Intrinsically Elastic Organic Semiconductors (IEOSs)
Abstract
:1. Introduction
2. Synthetic Methods
2.1. Coupling
2.2. Polycondensation
2.3. Free Radical Polymerization
2.4. Click Reaction
3. Fundamental Properties
3.1. Mechanical Properties
3.2. Mobility
4. Applications
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiang, C.K.; Fincher, C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977, 39, 1098–1101. [Google Scholar] [CrossRef]
- Guo, X.; Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 2020, 19, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T.T.; Krebs, F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, K.H.; Li, W.; Heintges, G.H.; van Pruissen, G.W.; Wienk, M.M.; Janssen, R.A. Homocoupling defects in diketopyrrolopyrrole-based copolymers and their effect on photovoltaic performance. J. Am. Chem. Soc. 2014, 136, 11128–11133. [Google Scholar] [CrossRef]
- Wakioka, M.; Takahashi, R.; Ichihara, N.; Ozawa, F. Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Highly Selective Synthesis of π-Conjugated Polymers with Diketopyrrolopyrrole Units. Macromolecules 2017, 50, 927–934. [Google Scholar] [CrossRef]
- Sirringhaus, H. 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319–1335. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhu, L.; Wei, Z. Toward Over 15% Power Conversion Efficiency for Organic Solar Cells: Current Status and Perspectives. Small Methods 2017, 1, 1700258. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, L.; Niu, X.; Yu, Z.; Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics 2013, 7, 817–824. [Google Scholar] [CrossRef]
- Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074. [Google Scholar] [CrossRef] [Green Version]
- Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chortos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950. [Google Scholar] [CrossRef]
- Tran, H.; Feig, V.R.; Liu, K.; Zheng, Y.; Bao, Z. Polymer Chemistries Underpinning Materials for Skin-Inspired Electronics. Macromolecules 2019, 52, 3965–3974. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Park, J.-W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 2021, 7, eabd9715. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feig, V.R.; Bao, Z. Conjugated Polymer for Implantable Electronics toward Clinical Application. Adv. Healthc. Mater. 2021, 10, 2001916. [Google Scholar] [CrossRef]
- Lee, J.; Wu, J.; Ryu, J.H.; Liu, Z.; Meitl, M.; Zhang, Y.W.; Huang, Y.; Rogers, J.A. Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: Demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. Small 2012, 8, 1851–1856. [Google Scholar] [CrossRef]
- Kim, D.H.; Lu, N.; Ghaffari, R.; Kim, Y.S.; Lee, S.P.; Xu, L.; Wu, J.; Kim, R.H.; Song, J.; Liu, Z.; et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 2011, 10, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Li, X.; Fan, J.A.; Xu, S.; Song, Y.M.; Choi, K.-J.; Yeo, W.-H.; Lee, W.; Nazaar, S.N.; et al. Experimental and Theoretical Studies of Serpentine Microstructures Bonded To Prestrained Elastomers for Stretchable Electronics. Adv. Funct. Mater. 2014, 24, 2028–2037. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C.F. Flexible Electronics: Stretchable Electrodes and Their Future. Adv. Funct. Mater. 2018, 29, 1805924. [Google Scholar] [CrossRef]
- Sun, Y.; Choi, W.M.; Jiang, H.; Huang, Y.Y.; Rogers, J.A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 2006, 1, 201–207. [Google Scholar] [CrossRef]
