Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing
Abstract
:1. Introduction
1.1. Low Temperature Water Electrolyzers
1.1.1. Alkaline Water Electrolysis (AWE)
1.1.2. Proton Exchange Membrane Water Electrolysis (PEMWE)
1.1.3. Anion Exchange Membrane Water Electrolysis
2. Basis of AEMWE Cell and Electrochemical Reactions
3. Materials in the Membrane Electrode Assembly
3.1. Anion Exchange Membranes
3.2. Gas Diffusion Layers
3.3. Catalyst Materials
3.3.1. OER Catalysts
3.3.2. HER Catalysts
3.4. Ionomers
4. Preparation Methods for Catalyst Coated GDL for AEMWE
4.1. Wet Routes
4.1.1. Co-Precipitation Method
4.1.2. Hydrothermal Method
4.1.3. Sol–Gel Method
4.2. Thin Film Deposition Routes
4.2.1. Electrodeposition
4.2.2. Chemical Vapor Deposition
4.2.3. Atomic Layer Deposition
4.2.4. Ion Beam Sputtering Deposition
4.2.5. Magnetron Sputtering Deposition
5. AEMWE Cell Performance
6. Concluding Remarks and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dodds, P.E.; Staffell, I.; Hawkes, A.D.; Li, F.; Grünewald, P.; McDowall, W.; Ekins, P. Hydrogen and fuel cell technologies for heating: A review. Int. J. Hydrogen Energy 2015, 40, 2065–2083. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Jain, S.; PS, V.; Tiwari, A.K.; Nouni, M.R.; Pandey, J.K.; Goel, S. Hydrogen: A sustainable fuel for future of the transport sector. Renew. Sustain. Energy Rev. 2015, 51, 623–633. [Google Scholar] [CrossRef]
- Thomas, J.M.; Edwards, P.P.; Dobson, P.J.; Owen, G.P. Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells. J. Energy Chem. 2020, 51, 405–415. [Google Scholar] [CrossRef]
- Bassani, A.; Previtali, D.; Pirola, C.; Bozzano, G.; Colombo, S.; Manenti, F. Mitigating carbon dioxide impact of industrial steam methane reformers by acid gas to syngas technology: Technical and environmental feasibility. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 71–87. [Google Scholar] [CrossRef]
- Soltani, R.; Rosen, M.A.; Dincer, I. Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. Int. J. Hydrogen Energy 2014, 39, 20266–20275. [Google Scholar] [CrossRef]
- Miller, H.A.; Bouzek, K.; Hnat, J.; Loos, S.; Bernäcker, C.I.; Weißgärber, T.; Röntzsch, L.; Meier-Haack, J. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 2020, 4, 2114–2133. [Google Scholar] [CrossRef]
- Hughes, J.P.; Clipsham, J.; Chavushoglu, H.; Rowley-Neale, S.J.; Banks, C.E. Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts. Renew. Sustain. Energy Rev. 2021, 139, 110709. [Google Scholar] [CrossRef]
- Motealleh, B.; Liu, Z.; Masel, R.I.; Sculley, J.P.; Richard Ni, Z.; Meroueh, L. Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes. Int. J. Hydrogen Energy 2021, 46, 3379–3386. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- Vincent, I.; Bessarabov, D. Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renew. Sustain. Energy Rev. 2018, 81, 1690–1704. [Google Scholar] [CrossRef]
- Cho, M.K.; Lim, A.; Lee, S.Y.; Kim, H.-J.; Yoo, S.J.; Sung, Y.-E.; Park, H.S.; Jang, J.H. A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells. J. Electrochem. Sci. Technol 2017, 8, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Gülzow, E.; Schulze, M. Long-term operation of AFC electrodes with CO2 containing gases. J. Power Sources 2004, 127, 243–251. [Google Scholar] [CrossRef]
- Li, D.; Park, E.J.; Zhu, W.; Shi, Q.; Zhou, Y.; Tian, H.; Lin, Y.; Serov, A.; Zulevi, B.; Baca, E.D.; et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 2020, 5, 378–385. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, A.; Dorado, F.; de Lucas-Consuegra, A.; de la Osa, A.R. Influence of the GDL and assembly mode of a PEM cell on the ethanol revalorization into chemicals. Chem. Eng. J. 2020, 402, 125298. [Google Scholar] [CrossRef]
- Santos, D.M.F.; Sequeira, C.A.C.; Figueiredo, J.L. Hydrogen production by alkaline water electrolysis. Quim. Nova 2013, 36, 1176–1193. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Ito, H.; Maeda, T.; Nakano, A.; Takenaka, H. Properties of Nafion membranes under PEM water electrolysis conditions. Int. J. Hydrogen Energy 2011, 36, 10527–10540. [Google Scholar] [CrossRef]
- David, M.; Ocampo-Martínez, C.; Sánchez-Peña, R. Advances in alkaline water electrolyzers: A review. J. Energy Storage 2019, 23, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Vincent, I.; Kruger, A.; Bessarabov, D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int. J. Hydrogen Energy 2017, 42, 10752–10761. [Google Scholar] [CrossRef]
