al. Turn-on luminescence sensing and real-time detection of traces of water in organic solvents by a flexible metal-organic framework. Angew. Chem. Int. Ed. 2015, 54, 1651–1676. [Google Scholar] [CrossRef]
- Ma, L.; Falkowski, J.M.; Abney, C.; Lin, W. A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2010, 2, 838–846. [Google Scholar] [CrossRef]
- Wu, M.-X.; Yang, Y.-W. Metal–Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 1606134. [Google Scholar] [CrossRef]
- Huxford, R.C.; Rocca, J.D.; Lin, W. Metal-organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Wang, X.; Zhang, P.; et al. Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 37, 1704303. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.-C.; Kitagawa, S. Metal-Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar] [CrossRef] [Green Version]
- Eddaoudi, M.; Moler, D.B.; Li, H.; Chen, B.; Rheineke, T.M.; O’Keefe, M.; Yaghi, O.M. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Acc. Chem. Res. 2001, 34, 319–330. [Google Scholar] [CrossRef]
- Miyasaka, H.; Julve, M.; Yamashita, M.; Clérac, R. Slow Dynamics of the Magnetization in One-Dimensional Coordination Polymers: Single-Chain Magnets. Inorg. Chem. 2009, 48, 3420–3437. [Google Scholar] [CrossRef] [PubMed]
- Coulon, C.; Miyasaka, H.; Clérac, R. Single-Chain Magnets: Theoretical Approach and Experimental Systems. Struct. Bonding 2006, 122, 163–206. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angew. Chem., Int. Ed. 2003, 42, 268–297. [Google Scholar] [CrossRef] [PubMed]
- Givaja, G.; Amo-Ochoa, P.; Gomez-Garcia, C.; Zamora, F. Electrical conductive coordination polymers. Chem. Soc. Rev. 2012, 41, 115–147. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Gao, E.-Q. Azide and carboxylate as simultaneous coupler for magnetic coordination polymers. Coord. Chem. Rev. 2019, 382, 1–31. [Google Scholar] [CrossRef]
- Leuenberger, M.N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789–793. [Google Scholar] [CrossRef] [Green Version]
- Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008, 7, 179–201. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Zartilas, S.; Manos, M.J.; Pichon, C.; Clérac, R.; Tasiopoulos, A.J. A single-chain magnet based on linear [MnIII2MnII] units. Chem. Commun. 2014, 50, 14873–14876. [Google Scholar] [CrossRef] [Green Version]
- Hui, J.; Kishida, H.; Ishiba, K.; Takemasu, K.; Morikawa, M.; Kimizuka, N. Ferroelectric Coordination Polymers Self-Assembled from Mesogenic Zinc(II) Porphyrin and Dipolar Bridging Ligands. Chem. Eur. J. 2016, 22, 14213–14218. [Google Scholar] [CrossRef]
- Chen, L.; Ji, Q.; Wang, X.; Pan, Q.; Ccao, X.; Xu, G. Two novel metal–organic coordination polymers based on ligand 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide with phase transition, and ferroelectric and dielectric properties. Cryst. Eng. Comm. 2017, 19, 5907–5914. [Google Scholar] [CrossRef]
- Wang, H.-N.; Meng, X.; Dong, L.-Z.; Chen, Y.; Li, S.-L.; Lan, Y.-Q. Coordination polymer-based conductive materials: Ionic conductivity vs. electronic conductivity. J. Mater. Chem. A 2019, 7, 24059–24091. [Google Scholar] [CrossRef]
- Jeon, I.-R.; Clérac, R. Controlled association of single-molecule magnets (SMMs) into coordination networks: Towards a new generation of magnetic materials. Dalton Trans. 2012, 41, 9569–9586. [Google Scholar] [CrossRef] [PubMed]