- Shin, M.; Oh, J.Y.; Byun, K.E.; Lee, Y.J.; Kim, B.; Baik, H.K.; Park, J.J.; Jeong, U. Polythiophene nanofibril bundles surface-embedded in elastomer: A route to a highly stretchable active channel layer. Adv. Mater. 2015, 27, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, S.; Wang, G.-J.N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V.R.; To, J.W.F.; et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Savagatrup, S.; Printz, A.D.; Rodriquez, D.; Lipomi, D.J. Best of Both Worlds: Conjugated Polymers Exhibiting Good Photovoltaic Behavior and High Tensile Elasticity. Macromolecules 2014, 47, 1981–1992. [Google Scholar] [CrossRef]
- Cui, N.; Tang, Q.; Ren, H.; Zhao, X.; Tong, Y.; Liu, Y. A photolithographic stretchable transparent electrode for an all-solution-processed fully transparent conformal organic transistor array. J. Mater. Chem. C 2019, 7, 5385–5393. [Google Scholar] [CrossRef]
- Mun, J.; Kang, J.; Zheng, Y.; Luo, S.; Wu, H.C.; Matsuhisa, N.; Xu, J.; Wang, G.N.; Yun, Y.; Xue, G.; et al. Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers. Adv. Mater. 2019, 31, e1903912. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, H.C.; Zhu, C.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S.; Molina-Lopez, F.; Gu, X.; Luo, S.; et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 2019, 18, 594–601. [Google Scholar] [CrossRef]
- Zhang, G.; Lee, S.; Gutiérrez-Meza, E.; Buckley, C.; McBride, M.; Valverde-Chávez, D.A.; Kwon, Y.H.; Savikhin, V.; Xiong, H.; Dunn, T.J.; et al. Robust and Stretchable Polymer Semiconducting Networks: From Film Microstructure to Macroscopic Device Performance. Chem. Mater. 2019, 31, 6530–6539. [Google Scholar] [CrossRef]
- Guan, Y.-S.; Thukral, A.; Zhang, S.; Sim, K.; Wang, X.; Zhang, Y.; Ershad, F.; Rao, Z.; Pan, F.; Wang, P.; et al. Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Sci. Adv. 2020, 6, eabb3656. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, Y.H.; Galuska, L.; Roy, A.; Lorenz, M.; Chen, B.; Luo, S.; Li, Y.T.; Hung, C.C.; Qian, Z.; et al. Tacky Elastomers to Enable Tear-Resistant and Autonomous Self-Healing Semiconductor Composites. Adv. Funct. Mater. 2020, 30, 2000663. [Google Scholar] [CrossRef]
- Song, J.; Huang, Y.; Xiao, J.; Wang, S.; Hwang, K.C.; Ko, H.C.; Kim, D.H.; Stoykovich, M.P.; Rogers, J.A. Mechanics of noncoplanar mesh design for stretchable electronic circuits. J. Appl. Phys. 2009, 105, 123516. [Google Scholar] [CrossRef]
- Lamoureux, A.; Lee, K.; Shlian, M.; Forrest, S.R.; Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 2015, 6, 8092. [Google Scholar] [CrossRef] [PubMed]
- Ichi, N.E. Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; pp. 263–283. [Google Scholar]
- Ditte, K.; Perez, J.; Chae, S.; Hambsch, M.; Al-Hussein, M.; Komber, H.; Formanek, P.; Mannsfeld, S.C.B.; Fery, A.; Kiriy, A.; et al. Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics. Adv. Mater. 2021, 33, 2005416. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, X.; Zang, Y.; Di, C.-A.; Diao, Y.; Mei, J. Conjugation-Break Spacers in Semiconducting Polymers: Impact on Polymer Processability and Charge Transport Properties. Macromolecules 2015, 48, 2048–2053. [Google Scholar] [CrossRef]
- Savagatrup, S.; Zhao, X.; Chan, E.; Mei, J.; Lipomi, D.J. Effect of Broken Conjugation on the Stretchability of Semiconducting Polymers. Macromol. Rapid Commun. 2016, 37, 1623–1628. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-T.; Takshima, S.; Wu, H.-C.; Shih, C.-C.; Isono, T.; Kakuchi, T.; Satoh, T.; Chen, W.-C. Stretchable Conjugated Rod–Coil Poly(3-hexylthiophene)-block-poly(butyl acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules 2017, 50, 1442–1452. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, J.-H.; Lee, W.; Yu, H.; Kim, H.J.; Song, I.; Shin, M.; Oh, J.H.; Jeong, U.; Kim, T.-S.; et al. Tuning Mechanical and Optoelectrical Properties of Poly(3-hexylthiophene) through Systematic Regioregularity Control. Macromolecules 2015, 48, 4339–4346. [Google Scholar] [CrossRef]
