Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine
Abstract
:1. Introduction
2. Technologies for the Removal of Pharmaceuticals in Hospital Wastewater
2.1. Conventional Processes
2.2. Advanced Oxidation Processes (AOPs)
2.3. Electrochemical Advanced Oxidation Processes (EAOPs)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tyagi, R.D.; Sellamuthu, B.; Tiwari, B.; Yan, S.; Drogui, P.; Zhang, X.; Pandey, A. Current Developments in Biotechnology and Bioengineering: Environmental and Health Impact of Hospital Wastewater; Elsevier Science: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Ram, S.K.; Panidepu, H.; Cheernam, V.; Tyagi, R.D. 2-Pharmaceutical metabolites and their by-products in hospital wastewater. In Current Developments in Biotechnology and Bioengineering; Tyagi, R.D., Sellamuthu, B., Tiwari, B., Yan, S., Drogui, P., Zhang, X., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 43–78. [Google Scholar]
- Verlicchi, P.; Zambello, E. Predicted and measured concentrations of pharmaceuticals in hospital effluents. Examination of the strengths and weaknesses of the two approaches through the analysis of a case study. Sci. Total Environ. 2016, 565, 82–94. [Google Scholar] [CrossRef]
- Petrovic, M.; Verlicchi, P. Water treatment plants and pharmaceutical residues in Catalonia and Italy. Contrib. Sci. 2014, 10, 135–150. [Google Scholar]
- Kim, M.-K.; Zoh, K.-D. Occurrence and removals of micropollutants in water environment. Environ. Eng. Res. 2016, 21, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Mesdaghinia, A. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci. Total Environ. 2018, 619–620, 446–459. [Google Scholar] [CrossRef]
- Souza, F.S.; Féris, L.A. Hospital and Municipal Wastewater: Identification of Relevant Pharmaceutical Compounds. Water Environ. Res. 2016, 88, 871–877. [Google Scholar] [CrossRef]
- Yadav, B.; González, C.S.O.; Sellamuthu, B.; Tyagi, R.D. 8–Pharmaceuticals roles in microbial evolution. In Current Developments in Biotechnology and Bioengineering; Tyagi, R.D., Sellamuthu, B., Tiwari, B., Yan, S., Drogui, P., Zhang, X., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 241–278. [Google Scholar]
- Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 2011, 127, 204–215. [Google Scholar]
- Kar, S.; Roy, K. Risk assessment for ecotoxicity of pharmaceuticals–an emerging issue. Expert Opin. Drug Saf. 2012, 11, 235–274. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef]
- Del Álamo, A.C.; González, C.; Pariente, M.I.; Molina, R.; Martínez, F. Fenton-like catalyst based on a reticulated porous perovskite material: Activity and stability for the on-site removal of pharmaceutical micropollutans in a hospital wastewater. Chem. Eng. J. 2020, 401, 126113. [Google Scholar] [CrossRef]
- Aydin, S.; Aydin, M.E.; Ulvi, A.; Kilic, H. Antibiotics in hospital effluents: Occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environ. Sci. Pollut. Res. 2019, 26, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Al Aukidy, M.; Al Chalabi, S.; Verlicchi, P. Hospital Wastewater Treatments Adopted in Asia, Africa, and Australia. In Hospital Wastewaters: Characteristics, Management, Treatment and Environmental Risks; Verlicchi, P., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 171–188. [Google Scholar]
- Khetan, S.K.; Collins, T.J. Human Pharmaceuticals in the Aquatic Environment: A Challenge to Green Chemistry. Chem. Rev. 2007, 107, 2319–2364. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J. Hydrol. 2010, 389, 416–428. [Google Scholar] [CrossRef]
- Arsand, D.R.; Kümmerer, K.; Martins, A.F. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation. Sci. Total Environ. 2013, 443, 351–357. [Google Scholar] [CrossRef]
- Kasperiski, F.M.; Lima, E.C.; Umpierres, C.S.; dos Reis, G.S.; Thue, P.S.; Lima, D.R.; Dias, S.L.P.; Saucier, C.; da Costa, J.B. Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions. J. Clean. Prod. 2018, 197, 919–929. [Google Scholar] [CrossRef]
- Copete-Pertuz, L.S.; Plácido, J.; Serna-Galvis, E.A.; Torres-Palma, R.A.; Mora, A. Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Sci. Total Environ. 2018, 630, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Ouarda, Y.; Bouchard, F.; Azaïs, A.; Vaudreuil, M.-A.; Drogui, P.; Dayal Tyagi, R.; Sauvé, S.; Buelna, G.; Dubé, R. Electrochemical treatment of real hospital wastewaters and monitoring of pharmaceutical residues by using surrogate models. J. Environ. Chem. Eng. 2019, 7, 103332. [Google Scholar] [CrossRef]