- Faid, A.Y.; Barnett, A.O.; Seland, F.; Sunde, S. NiCu mixed metal oxide catalyst for alkaline hydrogen evolution in anion exchange membrane water electrolysis. Electrochim. Acta 2021, 371, 137837. [Google Scholar] [CrossRef]
- Parrondo, J.; Arges, C.G.; Niedzwiecki, M.; Anderson, E.B.; Ayers, K.E.; Ramani, V. Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis. RSC Adv. 2014, 4, 9875–9879. [Google Scholar] [CrossRef]
- Ayers, K.; Danilovic, N.; Ouimet, R.; Carmo, M.; Pivovar, B.; Bornstein, M. Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 219–239. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Kang, S.Y.; Oh, S.-H.; Kim, J.K.; Lim, M.S.; Ahn, C.-Y.; Cho, Y.-H.; Sung, Y.-E. High-performance anion-exchange membrane water electrolysis. Electrochim. Acta 2019, 295, 99–106. [Google Scholar] [CrossRef]
- Zakaria, Z.; Kamarudin, S.K. A review of alkaline solid polymer membrane in the application of AEM electrolyzer: Materials and characterization. Int. J. Energy Res. 2021. [Google Scholar] [CrossRef]
- Hagesteijn, K.F.L.; Jiang, S.; Ladewig, B.P. A review of the synthesis and characterization of anion exchange membranes. J. Mater. Sci. 2018, 53, 11131–11150. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Kawaguchi, N.; Someya, S.; Munakata, T.; Miyazaki, N.; Ishida, M.; Nakano, A. Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis. Int. J. Hydrogen Energy 2018, 43, 17030–17039. [Google Scholar] [CrossRef]
- Lim, A.; Kim, H.; Henkensmeier, D.; Yoo, S.J.; Kim, J.Y.; Lee, S.Y.; Sung, Y.E.; Jang, J.H.; Park, H.S. A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis. J. Ind. Eng. Chem. 2019, 76, 410–418. [Google Scholar] [CrossRef]
- Hnát, J.; Kodým, R.; Denk, K.; Paidar, M.; Žitka, J.; Bouzek, K. Design of a Zero-Gap Laboratory-Scale Polymer Electrolyte Membrane Alkaline Water Electrolysis Stack. Chemie Ing. Tech. 2019, 91, 821–832. [Google Scholar] [CrossRef]
- Kuleshov, N.V.; Kuleshov, V.N.; Dovbysh, S.A.; Grigoriev, S.A.; Kurochkin, S.V.; Millet, P. Development and performances of a 0.5 kW high-pressure alkaline water electrolyser. Int. J. Hydrogen Energy 2019, 44, 29441–29449. [Google Scholar] [CrossRef]
- Ahn, S.H.; Yoo, S.J.; Kim, H.-J.; Henkensmeier, D.; Nam, S.W.; Kim, S.-K.; Jang, J.H. Anion exchange membrane water electrolyzer with an ultra-low loading of Pt-decorated Ni electrocatalyst. Appl. Catal. B Environ. 2016, 180, 674–679. [Google Scholar] [CrossRef]
- López-Fernández, E.; Gil-Rostra, J.; Espinós, J.P.; González-Elipe, A.R.; Yubero, F.; de Lucas-Consuegra, A. CuxCo3-xO4 ultra-thin film as efficient anodic catalysts for anion exchange membrane water electrolysers. J. Power Sources 2019, 415, 136–144. [Google Scholar] [CrossRef]
- Phillips, R.; Dunnill, C. Zero Gap Alkaline Electrolysis Cell Designs for Renewable Energy Storage as Hydrogen Gas. RSC Adv. 2016, 6, 100643–100651. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, G.A.; Xu, Q.; Oener, S.Z.; Boettcher, S.W. Membrane Electrolyzers for Impure-Water Splitting. Joule 2020, 4, 2549–2561. [Google Scholar] [CrossRef]
- Pham, T.H.; Olsson, J.S.; Jannasch, P. Poly(arylene alkylene)s with pendant N-spirocyclic quaternary ammonium cations for anion exchange membranes. J. Mater. Chem. A 2018, 6, 16537–16547. [Google Scholar] [CrossRef] [Green Version]
- Olsson, J.S.; Pham, T.H.; Jannasch, P. Poly(arylene piperidinium) Hydroxide Ion Exchange Membranes: Synthesis, Alkaline Stability, and Conductivity. Adv. Funct. Mater. 2018, 28, 1702758. [Google Scholar] [CrossRef]
- Henkensmeier, D.; Najibah, M.; Harms, C.; Žitka, J.; Hnát, J.; Bouzek, K. Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis. J. Electrochem. Energy Convers. Storage 2020, 18. [Google Scholar] [CrossRef]
- Liu, Z.; Sajjad, S.D.; Gao, Y.; Yang, H.; Kaczur, J.J.; Masel, R.I. The effect of membrane on an alkaline water electrolyzer. Int. J. Hydrogen Energy 2017, 42, 29661–29665. [Google Scholar] [CrossRef]
- Price, S.C.; Ren, X.; Savage, A.M.; Beyer, F.L. Synthesis and characterization of anion-exchange membranes based on hydrogenated poly(norbornene). Polym. Chem. 2017, 8, 5708–5717. [Google Scholar] [CrossRef]
- Truong, V.M.; Duong, N.B.; Yang, H. Comparison of Carbon Supports in Anion Exchange Membrane Fuel Cells. Materials 2020, 13, 5370. [Google Scholar] [CrossRef]