- Bernot, K.; Luzon, J.; Sessoli, R.; Vindigni, A.; Thion, J.; Richeter, S.; Leclercq, D.; Larionova, J.; Van der Lee, A. The Canted Antiferromagnetic Approach to Single-Chain Magnets. J. Am. Chem. Soc. 2008, 130, 1619–1627. [Google Scholar] [CrossRef]
- Wang, T.-T.; Ren, M.; Bao, S.-S.; Liu, B.; Pi, L.; Cai, Z.-S.; Zheng, Z.-H.; Xu, Z.-L.; Zheng, L.-M. Effect of Structural Isomerism on Magnetic Dynamics: From Single-Molecule Magnet to Single-Chain Magnet. Inorg. Chem. 2014, 53, 3117–3125. [Google Scholar] [CrossRef] [PubMed]
- Manos, M.J.; Markoulides, M.S.; Malliakas, C.D.; Papaefstathiou, G.S.; Chronakis, N.; Kanatzidis, M.G.; Trikalitis, P.N.; Tasiopoulos, A.J. A Highly Porous Interpenetrated Metal–Organic Framework from the Use of a Novel Nanosized Organic Linker. Inorg. Chem. 2011, 50, 11297–11299. [Google Scholar] [CrossRef] [PubMed]
- Ugale, B.; Singh Dhankhar, S.; Nagaraja, C.M. Interpenetrated Metal–Organic Frameworks of Cobalt(II): Structural Diversity, Selective Capture, and Conversion of CO2. Cryst. Growth Des. 2017, 17, 3295–3305. [Google Scholar] [CrossRef]
- Sezginel, K.B.; Feng, T.; Wilmer, C.E. Discovery of hypothetical hetero-interpenetrated MOFs with arbitrarily dissimilar topologies and unit cell shapes. Cryst. Eng. Comm. 2017, 19, 4497–4504. [Google Scholar] [CrossRef]
- Nouar, F.; Devic, T.; Chevreau, H.; Guillou, N.; Gibson, E.; Clet, G.; Daturi, M.; Vimont, A.; Grenèche, J.M.; Breeze, M.I.; et al. Tuning the breathing behaviour of MIL-53 by cation mixing. Chem. Commun. 2012, 48, 10237–10239. [Google Scholar] [CrossRef]
- Alhamami, M.; Doan, H.; Cheng, C.-H. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption. Materials 2014, 7, 3198–3250. [Google Scholar] [CrossRef]
- Kou, W.-T.; Yang, C.-X.; Yan, X.-P. Post-synthetic modification of metal–organic frameworks for chiral gas chromatography. J. Mater. Chem. A 2018, 6, 17861–17866. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Ng, M.; Milner, P.J. Rapid mechanochemical synthesis of metal–organic frameworks using exogenous organic base. Dalton Trans. 2020, 49, 16238–16244. [Google Scholar] [CrossRef] [PubMed]
- Klinowski, J.; Almeida Paz, F.A.; Silva, P.; Rocha, J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Trans. 2011, 40, 321. [Google Scholar] [CrossRef] [PubMed]
- Vinu, M.; Lin, W.-C.; Senthil Raja, D.; Han, J.-L.; Lin, C.-H. Microwave-Assisted Synthesis of Nanoporous Aluminum-Based Coordination Polymers as Catalysts for Selective Sulfoxidation Reaction. Polymers 2017, 9, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garibay, S.J.; Cohen, S.M. Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem. Commun. 2010, 46, 7700–7702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705. [Google Scholar] [CrossRef]
- Ardila-Suárez, C.; Díaz-Lasprilla, A.M.; Díaz-Vaca, L.A.; Balbuena, P.B.; Baldovino-Medrano, V.G.; Ramírez-Caballero, G.E. Synthesis, characterization, and post-synthetic modification of a micro/mesoporous zirconium–tricarboxylate metal–organic framework: Towards the addition of acid active sites. Cryst. Eng. Comm. 2019, 21, 3014–3030. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, J.; Zhang, P.; Dai, S. Mechanochemical synthesis of metal–organic frameworks. Polyhedron 2019, 162, 59–64. [Google Scholar] [CrossRef]