- Lima, D.R.; Hosseini-Bandegharaei, A.; Thue, P.S.; Lima, E.C.; de Albuquerque, Y.R.T.; dos Reis, G.S.; Umpierres, C.S.; Dias, S.L.P.; Tran, H.N. Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123966. [Google Scholar] [CrossRef]
- Cotillas, S.; Lacasa, E.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes. Water Res. 2018, 128, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackuľak, T.; Cverenkárová, K.; Vojs Staňová, A.; Fehér, M.; Tamáš, M.; Škulcová, A.B.; Gál, M.; Naumowicz, M.; Špalková, V.; Bírošová, L. Hospital Wastewater—Source of Specific Micropollutants, Antibiotic-Resistant Microorganisms, Viruses, and Their Elimination. Antibiotics 2021, 10, 1070. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Herraiz-Carboné, M.; Cotillas, S.; Lacasa, E.; Sainz de Baranda, C.; Riquelme, E.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. A review on disinfection technologies for controlling the antibiotic resistance spread. Sci. Total Environ. 2021, 797, 149150. [Google Scholar] [CrossRef]
- Wang, J.; Shen, J.; Ye, D.; Yan, X.; Zhang, Y.; Yang, W.; Li, X.; Wang, J.; Zhang, L.; Pan, L. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 2020, 262, 114665. [Google Scholar] [CrossRef]
- Chiang, C.F.; Tsai, C.T.; Lin, S.T.; Huo, C.P.; Lo, K.V. Disinfection of hospital wastewater by continuous ozonization. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2003, 38, 2895–2908. [Google Scholar] [CrossRef]
- Majumder, A.; Gupta, A.K.; Ghosal, P.S.; Varma, M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. J. Environ. Chem Eng. 2021, 9, 104812. [Google Scholar] [CrossRef]
- Herraiz-Carboné, M.; Lacasa, E.; Cotillas, S.; Vasileva, M.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. The role of chloramines on the electrodisinfection of Klebsiella pneumoniae in hospital urines. Chem. Eng. J. 2021, 409, 128253. [Google Scholar] [CrossRef]
- Raut, A.S.; Parker, C.B.; Klem, E.J.D.; Stoner, B.R.; Deshusses, M.A.; Glass, J.T. Reduction in energy for electrochemical disinfection of E. coli in urine simulant. J. Appl. Electrochem. 2019, 49, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Huitle, C.A.; Brillas, E. A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100926. [Google Scholar] [CrossRef]
- Rivera-Gutiérrez, E.; Ramírez-García, J.J.; Pavón Romero, S.H.; Rodríguez, M.M.; Ramírez-Serrano, A.; Jiménez-Marin, A. Dicloxacillin Degradation with Free-Living Bacteria. WaterAirSoil Pollut. 2020, 231, 1–13. [Google Scholar] [CrossRef]
- Macías-García, A.; García-Sanz-Calcedo, J.; Carrasco-Amador, J.P.; Segura-Cruz, R. Adsorption of paracetamol in hospital wastewater through activated carbon filters. Sustainability 2019, 11, 2672. [Google Scholar] [CrossRef] [Green Version]
- Alidadi, H.; Dolatabadi, M.; Davoudi, M.; Barjasteh-Askari, F.; Jamali-Behnam, F.; Hosseinzadeh, A. Enhanced removal of tetracycline using modified sawdust: Optimization, isotherm, kinetics, and regeneration studies. Process. Saf. Environ. Prot. 2018, 117, 51–60. [Google Scholar] [CrossRef]
- Lima, D.R.; Lima, E.C.; Umpierres, C.S.; Thue, P.S.; El-Chaghaby, G.A.; da Silva, R.S.; Pavan, F.A.; Dias, S.L.P.; Biron, C. Removal of amoxicillin from simulated hospital effluents by adsorption using activated carbons prepared from capsules of cashew of Para. Environ. Sci. Pollut. Res. 2019, 26, 16396–16408. [Google Scholar] [CrossRef]
- Jafari, K.; Heidari, M.; Rahmanian, O. Wastewater treatment for Amoxicillin removal using magnetic adsorbent synthesized by ultrasound process. Ultrason. Sonochem. 2018, 45, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Esfandyari, Y.; Saeb, K.; Tavana, A.; Rahnavard, A.; Fahimi, F.G. Effective removal of cefazolin from hospital wastewater by the electrocoagulation process. Water Sci. Technol. 2019, 80, 2422–2429. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, S.; Asadipour, A.; Pournamdari, M.; Behnam, B.; Rahimi, H.R.; Dolatabadi, M. Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process. Saf. Environ. Prot. 2017, 109, 538–547. [Google Scholar] [CrossRef]