- Razmjooei, F.; Reißner, R.; Gago, A.S.; Arisai, A. Highly active binder free plasma sprayed non-noble metal electrodes for anion exchange membrane electrolysis at different reduced KOH concentrations. ECS Trans. 2019, 92, 689–702. [Google Scholar]
- Xu, D.; Stevens, M.B.; Cosby, M.R.; Oener, S.Z.; Smith, A.M.; Enman, L.J.; Ayers, K.E.; Capuano, C.B.; Renner, J.N.; Danilovic, N.; et al. Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catal. 2019, 9, 7–15. [Google Scholar] [CrossRef]
- Masel, R.; Liu, Z.; Sajjad, S. Anion Exchange Membrane Electrolyzers Showing 1 A/cm2 at Less Than 2 V. ECS Trans. 2016, 75, 1143–1146. [Google Scholar] [CrossRef]
- Pushkareva, I.V.; Pushkarev, A.S.; Grigoriev, S.A.; Modisha, P.; Bessarabov, D.G. Comparative study of anion exchange membranes for low-cost water electrolysis. Int. J. Hydrogen Energy 2020, 45, 26070–26079. [Google Scholar] [CrossRef]
- Pavel, C.C.; Cecconi, F.; Emiliani, C.; Santiccioli, S.; Scaffidi, A.; Catanorchi, S.; Comotti, M. Highly Efficient Platinum Group Metal Free Based Membrane-Electrode Assembly for Anion Exchange Membrane Water Electrolysis. Angew. Chemie Int. Ed. 2014, 53, 1378–1381. [Google Scholar] [CrossRef]
- Carbone, A.; Zignani, S.C.; Gatto, I.; Trocino, S.; Aricò, A.S. Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis. Int. J. Hydrogen Energy 2020, 45, 9285–9292. [Google Scholar] [CrossRef]
- Lewinski, K.A.; van der Vliet, D.; Luopa, S.M. NSTF Advances for PEM Electrolysis-the Effect of Alloying on Activity of NSTF Electrolyzer Catalysts and Performance of NSTF Based PEM Electrolyzers. ECS Trans. 2015, 69, 893–917. [Google Scholar] [CrossRef]
- López-Fernández, E.; Gil-Rostra, J.; Espinós, J.P.; González-Elipe, A.R.; de Lucas Consuegra, A.; Yubero, F. Chemistry and Electrocatalytic Activity of Nanostructured Nickel Electrodes for Water Electrolysis. ACS Catal. 2020, 10, 6159–6170. [Google Scholar] [CrossRef]
- Faid, A.Y.; Xie, L.; Barnett, A.O.; Seland, F.; Kirk, D.; Sunde, S. Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis. Int. J. Hydrogen Energy 2020, 45, 28272–28284. [Google Scholar] [CrossRef]
- Marinkas, A.; Struźyńska-Piron, I.; Lee, Y.; Lim, A.; Park, H.S.; Jang, J.H.; Kim, H.-J.; Kim, J.; Maljusch, A.; Conradi, O.; et al. Anion-conductive membranes based on 2-mesityl-benzimidazolium functionalised poly(2,6-dimethyl-1,4-phenylene oxide) and their use in alkaline water electrolysis. Polymer 2018, 145, 242–251. [Google Scholar] [CrossRef]
- Xu, Q.; Oener, S.Z.; Lindquist, G.; Jiang, H.; Li, C.; Boettcher, S.W. Integrated Reference Electrodes in Anion-Exchange-Membrane Electrolyzers: Impact of Stainless-Steel Gas-Diffusion Layers and Internal Mechanical Pressure. ACS Energy Lett. 2021, 6, 305–312. [Google Scholar] [CrossRef]
- Liu, Z.; Sajjad, S.; Gao, Y.; Kaczur, J.; Masel, R.I. An Alkaline Water Electrolyzer with SustainionTM Membranes: 1 A/cm2 at 1.9V with Base Metal Catalysts. ECS Trans. 2017, 77, 71–73. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, S.; Pan, J.; Yang, C.; He, M.; Zhuang, L.; Lu, J. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ. Sci. 2012, 5, 7869–7871. [Google Scholar] [CrossRef]
- Vincent, I. Hydrogen Production by water Electrolysis with an Ultrathin Anion-exchange membrane (AEM). Int. J. Electrochem. Sci. 2018, 13, 11347–11358. [Google Scholar] [CrossRef]
- Wu, X.; Scott, K.; Xie, F.; Alford, N. A reversible water electrolyser with porous PTFE based OH− conductive membrane as energy storage cells. J. Power Sources 2014, 246, 225–231. [Google Scholar] [CrossRef] [Green Version]
- López-Fernández, E.; Gil-Rostra, J.; Escudero, C.; Villar-García, I.J.; Yubero, F.; de Lucas Consuegra, A.; González-Elipe, A.R. Active sites and optimization of mixed copper-cobalt oxide anodes for anion exchange membrane water electrolysis. J. Power Sources 2020. [Google Scholar] [CrossRef]
- Bhavanari, M.; Lee, K.-R.; Tseng, C.-J.; Tang, I.-H.; Chen, H.-H. CuFe electrocatalyst for hydrogen evolution reaction in alkaline electrolysis. Int. J. Hydrogen Energy 2021. [Google Scholar] [CrossRef]
- Seetharaman, S.; Balaji, R.; Ramya, K.; Dhathathreyan, K.S.; Velan, M. Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers. Int. J. Hydrogen Energy 2013, 38, 14934–14942. [Google Scholar] [CrossRef]