- Son, S.Y.; Kim, J.-H.; Song, E.; Choi, K.; Lee, J.; Cho, K.; Kim, T.-S.; Park, T. Exploiting π–π Stacking for Stretchable Semiconducting Polymers. Macromolecules 2018, 51, 2572–2579. [Google Scholar] [CrossRef]
- Park, H.; Ma, B.S.; Kim, J.-S.; Kim, Y.; Kim, H.J.; Kim, D.; Yun, H.; Han, J.; Kim, F.S.; Kim, T.-S.; et al. Regioregular-block-Regiorandom Poly(3-hexylthiophene) Copolymers for Mechanically Robust and High-Performance Thin-Film Transistors. Macromolecules 2019, 52, 7721–7730. [Google Scholar] [CrossRef]
- Shen, J.; Fujita, K.; Matsumoto, T.; Hongo, C.; Misaki, M.; Ishida, K.; Mori, A.; Nishino, T. Mechanical, Thermal, and Electrical Properties of Flexible Polythiophene with Disiloxane Side Chains. Macromol. Chem. Phys. 2017, 218, 1700197. [Google Scholar] [CrossRef] [Green Version]
- Smith, Z.C.; Wright, Z.M.; Arnold, A.M.; Sauvé, G.; McCullough, R.D.; Sydlik, S.A. Increased Toughness and Excellent Electronic Properties in Regioregular Random Copolymers of 3-Alkylthiophenes and Thiophene. Adv. Electron. Mater. 2017, 3, 1600316. [Google Scholar] [CrossRef]
- Tian, F.; Chen, H.; Du, Y.; Chen, J.; Wang, X.; Lu, H.; Cho, K.; Zhang, G.; Qiu, L. Rational molecular design for isoindigo-based polymer semiconductors with high ductility and high electrical performance. J. Mater. Chem. C 2019, 7, 11639–11649. [Google Scholar] [CrossRef]
- Beyer, V.P.; Kim, J.; Becer, C.R. Synthetic approaches for multiblock copolymers. Polym. Chem. 2020, 11, 1271–1291. [Google Scholar] [CrossRef]
- Tran, H.; Feig, V.R.; Liu, K.; Wu, H.C.; Chen, R.; Xu, J.; Deisseroth, K.; Bao, Z. Stretchable and Fully Degradable Semiconductors for Transient Electronics. ACS Cent. Sci. 2019, 5, 1884–1891. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, F.; Kleinschmidt, A.T.; Kayser, L.V.; Alkhadra, M.A.; Wan, J.M.; Chiang, A.S.; Rodriquez, D.; Root, S.E.; Savagatrup, S.; Lipomi, D.J. Stretchable and Degradable Semiconducting Block Copolymers. Macromolecules 2018, 51, 5944–5949. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhu, N.; Guo, K. Advances in Organocatalyzed Atom Transfer Radical Polymerization. Adv. Polym. Technol. 2019, 2019, 7971683. [Google Scholar] [CrossRef] [Green Version]
- Baek, P.; Aydemir, N.; An, Y.; Chan, E.W.C.; Sokolova, A.; Nelson, A.; Mata, J.P.; McGillivray, D.; Barker, D.; Travas-Sejdic, J. Molecularly Engineered Intrinsically Healable and Stretchable Conducting Polymers. Chem. Mater. 2017, 29, 8850–8858. [Google Scholar] [CrossRef]
- Ge, F.; Liu, Z.; Tian, F.; Du, Y.; Liu, L.; Wang, X.; Lu, H.; Wu, Z.; Zhang, G.; Qiu, L. One-pot synthesized ABA tri-block copolymers for high-performance organic field-effect transistors. Polym. Chem. 2018, 9, 4517–4522. [Google Scholar] [CrossRef]
- Peng, R.; Pang, B.; Hu, D.; Chen, M.; Zhang, G.; Wang, X.; Lu, H.; Cho, K.; Qiu, L. An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. J. Mater. Chem. C 2015, 3, 3599–3606. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.-C.; Kobayashi, S.; Isono, T.; Shih, C.-C.; Shingu, T.; Hung, C.-C.; Hsieh, H.-C.; Tung, S.-H.; Satoh, T.; Chen, W.-C. Effect of a conjugated/elastic block sequence on the morphology and electronic properties of polythiophene based stretchable block copolymers. Polym. Chem. 2019, 10, 5452–5464. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Zhang, S.; Ocheje, M.U.; Huang, L.; Galuska, L.; Cao, Z.; Luo, S.; Cheng, Y.H.; Ehlenberg, D.; Goodman, R.B.; Zhou, D.; et al. The Critical Role of Electron-Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers. Adv. Electron. Mater. 2019, 5, 1800899. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ashizawa, M.; Zhang, S.; Kang, J.; Nikzad, S.; Yu, Z.; Ochiai, Y.; Wu, H.-C.; Tran, H.; Mun, J.; et al. Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chem. Mater. 2020, 32, 5700–5714. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Shih, C.-C.; Chiang, Y.-C.; Chen, C.-K.; Chen, W.-C. Intrinsically stretchable isoindigo–bithiophene conjugated copolymers using poly(acrylate amide) side chains for organic field-effect transistors. Polym. Chem. 2019, 10, 5172–5183. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, J.; Tong, Y.; Zhang, J.; Zhao, X.; Cui, N.; Li, Y.; Ye, X.; Tang, Q.; Liu, Y. Synchronously improved stretchability and mobility by tuning the molecular weight for intrinsically stretchable transistors. J. Mater. Chem. C 2020, 8, 15646–15654. [Google Scholar] [CrossRef]
- Choi, J.; Kim, W.; Kim, D.; Kim, S.; Chae, J.; Choi, S.Q.; Kim, F.S.; Kim, T.-S.; Kim, B.J. Importance of Critical Molecular Weight of Semicrystalline n-Type Polymers for Mechanically Robust, Efficient Electroactive Thin Films. Chem. Mater. 2019, 31, 3163–3173. [Google Scholar] [CrossRef]
- Wu, H.-C.; Hung, C.-C.; Hong, C.-W.; Sun, H.-S.; Wang, J.-T.; Yamashita, G.; Higashihara, T.; Chen, W.-C. Isoindigo-Based Semiconducting Polymers Using Carbosilane Side Chains for High Performance Stretchable Field-Effect Transistors. Macromolecules 2016, 49, 8540–8548. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Lin, Y.-C.; Yen, H.-C.; Chen, C.-K.; Lee, W.-Y.; Chen, W.-C.; Chueh, C.-C. High Mobility Preservation of Near Amorphous Conjugated Polymers in the Stretched States Enabled by Biaxially-Extended Conjugated Side-Chain Design. Chem. Mater. 2020, 32, 7370–7382. [Google Scholar] [CrossRef]
- Oh, J.Y.; Rondeau-Gagne, S.; Chiu, Y.C.; Chortos, A.; Lissel, F.; Wang, G.N.; Schroeder, B.C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraja, S.; Nawaz, A.; Liu, Q.; Dubal, D.; Surya, S.G.; Salama, K.N.; Sonar, P. Organic field-effect transistor-based flexible sensors. Chem. Soc. Rev. 2020, 49, 3423–3460. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Z.; Wang, J.; Zheng, Q. Polyelectrolyte Dielectrics for Flexible Low-Voltage Organic Thin-Film Transistors in Highly Sensitive Pressure Sensing. Adv. Funct. Mater. 2019, 29, 1806092. [Google Scholar] [CrossRef] [Green Version]
- Khim, D.; Ryu, G.S.; Park, W.T.; Kim, H.; Lee, M.; Noh, Y.Y. Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors. Adv. Mater. 2016, 28, 2752–2759. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Ha, H.-J.; Yun, H.-J.; You, I.-K.; Baeg, K.-J.; Kim, Y.-H.; Ju, B.-K. Flexible organic phototransistors based on a combination of printing methods. Org. Electron. 2014, 15, 2677–2684. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Hou, X.; Hu, B.; Li, R. Intrinsically Elastic Organic Semiconductors (IEOSs). Molecules 2021, 26, 6130. https://doi.org/10.3390/molecules26206130
Liu F, Hou X, Hu B, Li R. Intrinsically Elastic Organic Semiconductors (IEOSs). Molecules. 2021; 26(20):6130. https://doi.org/10.3390/molecules26206130
Chicago/Turabian StyleLiu, Fei, Xueling Hou, Benlin Hu, and Runwei Li. 2021. "Intrinsically Elastic Organic Semiconductors (IEOSs)" Molecules 26, no. 20: 6130. https://doi.org/10.3390/molecules26206130
APA StyleLiu, F., Hou, X., Hu, B., & Li, R. (2021). Intrinsically Elastic Organic Semiconductors (IEOSs). Molecules, 26(20), 6130. https://doi.org/10.3390/molecules26206130