- Mai, Z.; Liu, D. Synthesis and Applications of Isoreticular Metal–Organic Frameworks IRMOFs-n (n = 1, 3, 6, 8). Cryst. Growth Des. 2019, 19, 7439–7462. [Google Scholar] [CrossRef]
- Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.-Y.; Seo, Y.-K.; Chang, J.-S.; Grenèche, J.-M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun. 2007, 2820. [Google Scholar] [CrossRef] [PubMed]
- Kourtellaris, A.; Moushi, E.E.; Spanopoulos, I.; Tampaxis, C.; Charalambopoulou, G.; Steriotis, T.A.; Papaefstathiou, G.S.; Trikalitis, P.N.; Tasiopoulos, A.J. A microporous Cu2+ MOF based on a pyridyl isophthalic acid Schiff base ligand with high CO2 uptake. Inorg. Chem. Front. 2016, 3, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Moushi, E.E.; Kourtellaris, A.; Spanopoulos, I.; Manos, M.J.; Papaefstathiou, G.S.; Trikalitis, P.N.; Tasiopoulos, A.J. A Microporous Co2+ Metal Organic Framework with Single-Crystal to Single-Crystal Transformation Properties and High CO2 Uptake. Cryst. Growth Des. 2015, 15, 185–193. [Google Scholar] [CrossRef]
- Manos, M.J.; Moushi, E.E.; Papaefstathiou, G.S.; Tasiopoulos, A.J. New Zn2+ Metal Organic Frameworks with Unique Network Topologies from the Combination of Trimesic Acid and Amino-Alcohols. Cryst. Growth Des. 2012, 12, 5471–5480. [Google Scholar] [CrossRef]
- Clausen, H.F.; Poulsen, R.D.; Bond, A.D.; Chevallier, M.-A.S.; Iversen, B.B. Solvothermal synthesis of new metal organic framework structures in the zinc terephthalic acid dimethyl formamide system. J. Solid State 2005, 178, 3342–3351. [Google Scholar] [CrossRef]
- Chen, Z.; Adil, K.; Weselinski, L.J.; Belmabkhout, Y.; Eddaoudi, M. A supermolecular building layer approach for gas separation and storage applications: The eea and rtl MOF platforms for CO2 capture and hydrocarbon separation. J. Mater. Chem. A 2015, 3, 6276–6282. [Google Scholar] [CrossRef] [Green Version]
- Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–299. [Google Scholar] [CrossRef] [Green Version]
- Sapchenko, S.A.; Dybtsev, D.N.; Damsonenko, D.G.; Fedin, V.P. Synthesis, crystal structures, luminescent and thermal properties of two new metal–organic coordination polymers based on zinc(II) carboxylates. New J. Chem. 2010, 34, 2445–2450. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Sun, W.-Y. The organic ligands with mixed N-/O-donors used in construction of functional metal–organic frameworks. Cryst. Eng. Comm. 2014, 16, 3247–3258. [Google Scholar] [CrossRef]
- Guesh, K.; Caiuby, C.A.D.; Mayoral, Á.; Díaz-García, M.; Díaz, I.; Sanchez-Sanchez, M. Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Growth Des. 2017, 17, 1806–1813. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Zhou, Y.-L.; Zeng, M.-H.; Kurmoo, M. The concept of mixed organic ligands in metal–organic frameworks: Design, tuning and functions. Dalton Trans. 2015, 44, 5258–5275. [Google Scholar] [CrossRef]
- ZareKarizi, F.; Johariana, M.; Morsali, A. Pillar-layered MOFs: Functionality, interpenetration, flexibility and applications. J. Mater. Chem. A 2018, 6, 19288–19329. [Google Scholar] [CrossRef]
- Milios, C.J.; Stamatatos, T.C.; Perlepes, S.P. The coordination chemistry of pyridyl oximes. Polyhedron 2006, 25, 134–194. [Google Scholar] [CrossRef]
- Escuer, A.; Vlahopoulou, G.; Mautner, F.A. Assembly of [MnII2MnIII2] S = 9 Clusters via Azido Bridges: A New Single-Chain Magnet. Inorg. Chem. 2011, 50, 2717–2719. [Google Scholar] [CrossRef] [PubMed]