- Gao, R.; Yan, D. Recent Development of Ni/Fe-Based Micro/Nanostructures toward Photo/Electrochemical Water Oxidation. Adv. Energy Mater. 2020, 10, 1900954. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Jin, P.; Lv, H.; Fu, H.; Fan, C.; Peng, S.; Wang, G.; Hou, J.; Yu, F.; et al. Synthesis of Co2−xNixO2 (0 < x < 1.0) hexagonal nanostructures as efficient bifunctional electrocatalysts for overall water splitting. Dalton Trans. 2020, 49, 6587–6595. [Google Scholar] [CrossRef]
- Tao, L.; Guo, P.; Zhu, W.; Li, T.; Zhou, X.; Fu, Y.; Yu, C.; Ji, H. Highly efficient mixed-metal spinel cobaltite electrocatalysts for the oxygen evolution reaction. Chin. J. Catal. 2020, 41, 1855–1863. [Google Scholar] [CrossRef]
- Du, F.; Ling, X.; Wang, Z.; Guo, S.; Zhang, Y.; He, H.; Li, G.; Jiang, C.; Zhou, Y.; Zou, Z. Strained heterointerfaces in sandwich–like NiFe layered double hydroxides/Co1-xS for highly efficient and superior long–term durable oxygen evolution reaction. J. Catal. 2020, 389, 132–139. [Google Scholar] [CrossRef]
- Cheng, Y.; Jiang, S.P. Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog. Nat. Sci. Mater. Int. 2015, 25, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Scott, K. CuxCo3-xO4 (0 ≤ x < 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers. J. Mater. Chem. 2011, 21, 12344–12351. [Google Scholar] [CrossRef]
- Nikolov, I.; Darkaoui, R.; Zhecheva, E.; Stoyanova, R.; Dimitrov, N.; Vitanov, T. Electrocatalytic activity of spinel related cobaltites MxCo3-xO4 (M = Li, Ni, Cu) in the oxygen evolution reaction. J. Electroanal. Chem. 1997, 429, 157–168. [Google Scholar] [CrossRef]
- Park, Y.S.; Jeong, J.; Noh, Y.; Jang, M.J.; Lee, J.; Lee, K.H.; Lim, D.C.; Seo, M.H.; Kim, W.B.; Yang, J.; et al. Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts. Appl. Catal. B Environ. 2021, 292, 120170. [Google Scholar] [CrossRef]
- Guo, W.; Kim, J.; Kim, H.; Ahn, S.H. Cu–Co–P electrodeposited on carbon paper as an efficient electrocatalyst for hydrogen evolution reaction in anion exchange membrane water electrolyzers. Int. J. Hydrogen Energy 2021. [Google Scholar] [CrossRef]
- Ghobrial, S.; Kirk, D.W.; Thorpe, S.J. Electrocatalytic activity of amorphous Ni-Nb-Y alloys for the HER in alkaline water electrolysis. ECS Trans. 2018, 85, 107–117. [Google Scholar]
- Kim, J.; Jung, H.; Jung, S.-M.; Hwang, J.; Kim, D.Y.; Lee, N.; Kim, K.-S.; Kwon, H.; Kim, Y.-T.; Han, J.W.; et al. Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2021, 143, 1399–1408. [Google Scholar] [CrossRef]
- Yin, Y.; Li, R.; Bai, F.; Zhu, W.; Qin, Y.; Chang, Y.; Zhang, J.; Guiver, M.D. Ionomer migration within PEMFC catalyst layers induced by humidity changes. Electrochem. Commun. 2019, 109, 106590. [Google Scholar] [CrossRef]
- Poojary, S.; Islam, M.N.; Shrivastava, U.N.; Roberts, E.P.L.; Karan, K. Transport and Electrochemical Interface Properties of Ionomers in Low-Pt Loading Catalyst Layers: Effect of Ionomer Equivalent Weight and Relative Humidity. Molecules 2020, 25. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Scott, K. The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. Int. J. Hydrogen Energy 2010, 35, 12029–12037. [Google Scholar] [CrossRef]
- Holzapfel, P.; Bühler, M.; Van Pham, C.; Hegge, F.; Böhm, T.; McLaughlin, D.; Breitwieser, M.; Thiele, S. Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis. Electrochem. Commun. 2020, 110, 106640. [Google Scholar] [CrossRef]
- Gagliardi, G.G.; Ibrahim, A.; Borello, D.; El-Kharouf, A. Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies—A Review. Molecules 2020, 25. [Google Scholar] [CrossRef] [Green Version]
- Yasutake, M.; Kawachino, D.; Noda, Z.; Matsuda, J.; Lyth, S.M.; Ito, K.; Hayashi, A.; Sasaki, K. Catalyst-Integrated Gas Diffusion Electrodes for Polymer Electrolyte Membrane Water Electrolysis: Porous Titanium Sheets with Nanostructured TiO2 Surfaces Decorated with Ir Electrocatalysts. J. Electrochem. Soc. 2020, 167, 124523. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, T. High-performance alkaline ionomer for alkaline exchange membrane fuel cells. Electrochem. Commun. 2013, 34, 278–281. [Google Scholar] [CrossRef]
- Chen, N.; Lee, Y.M. Anion exchange polyelectrolytes for membranes and ionomers. Prog. Polym. Sci. 2021, 113, 101345. [Google Scholar] [CrossRef]
- Hu, Q.; Li, G.; Pan, J.; Tan, L.; Lu, J.; Zhuang, L. Alkaline polymer electrolyte fuel cell with Ni-based anode and Co-based cathode. Int. J. Hydrogen Energy 2013, 38, 16264–16268. [Google Scholar] [CrossRef]
- Fortin, P.; Khoza, T.; Cao, X.; Martinsen, S.Y.; Oyarce Barnett, A.; Holdcroft, S. High-performance alkaline water electrolysis using AemionTM anion exchange membranes. J. Power Sources 2020, 451, 227814. [Google Scholar] [CrossRef]
- Faid, A.Y.; Barnett, A.O.; Seland, F.; Sunde, S. Highly active nickel-based catalyst for hydrogen evolution in anion exchange membrane electrolysis. Catalysts 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Liu, Q.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Zhang, F.; Asiri, A.M.; Sun, X. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chem. 2021, 23, 2834–2867. [Google Scholar] [CrossRef]
- Munnik, P.; de Jongh, P.E.; de Jong, K.P. Recent Developments in the Synthesis of Supported Catalysts. Chem. Rev. 2015, 115, 6687–6718. [Google Scholar] [CrossRef]
- Hao, G.; Wang, W.; Gao, G.; Zhao, Q.; Li, J. Preparation of nanostructured mesoporous NiCo2O4 and its electrocatalytic activities for water oxidation. J. Energy Chem. 2015, 24, 271–277. [Google Scholar] [CrossRef]
- Liu, M.; Qu, Z.; Yin, D.; Chen, X.; Zhang, Y.; Guo, Y.; Xiao, D. Cobalt−Iron Pyrophosphate Porous Nanosheets as Highly Active Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem 2018, 5, 36–43. [Google Scholar] [CrossRef]
- Kafle, B.P. Chapter 6-Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization. In Chemical Analysis and Material Characterization by Spectrophotometry; Kafle, B.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 147–198. ISBN 978-0-12-814866-2. [Google Scholar]
- Das, A.; Ganguli, A.K. Design of diverse nanostructures by hydrothermal and microemulsion routes for electrochemical water splitting. RSC Adv. 2018, 8, 25065–25078. [Google Scholar] [CrossRef] [Green Version]
- Cauqui, M.A.; Rodríguez-Izquierdo, J.M. Application of the sol-gel methods to catalyst preparation. J. Non. Cryst. Solids 1992, 147–148, 724–738. [Google Scholar] [CrossRef]
- Schubert, U. Chemistry and Fundamentals of the Sol–Gel Process. In The Sol-Gel Handbook; Levy, D., Zayat, M., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–28. [Google Scholar]
- Maruthapandian, V.; Mathankumar, M.; Saraswathy, V.; Subramanian, B.; Muralidharan, S. Study of the Oxygen Evolution Reaction Catalytic Behavior of CoxNi1–xFe2O4 in Alkaline Medium. ACS Appl. Mater. Interfaces 2017, 9, 13132–13141. [Google Scholar] [CrossRef] [PubMed]
- Ghouri, Z.K.; Badreldin, A.; Elsaid, K.; Kumar, D.; Youssef, K.; Abdel-Wahab, A. Theoretical and experimental investigations of Co-Cu bimetallic alloys-incorporated carbon nanowires as an efficient bi-functional electrocatalyst for water splitting. J. Ind. Eng. Chem. 2021, 96, 243–253. [Google Scholar] [CrossRef]
- Li, R.; Li, Y.; Yang, P.; Wang, D.; Xu, H.; Wang, B.; Meng, F.; Zhang, J.; An, M. Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J. Energy Chem. 2021, 57, 547–566. [Google Scholar] [CrossRef]
- Saidin, N.U.; Ying, K.K.; Khuan, N.I. Electrodeposition: Principles, Applications and Methods. In Proceedings of the NTC 2011: Nuclear Technical Convention 2011, Bangi, Malaysia, 13–15 September 2011. [Google Scholar]
- Ramasamy, R.P. Fuel Cells—Proton-Exchange Membrane Fuel Cells. In Membrane–Electrode Assemblies; Garche, J.B.T.-E., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 787–805. ISBN 978-0-444-52745-5. [Google Scholar]
- Li, C.; Iqbal, M.; Lin, J.; Luo, X.; Jiang, B.; Malgras, V.; Wu, K.C.-W.; Kim, J.; Yamauchi, Y. Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Acc. Chem. Res. 2018, 51, 1764–1773. [Google Scholar] [CrossRef]
- Wu, R.; Xiao, B.; Gao, Q.; Zheng, Y.-R.; Zheng, X.-S.; Zhu, J.-F.; Gao, M.-R.; Yu, S.-H. A Janus Nickel Cobalt Phosphide Catalyst for High-Efficiency Neutral-pH Water Splitting. Angew. Chemie Int. Ed. 2018, 57, 15445–15449. [Google Scholar] [CrossRef]
- Chi, J.-Q.; Yan, K.-L.; Xiao, Z.; Dong, B.; Shang, X.; Gao, W.-K.; Li, X.; Chai, Y.-M.; Liu, C.-G. Trimetallic NiFeCo selenides nanoparticles supported on carbon fiber cloth as efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 20599–20607. [Google Scholar] [CrossRef]
- Wang, D.; Yang, L.; Liu, H.; Cao, D. Polyaniline-coated Ru/Ni(OH)2 nanosheets for hydrogen evolution reaction over a wide pH range. J. Catal. 2019, 375, 249–256. [Google Scholar] [CrossRef]
- Ren, H.; Yu, L.; Yang, L.; Huang, Z.-H.; Kang, F.; Lv, R. Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. J. Energy Chem. 2021, 60, 194–201. [Google Scholar] [CrossRef]