- Mowson, A.M.; Nguyen, T.N.; Abboud, K.A.; Christou, G. Dimeric and tetrameric supramolecular aggregates of single-molecule magnets via carboxylate substitution. Inorg. Chem. 2013, 52, 12320–12322. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Jones, L.F.; Nguyen, T.D.; Matamoros-Salvador, N.; Cunha-Silva, L.; Almeida Paz, F.A.; Rocha, J.; Evangelisti, M.; Brechin, E.K.; Perlepes, S.P. Using pyridine amidoximes in 3d-metal cluster chemistry: A novel ferromagnetic Ni12 complex from the use of pyridine-2-amidoxime. Dalton Trans. 2008, 3153–3155. [Google Scholar] [CrossRef]
- Efthymiou, C.G.; Cunha-Silva, L.; Perlepes, S.P.; Brechin, E.K.; Inglis, R.; Evangelisti, M.; Papatriantafyllopoulou, C. In search of molecules displaying ferromagnetic exchange: Multiple-decker Ni12 and Ni16 complexes from the use of pyridine-2-amidoxime. Dalton Trans. 2016, 17409–17419. [Google Scholar] [CrossRef] [Green Version]
- Papatriantafyllopoulou, C.; Stamatatos, T.C.; Wernsdorfer, W.; Teat, S.J.; Tasiopoulos, A.J.; Escuer, A.; Perlepes, S.P. Combining Azide, Carboxylate, and 2-Pyridyloximate Ligands in Transition-Metal Chemistry: Ferromagnetic NiII5 Clusters with a Bowtie Skeleton. Inorg. Chem. 2010, 49, 10486–10496. [Google Scholar] [CrossRef]
- Polyzou, C.D.; Efthymiou, C.G.; Escuer, A.; Cunha-Silva, L.; Papatriantafyllopoulou, C.; Perlepes, S.P. In search of 3d/4f-metal single-molecule magnets: Nickel(II)/lanthanide(III) coordination clusters. Pure Appl. Chem. 2013, 85, 315. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Stamatatos, T.C.; Efthymiou, C.G.; Cunha-Silva, L.; Almeida Paz, F.A.; Perlepes, S.P.; Christou, G. A High-Nuclearity 3d/4f Metal Oxime Cluster: An Unusual Ni8Dy8 “Core-Shell” Complex from the Use of 2-Pyridinealdoxime. Inorg. Chem. 2010, 49, 9743–9745. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Estrader, M.; Efthymiou, C.G.; Dermitzaki, D.; Gkotsis, K.; Terzis, A.; Diaz, C.; Perlepes, S.P. In search for mixed transition metal/lanthanide single-molecule magnets: Synthetic routes to NiII/TbIII and NiII/DyIII clusters featuring a 2-pyridyl oximate ligand. Polyhedron 2009, 28, 1652–1655. [Google Scholar] [CrossRef]
- Efthymiou, C.G.; Mylonas-Margaritis, I.; Das Gupta, S.; Tasiopoulos, A.; Nastopoulos, V.; Christou, G.; Perlepes, S.P.; Papatriantafyllopoulou, C. Synthesis and characterisation of new Ni2Mn, Ni2Mn2 and Mn8 clusters by the use of 2-pyridyl oximes. Polyhedron 2019, 171, 330–337. [Google Scholar] [CrossRef]
- Stamatatos, T.C.; Foguet-Albiol, D.; Stoumpos, C.C.; Raptopoulou, C.P.; Terzis, A.; Wernsdorfer, W.; Perlepes, S.P.; Christou, G. New Mn3 structural motifs in manganese single-molecule magnetism from the use of 2-pyridyloximate ligands. Polyhedron 2007, 26, 2165–2168. [Google Scholar] [CrossRef]