- Zhang, A.; Xiao, Y.; Cao, Y.; Fang, H.; Zhang, Y.; Das, P.; Zhang, H. Electrodeposition, formation mechanism, and electrocatalytic performance of Co-Ni-P ternary catalysts coated on carbon fiber paper. J. Solid State Electrochem. 2021, 25, 1503–1512. [Google Scholar] [CrossRef]
- Han, S.; Liu, S.; Yin, S.; Chen, L.; He, Z. Electrodeposited Co-Doped Fe3O4 Thin Films as Efficient Catalysts for the Oxygen Evolution Reaction. Electrochim. Acta 2016, 210, 942–949. [Google Scholar] [CrossRef]
- Pei, Y.; Yang, Y.; Zhang, F.; Dong, P.; Baines, R.; Ge, Y.; Chu, H.; Ajayan, P.M.; Shen, J.; Ye, M. Controlled Electrodeposition Synthesis of Co-Ni-P Film as a Flexible and Inexpensive Electrode for Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 31887–31896. [Google Scholar] [CrossRef] [PubMed]
- Chapter 1-Deposition Technologies: An Overview. In Handbook of Deposition Technologies for Films and Coatings, 3rd ed.; Martin, P.M. (Ed.) William Andrew Publishing: Boston, MA, USA, 2010; pp. 1–31. ISBN 978-0-8155-2031-3. [Google Scholar]
- Behera, A.; Mallick, P.; Mohapatra, S.S. Chapter 13-Nanocoatings for anticorrosion: An introduction. In Micro and Nano Technologies; Rajendran, S., Nguyen, T.A.N.H., Kakooei, S., Yeganeh, M., Li, Y.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 227–243. ISBN 978-0-12-819359-4. [Google Scholar]
- Vahl, A.; Veziroglu, S.; Henkel, B.; Strunskus, T.; Polonskyi, O.; Aktas, O.C.; Faupel, F. Pathways to Tailor Photocatalytic Performance of TiO2 Thin Films Deposited by Reactive Magnetron Sputtering. Materials 2019, 12, 2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Verma, B.; Mishra, S.K. Spectral and structural investigation of layered growth of copper and graphene deposited by sputtering and annealing. Appl. Phys. A 2019, 125, 534. [Google Scholar] [CrossRef]
- Chang, J.; Wang, G.; Belharsa, A.; Ge, J.; Xing, W.; Yang, Y. Stable Fe2P2S6 Nanocrystal Catalyst for High-Efficiency Water Electrolysis. Small Methods 2020, 4, 1900632. [Google Scholar] [CrossRef]
- Kuang, P.; Tong, T.; Fan, K.; Yu, J. In Situ Fabrication of Ni–Mo Bimetal Sulfide Hybrid as an Efficient Electrocatalyst for Hydrogen Evolution over a Wide pH Range. ACS Catal. 2017, 7, 6179–6187. [Google Scholar] [CrossRef]
- Leskelä, M.; Niinistö, J.; Ritala, M. Atomic Layer Deposition. In Handbook of Thin Films; Hashmi, S., Batalha, G.F., van Tyne, C.J., Yilbas, B.B.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 101–123. ISBN 978-0-08-096533-8. [Google Scholar]
- Haschke, S.; Zhuo, Y.; Schlicht, S.; Barr, M.K.S.; Kloth, R.; Dufond, M.E.; Santinacci, L.; Bachmann, J. Enhanced Oxygen Evolution Reaction Activity of Nanoporous SnO2/Fe2O3/IrO2 Thin Film Composite Electrodes with Ultralow Noble Metal Loading. Adv. Mater. Interfaces 2019, 6, 1801432. [Google Scholar] [CrossRef] [Green Version]
- Nardi, K.L.; Yang, N.; Dickens, C.F.; Strickler, A.L.; Bent, S.F. Creating Highly Active Atomic Layer Deposited NiO Electrocatalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2015, 5, 1500412. [Google Scholar] [CrossRef]
- Tangirala, M.; Zhang, K.; Nminibapiel, D.; Pallem, V.; Dussarrat, C.; Cao, W.; Adam, T.N.; Johnson, C.S.; Elsayed-Ali, H.E.; Baumgart, H. Physical Analysis of VO2Films Grown by Atomic Layer Deposition and RF Magnetron Sputtering. ECS J. Solid State Sci. Technol. 2014, 3, N89–N94. [Google Scholar] [CrossRef]
- Mattox, D.M. Physical vapor deposition (PVD) processes. Met. Finish. 2000, 98, 410–423. [Google Scholar] [CrossRef]
- Grigoriev, S.A.; Fedotov, A.A.; Murzin, V.Y.; Khramov, E.V.; Zubavichus, Y.V.; Millet, P.; Lyutikova, E.K.; Martemianov, S.A.; Fateev, V.N. Study of nanostructured electrocatalysts synthesized by the platinum magnetron–ion-beam sputtering onto metallized nanostructured carbonaceous support. Russ. J. Electrochem. 2015, 51, 807–819. [Google Scholar] [CrossRef]
- Barranco, A.; Borras, A.; Gonzalez-Elipe, A.R.; Palmero, A. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater. Sci. 2016, 76, 59–153. [Google Scholar] [CrossRef] [Green Version]
- Phae-ngam, W.; Horprathum, M.; Chananonnawathorn, C.; Lertvanithphol, T.; Samransuksamer, B.; Songsiriritthigul, P.; Nakajima, H.; Chaiyakun, S. Oblique angle deposition of nanocolumnar TiZrN films via reactive magnetron co-sputtering technique: The influence of the Zr target powers. Curr. Appl. Phys. 2019, 19, 894–901. [Google Scholar] [CrossRef]
- Mwema, F.; Akinlabi, E.; Oladijo, P. Sustainability Issues in Sputtering Deposition Technology; Dedan Kimathi University Of Technology Presented Conference Papers: Nyeri, Kenya, 2019. [Google Scholar]
- Zhao, J.; Baibuz, E.; Vernieres, J.; Grammatikopoulos, P.; Jansson, V.; Nagel, M.; Steinhauer, S.; Sowwan, M.; Kuronen, A.; Nordlund, K.; et al. Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation. ACS Nano 2016, 10, 4684–4694. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Kong, X.-T.; Wang, Z.; Govorov, A.O.; Kortshagen, U.R. Near-Infrared Plasmonic Copper Nanocups Fabricated by Template-Assisted Magnetron Sputtering. ACS Photonics 2017, 4, 2881–2890. [Google Scholar] [CrossRef]
- Alvi, S.; Jarzabek, D.M.; Kohan, M.G.; Hedman, D.; Jenczyk, P.; Natile, M.M.; Vomiero, A.; Akhtar, F. Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Appl. Mater. Interfaces 2020, 12, 21070–21079. [Google Scholar] [CrossRef]
- Hejazi, S.; Altomare, M.; Mohajernia, S.; Schmuki, P. Composition Gradients in Sputtered Ti–Au Alloys: Site-Selective Au Decoration of Anodic TiO2 Nanotubes for Photocatalytic H2 Evolution. ACS Appl. Nano Mater. 2019, 2, 4018–4025. [Google Scholar] [CrossRef]
- Wei, B.; Liang, H.; Zhang, D.; Wu, Z.; Qi, Z.; Wang, Z. CrN thin films prepared by reactive DC magnetron sputtering for symmetric supercapacitors. J. Mater. Chem. A 2017, 5, 2844–2851. [Google Scholar] [CrossRef]
- Khan, M.A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J. Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochem. Energy Rev. 2018, 1, 483–530. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Valenzuela, A.; Muñoz-Piña, S.; Alcala, G.; Alvarez, R.; Lacroix, B.; Santos, A.J.; Cuevas-Maraver, J.; Rico, V.; Gago, R.; Vazquez, L.; et al. Growth of nanocolumnar thin films on patterned substrates at oblique angles. Plasma Process. Polym. 2019, 16. [Google Scholar] [CrossRef]
- Deniz, D.; Lad, R.J. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2011, 29. [Google Scholar] [CrossRef]
- Deniz, D.; Frankel, D.J.; Lad, R.J. Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition. Thin Solid Films 2010, 518, 4095–4099. [Google Scholar] [CrossRef]
- Gil-Rostra, J.; Cano, M.; Pedrosa, J.M.; Ferrer, F.J.; García-García, F.; Yubero, F.; González-Elipe, A.R. Electrochromic Behavior of WxSiyOz Thin Films Prepared by Reactive Magnetron Sputtering at Normal and Glancing Angles. ACS Appl. Mater. Interfaces 2012, 4, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Zhang, F.; Lu, S.; Jiang, W.; Hu, Q.; Li, D.; Zhang, B. Amorphous Fe–Co–P–C Film on a Carbon Fiber Paper Support as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem 2019, 6, 3976–3981. [Google Scholar] [CrossRef]
- Delvaux, A.; Van Overmeere, Q.; Poulain, R.; Proost, J. Enhanced Oxygen Evolution during Water Electrolysis at De-Alloyed Nickel Thin Film Electrodes. J. Electrochem. Soc. 2017, 164, F1196. [Google Scholar] [CrossRef]
- Slavcheva, E.; Radev, I.; Bliznakov, S.; Topalov, G.; Andreev, P.; Budevski, E. Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim. Acta 2007, 52, 3889–3894. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, W.; Guan, D.; Sunarso, J.; Zhu, Y.; Hu, X.; Zhang, W.; Shao, Z. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3−δ nanofilms with tunable oxidation st. Sci. Adv. 2017, 3, e1603206. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhao, Z.; Li, H.; Zhuang, J.; Ma, Z.; Yang, Y.; Zhang, L.; Zhang, Y. One-step RF magnetron sputtering method for preparing Cu(In, Ga)Se2 solar cells. J. Mater. Sci. Mater. Electron. 2018, 29, 11755–11762. [Google Scholar] [CrossRef]
- Kumar, M.; Shetti, N.P. Magnetron sputter deposited NiCu alloy catalysts for production of hydrogen through electrolysis in alkaline water. Mater. Sci. Energy Technol. 2018, 1, 160–165. [Google Scholar] [CrossRef]
- Tudose, I.V.; Comanescu, F.; Pascariu, P.; Bucur, S.; Rusen, L.; Iacomi, F.; Koudoumas, E.; Suchea, M.P. Chapter 2-Chemical and physical methods for multifunctional nanostructured interface fabrication. In Micro and Nano Technologies; Dinca, V., Suchea, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 15–26. ISBN 978-0-12-814401-5. [Google Scholar]