- Ghosh, T.; Abboud, K.A.; Christou, G. New MnIIMnIII8 and MnII2MnIII10MnIV2 clusters from the reaction of methyl 2-pyridyl ketone oxime with [Mn12O12(O2CR)16(H2O)4]. Polyhedron 2019, 173, 114145. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Shiddiq, M.; Ghosh, T.; Abboud, K.A.; Hill, S.; Christou, G. Covalently Linked Dimer of Mn3 Single-Molecule Magnets and Retention of Its Structure and Quantum Properties in Solution. J. Am. Chem. Soc. 2015, 137, 7160–7168. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Wernsdorfer, W.; Shiddiq, M.; Abboud, K.A.; Hill, S.; Christou, G. Supramolecular aggregates of single-molecule magnets: Exchange-biased quantum tunneling of magnetization in a rectangular [Mn3]4 tetramer. Chem. Sci. 2016, 7, 1156–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mylonas-Margaritis, I.; Gerard, A.; Skordi, K.; Mayans, J.; Tasiopoulos, A.; McArdle, P.; Papatriantafyllopoulou, C. From 1D Coordination Polymers to Metal Organic Frameworks by the Use of 2-Pyridyl Oximes. Materials 2020, 13, 4084. [Google Scholar] [CrossRef]
- Mylonas-Margaritis, I.; Winterlich, M.; Efthymiou, C.G.; Lazarides, T.; McArdle, P.; Papatriantafyllopoulou, C. New insights into oximic ligands: Synthesis and characterization of 1D chains by the use of pyridine 2-amidoxime and polycarboxylates. Polyhedron 2018, 151, 360–368. [Google Scholar] [CrossRef]
- Shen, T.; Liu, T.; Yuan, Z.; Cui, F.; Jin, Y.; Chen, X. Cu-based metal–organic framework HKUST-1 as effective catalyst for highly sensitive determination of ascorbic acid. RSC Adv. 2020, 10, 22881–22890. [Google Scholar] [CrossRef]
- Álvarez, J.R.; Sánchez-González, E.; Pérez, E.; Schneider-Revueltas, E.; Martínez, A.; Tejeda-Cruz, A.; Islas-Jácome, A.; González-Zamora, E.; Ibarra, I.A. Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties. Dalton Trans. 2017, 46, 9192–9200. [Google Scholar] [CrossRef]
- Chui, S.; Lo, S.; Charmant, J.; Opren, G.; Williams, I.D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150. [Google Scholar] [CrossRef]
- Davies, K.; Bourne, S.A.; Ohrstrom, L.; Oliver, C.L. Anionic zinc-trimesic acid MOFs with unusual topologies: Reversible hydration studies. Dalton Trans. 2010, 39, 2869–2874. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.W.; Wojitas, L. Photo-physical studies of ruthenium(II) tris(1,10-phenanthroline) confined within a polyhedral zinc(II)-trimesic acid metal organic framework. Inorg. Chim. Acta 2017, 466, 243–248. [Google Scholar] [CrossRef]
- Rajak, R.; Saraf, M.; Mobin, S.M. Robust heterostructures of a bimetallic sodium–zinc metal–organic framework and reduced graphene oxide for high-performance supercapacitors. J. Mat. Chem. A 2019, 7, 1725–1736. [Google Scholar] [CrossRef]
- He, X.; Wang, W.-N. Synthesis of Cu-Trimesic Acid/Cu-1,4-Benzenedioic Acid via Microdroplets: Role of Component Compositions. Cryst. Growth Des. 2019, 19, 1095–1102. [Google Scholar] [CrossRef]
- Venu, B.; Shirisha, V.; Vishali, B.; Naresh, G.; Kishore, R.; Sreedhar, I.; Venugopal, A. A Cu-BTC metal–organic framework (MOF) as an efficient heterogeneous catalyst for the aerobic oxidative synthesis of imines from primary amines under solvent free conditions. New J. Chem. 2020, 44, 5972–5979. [Google Scholar] [CrossRef]
- Riou-Cavellec, M.; Albinet, C.; Greneche, J.-M.; Ferey, G. Study of the iron/trimesic acid system for the hydrothermal synthesis of hybrid materials. J. Mat. Chem. 2001, 11, 3166–3171. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, Z.; Liu, X. MIL-100(Fe) and its derivatives: From synthesis to application for wastewater decontamination. Environ. Sci. Pollut. Res. 2020, 27, 4703–4724. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1346–1356. [Google Scholar] [CrossRef]
- Alexandrov, E.V.; Blatov, V.A.; Kochetkov, A.V.; Proserpio, D.M. Underlying nets in three-periodic coordination polymers: Topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database. Cryst. Eng. Comm. 2011, 13, 3947–3958. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, M.N.; Khan, M.S.; Shahid, M.; Ashmad, M. Metal organic frameworks decorated with free carboxylic acid groups: Topology, metal capture and dye adsorption properties. Dalton Trans. 2020, 49, 14690–14705. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, M.N.; Shahid, M.; Ashmad, M.; Sama, F. Cu(II) MOFs Based on Bipyridyls: Topology, Magnetism, and Exploring Sensing Ability toward Multiple Nitroaromatic Explosives. ACS Omega 2019, 4, 7738–7749. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-X.; Qin, Z.-B.; Li, Y.-H.; Cui, G.-H. Two luminescent Cd(II)-MOFs based on bis(benzimidazole) and aromatic dicarboxylate ligands as chemosensor for highly selective sensing of Fe3+. Polyhedron 2018, 151, 530–536. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, J.-P.; Liu, Z.-Y. Single crystal to single crystal transition in (10, 3)-d framework with pyrazine-2-carboxylate ligand: Synthesis, structures and magnetism. J. Solid State Chem. 2012, 196, 52–57. [Google Scholar] [CrossRef]
- Gabriel, C.; Vangelis, A.A.; Raptopoulou, C.P.; Terzis, A.; Psycharis, V.; Zervou, M.; Bertmer, M.; Salifoglou, A. Structural–Spectrochemical Correlations of Variable Dimensionality Crystalline Metal–Organic Framework Materials in Hydrothermal Reactivity Patterns of Binary–Ternary Systems of Pb(II) with (a)Cyclic (Poly)carboxylate and Aromatic Chelator Ligands. Cryst. Growth Des. 2015, 15, 5310–5326. [Google Scholar] [CrossRef]
- Wang, L.; Xue, R.; Li, Y.; Zhao, Y.; Liu, F.; Huang, K. Hydrogen-bonding patterns in a series of multi-component molecular solids formed by 2,3,5,6-tetramethylpyrazine with selected carboxylic acids. Cryst. Eng. Comm. 2014, 16, 7074–7089. [Google Scholar] [CrossRef]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange--coupled polynuclear d-- and f--block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef]
- Hafez, R.S.; El-Khiyami, S. Effect of copper (II) nitrate 3H2O on the crystalline, optical and electrical properties of poly(vinyl alcohol) films. J. Polym. Res. 2020, 27. [Google Scholar] [CrossRef]
- Castro, I.; Faus, J.; Julve, M.; Amigo, J.; Sletten, J.; Debaerdemaeker, T. Copper(II)-assisted hydrolysis of 2,4,6-tris(2-pyridyl)-1,3,5-triazine. Part 3. Crystal structures of diaqua[bis(2-pyridylcarbonyl)amido]copper(II) nitrate dihydrate and aquabis(pyridine-2-carboxamide)copper(II) nitrate monohydrate. Dalton Trans. 1990, 891–897. [Google Scholar] [CrossRef]
- Milios, C.J.; Raptopoulou, C.P.; Terzis, A.; Vicente, R.; Escuer, A.; Perlepes, S.P. Di-2-pyridyl ketone oxime in 3d-metal carboxylate cluster chemistry: A new family of mixed-valence Mn2IIMn2III complexes. Inorg. Chem. Commun. 2003, 6, 1056–1060. [Google Scholar] [CrossRef]
- Bernasek, E. Pyridineamidoximes. J. Org. Chem. 1957, 22, 1263. [Google Scholar] [CrossRef]
- Orama, M.; Saarinen, H.; Korvenranta, J. Formation of trinuclear copper(II) complexes with three pyridine oxime ligands in aqueous solution. J. Coord. Chem. 1990, 22, 183–190. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McArdle, P.; Gilligan, K.; Cunningham, D.; Dark, R.; Mahon, M. A method for the prediction of the crystal structure of ionic organic compounds—The crystal structures of o-toluidinium chloride and bromide and polymorphism of bicifadine hydrochloride. Cryst. Eng. Comm. 2004, 6, 303–309. [Google Scholar] [CrossRef]