- Park, S.M.; Jang, M.J.; Park, Y.S.; Lee, J.; Jeong, J.-Y.; Jung, J.; Choi, M.-K.; Noh, Y.-S.; Seo, M.-H.; Kim, H.J.; et al. Synthesis and characterization of the Cu0.72CO2.28O4 catalyst for oxygen evolution reaction in an anion exchange membrane water electrolyzer. J. Korean Inst. Met. Mater. 2020, 58, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.S.; Jang, M.J.; Jeong, J.; Park, S.M.; Wang, X.; Seo, M.H.; Choi, S.M.; Yang, J. Hierarchical Chestnut-Burr like Structure of Copper Cobalt Oxide Electrocatalyst Directly Grown on Ni Foam for Anion Exchange Membrane Water Electrolysis. ACS Sustain. Chem. Eng. 2020. [Google Scholar] [CrossRef]
- Cossar, E.; Barnett, A.O.; Seland, F.; Baranova, E.A. The performance of nickel and nickel-iron catalysts evaluated as anodes in anion exchange membrane water electrolysis. Catalysts 2019, 9, 814. [Google Scholar] [CrossRef] [Green Version]
- Hnát, J.; Plevova, M.; Tufa, R.A.; Zitka, J.; Paidar, M.; Bouzek, K. Development and testing of a novel catalyst-coated membrane with platinum-free catalysts for alkaline water electrolysis. Int. J. Hydrogen Energy 2019, 44, 17493–17504. [Google Scholar] [CrossRef]
Membrane | Company | Thickness/µm | Conductivity/mS cm−1 | Ref. |
---|---|---|---|---|
Fumasep® FAA-3 | Fumatech | 45–50 | 40–45 | Technical data sheet |
Sustainion® 37-50 | Dioxide Materials | 50 | 70 | [42] |
Tokuyama A201 | Tokuyama | 28 | 42 | [36] |
AemionTM | Ionomr | 50 | 80 | Technical data sheet |
OrionTM | Orion Polymer | 30 | 60 | Technical data sheet |
Anode | Cathode | Membrane | Fabrication Method | Catalyst Loading (mg cm−2) | Current Density (mA cm−2) | Specific Activity * (mA mg−1) | T (°C) | Electrolyte | Potential (V) | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|
Anode | Cathode | ||||||||||
NiCoOxFe | Pt | FAA-3 | Hydrothermal | 3 | 3 | 370 | 123 | 50 | 1.0 M KOH | 2.0 | [41] |
Co3O4 | Pt | FAA-3 | Hydrothermal | 3 | 3 | 220 | 73 | 50 | 1.0 M KOH | 2.0 | [41] |
IrOx | Pt | FAA-3 | Hydrothermal | 3 | 3 | 150 | 50 | 50 | 1.0 M KOH | 2.0 | [41] |
Ni90Fe10/CeO2 | Pt | FAA-3PE-30 | Chemical Reduction | 6 | 1 | 1930 | 322 | 50 | 1.0 M KOH | 1.9 | [136] |
NiCo2O4 | NiFe2O4 | Self-preparation | Co-precipitation | 2.5 | 2.5 | 165 | 66 | 45 | 15 wt% KOH | 2.0 | [137] |
Ni | Ni | FAA-3-50 | Magnetron Sputtering | 0.78 | 0.38 | 42 | 54 | 40 | 1.0 M KOH | 2.0 | [47] |
Ni | Ni | FAA-3-50 | Magnetron Sputtering | 0.38 | 0.17 | 31 | 82 | 40 | 1.0 M KOH | 2.0 | [47] |
NiMn2O4 | Pt | FAA-3-50 | Oxalate | 3 | 0.5 | 380 | 127 | 50 | 1.0 M KOH | 2.0 | [45] |
IrO2 | Pt | FAA-3-50 | Commercial catalyst | 4 | 0.4 | 1750 | 438 | 70 | 1.0 M KOH | 2.0 | [23] |
CuxCoyOz | Ni | FAA-3-50 | Magnetron Sputtering | 0.18 | 0.76 | 46 | 256 | 40 | 1.0 M KOH | 2.0 | [31] |
CuxCoyOz | Ni | FAA-3-50 | Magnetron Sputtering | 0.4 | 0.38 | 60 | 150 | 40 | 1.0 M KOH | 2.0 | [55] |
Cu0.72Co2.28O4 | Pt | Fumasep-30 | Co-precipitation | 10 | 1 | 1000 | 100 | 35 | 1.0 M KOH | 1.9 | [134] |
CuCoOx | Ni/(CeO2-La2O3)/C | A-201 | Commercial catalyst | 30 | 7.4 | 650 | 22 | 60 | 1.0 M KOH | 2.0 | [19] |
CuCo2O4 | Pt | X-37-50 Grade T | Hydrothermal | 23 | 1 | 1400 | 61 | 45 | 1.0 M KOH | 1.9 | [135] |
IrO2 | Cu-Co-P | Sustainion 37 | Electrodeposition | 3.13 | - | 1400 | 447 | 50 | 1.0 M KOH | 2.0 | [66] |
Fe2P2S6 | Fe2P2S6 | YAB | Hydrothermal + CVD | 2 | 2 | 580 | 290 | 50 | 1.0 M KOH | 2.0 | [106] |
Ir | Pd/Pt | Nafion-115 | IBS | 1 | 1 | 1750 | 1750 | 90 | 10 wt% NaOH | 2.0 | [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Fernández, E.; Sacedón, C.G.; Gil-Rostra, J.; Yubero, F.; González-Elipe, A.R.; de Lucas-Consuegra, A. Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules 2021, 26, 6326. https://doi.org/10.3390/molecules26216326
López-Fernández E, Sacedón CG, Gil-Rostra J, Yubero F, González-Elipe AR, de Lucas-Consuegra A. Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules. 2021; 26(21):6326. https://doi.org/10.3390/molecules26216326
Chicago/Turabian StyleLópez-Fernández, Ester, Celia Gómez Sacedón, Jorge Gil-Rostra, Francisco Yubero, Agustín R. González-Elipe, and Antonio de Lucas-Consuegra. 2021. "Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing" Molecules 26, no. 21: 6326. https://doi.org/10.3390/molecules26216326
APA StyleLópez-Fernández, E., Sacedón, C. G., Gil-Rostra, J., Yubero, F., González-Elipe, A. R., & de Lucas-Consuegra, A. (2021). Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules, 26(21), 6326. https://doi.org/10.3390/molecules26216326