- Brandenburg, K. DIAMOND; Version 2003.2001d; Crystal Impact GbR: Bonn, Germany, 2006. [Google Scholar]
Complex | 1.2H2O | 2 | 3 |
---|---|---|---|
Empirical formula | C30H23N6O16Zn | C21H18N6O8Zn | C15H11CuN3O7 |
Formula weight | 788.91 | 547.78 | 408.81 |
Crystal system | Triclinic | Orthorhombic | Monoclinic |
Space group | Pī | P212121 | P21/n |
a (Å) | 10.4432(8) | 8.9165(2) | 13.6020(5) |
b (Å) | 11.0391(10) | 14.3950(4) | 7.8643(3) |
c (Å) | 16.1331(10) | 18.0662(4) | 14.5936(6) |
α (o) | 70.263(7) | 90 | 90 |
β (o) | 71.936(6) | 90 | 106.629(4) |
γ (o) | 74.980(7) | 90 | 90 |
V (Å3) | 1639.4(2) | 2318.85(10) | 1495.79(10) |
Ζ | 2 | 4 | 4 |
ρcalc (g cm−3) | 1.598 | 1.569 | 1.815 |
μ (mm−1) | 0.837 | 1.120 | 1.510 |
Measured/independent reflections (Rint) | 12,784/7550 (0.0634) | 19,382/ 5593 (0.0303) | 10,552/3386 (0.0279) |
Parameters refined | 484 | 350 | 251 |
GoF (on F2) | 0.972 | 1.043 | 1.069 |
R1a (I > 2σ(Ι)) | 0.0948 | 0.0340 | 0.0379 |
wR2b (I > 2σ(Ι)) | 0.2333 | 0.0763 | 0.1025 |
(Δρ)max/(Δρ)min (e Å−3) | 2.739/−0.619 | 0.879/−0.338 | 0.539/−0.683 |
Complex | 4 | 5•4H2O | |
Empirical formula | C21H11CuN2O7 | C16H18CuN2O10 | |
Formula weight | 466.86 | 461.86 | |
Crystal system | Orthorhombic | Triclinic | |
Space group | Pna21 | Pī | |
a (Å) | 14.4904(8) | 8.5820(6) | |
b (Å) | 14.2054(6) | 10.7135(8) | |
c (Å) | 7.4068(5) | 11.0721(8) | |
a (o) | 90 | 64.108(7) | |
β (o) | 90 | 86.688(6) | |
γ (°) | 90 | 83.015(6) | |
V (Å3) | 2.034 | 909.01(12) | |
Ζ | 4 | 2 | |
ρcalc (g cm−3) | 2.034 | 1.687 | |
μ (mm−1) | 1.494 | 1.263 | |
Measured/independent reflections (Rint) | 12,706/3688 (0.0784) | 8056/4204 (0.0377) | |
Parameters refined | 237 | 286 | |
GoF (on F2) | 0.974 | 0.963 | |
R1a (I > 2σ(Ι)) | 0.0544 | 0.0417 | |
wR2b (I > 2σ(Ι)) | 0.0869 | 0.0935 | |
(Δρ)max/(Δρ)min (e Å−3) | 0.420/−0.405 | 0.496/−0.489 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mylonas-Margaritis, I.; Mayans, J.; McArdle, P.; Papatriantafyllopoulou, C. ZnII and CuII-Based Coordination Polymers and Metal Organic Frameworks by the of Use of 2-Pyridyl Oximes and 1,3,5-Benzenetricarboxylic Acid. Molecules 2021, 26, 491. https://doi.org/10.3390/molecules26020491
Mylonas-Margaritis I, Mayans J, McArdle P, Papatriantafyllopoulou C. ZnII and CuII-Based Coordination Polymers and Metal Organic Frameworks by the of Use of 2-Pyridyl Oximes and 1,3,5-Benzenetricarboxylic Acid. Molecules. 2021; 26(2):491. https://doi.org/10.3390/molecules26020491
Chicago/Turabian StyleMylonas-Margaritis, Ioannis, Julia Mayans, Patrick McArdle, and Constantina Papatriantafyllopoulou. 2021. "ZnII and CuII-Based Coordination Polymers and Metal Organic Frameworks by the of Use of 2-Pyridyl Oximes and 1,3,5-Benzenetricarboxylic Acid" Molecules 26, no. 2: 491. https://doi.org/10.3390/molecules26020491
APA StyleMylonas-Margaritis, I., Mayans, J., McArdle, P., & Papatriantafyllopoulou, C. (2021). ZnII and CuII-Based Coordination Polymers and Metal Organic Frameworks by the of Use of 2-Pyridyl Oximes and 1,3,5-Benzenetricarboxylic Acid. Molecules, 26(2), 491. https://doi.org/10.3390/molecules26020491