- Malakootian, M.; Ahmadian, M. Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes. Water Sci. Technol. 2019, 80, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, S.; Asadipour, A.; Yoosefian, M.; Dolatabadi, M. Improved electrocoagulation process using chitosan for efficient removal of cefazolin antibiotic from hospital wastewater through sweep flocculation and adsorption: Kinetic and isotherm study. Desalin. Water Treat. 2017, 92, 160–171. [Google Scholar] [CrossRef]
- Cristóvão, M.B.; Torrejais, J.; Janssens, R.; Luis, P.; Van der Bruggen, B.; Dubey, K.K.; Mandal, M.K.; Bronze, M.R.; Crespo, J.G.; Pereira, V.J. Treatment of anticancer drugs in hospital and wastewater effluents using nanofiltration. Sep. Purif. Technol. 2019, 224, 273–280. [Google Scholar] [CrossRef]
- Emamjomeh, M.M.; Sivakumar, M. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J. Environ. Manag. 2009, 90, 1663–1679. [Google Scholar] [CrossRef]
- Mokhbi, Y.; Korichi, M.; Akchiche, Z. Combined photocatalytic and Fenton oxidation for oily wastewater treatment. Appl. Water Sci. 2019, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Agudelo, E.A.; Cardona G., S.A. Advanced Oxidation Technology (Ozone-catalyzed by Powder Activated Carbon-Portland Cement) for the Degradation of the Meropenem Antibiotic. Ozone Sci. Eng. 2021, 43, 88–105. [Google Scholar] [CrossRef]
- Wu, K.; Si, X.; Jiang, J.; Si, Y.; Sun, K.; Yousaf, A. Enhanced degradation of sulfamethoxazole by Fe–Mn binary oxide synergetic mediated radical reactions. Environ. Sci. Pollut. Res. 2019, 26, 14350–14361. [Google Scholar] [CrossRef]
- Munoz, M.; Conde, J.; de Pedro, Z.M.; Casas, J.A. Antibiotics abatement in synthetic and real aqueous matrices by H2O2/natural magnetite. Catal. Today 2018, 313, 142–147. [Google Scholar] [CrossRef]
- Papoutsakis, S.; Afshari, Z.; Malato, S.; Pulgarin, C. Elimination of the iodinated contrast agent iohexol in water, wastewater and urine matrices by application of photo-Fenton and ultrasound advanced oxidation processes. J. Environ. Chem. Eng. 2015, 3, 2002–2009. [Google Scholar] [CrossRef]
- Sanabria, P.; Scunderlick, D.; Wilde, M.L.; Lüdtke, D.S.; Sirtori, C. Solar photo-Fenton treatment of the anti-cancer drug anastrozole in different aqueous matrices at near-neutral pH: Transformation products identification, pathways proposal, and in silico (Q)SAR risk assessment. Sci. Total Environ. 2021, 754, 142300. [Google Scholar] [CrossRef] [PubMed]
- Della-Flora, A.; Wilde, M.L.; Thue, P.S.; Lima, D.; Lima, E.C.; Sirtori, C. Combination of solar photo-Fenton and adsorption process for removal of the anticancer drug Flutamide and its transformation products from hospital wastewater. J. Hazard. Mater. 2020, 396, 122699. [Google Scholar] [CrossRef]
- Jaén-Gil, A.; Buttiglieri, G.; Benito, A.; Gonzalez-Olmos, R.; Barceló, D.; Rodríguez-Mozaz, S. Metoprolol and metoprolol acid degradation in UV/H2O2 treated wastewaters: An integrated screening approach for the identification of hazardous transformation products. J. Hazard. Mater. 2019, 380, 120851. [Google Scholar] [CrossRef]
- Kim, T.-K.; Kim, T.; Park, H.; Lee, I.; Jo, A.; Choi, K.; Zoh, K.-D. Degradation of ciprofloxacin and inactivation of ciprofloxacin resistant E. faecium during UV-LED (275 nm)/chlorine process. Chem. Eng. J. 2020, 394, 124803. [Google Scholar] [CrossRef]
- Chinnaiyan, P.; Thampi, S.G.; Kumar, M.; Balachandran, M. Photocatalytic degradation of metformin and amoxicillin in synthetic hospital wastewater: Effect of classical parameters. Int. J. Environ. Sci. Technol. 2019, 16, 5463–5474. [Google Scholar] [CrossRef]
- Guateque-Londoño, J.F.; Serna-Galvis, E.A.; Silva-Agredo, J.; Ávila-Torres, Y.; Torres-Palma, R.A. Dataset on the degradation of losartan by TiO2-photocatalysis and UVC/persulfate processes. Data Brief. 2020, 31, 105692. [Google Scholar] [CrossRef] [PubMed]
- Gharaghani, M.A.; Malakootian, M. Photocatalytic degradation of the antibiotic ciprofloxacin by ZnO nanoparticles immobilized on a glass plate. Desalin. Water Treat. 2017, 89, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Ghauch, A.; Tuqan, A.M.; Kibbi, N. Naproxen abatement by thermally activated persulfate in aqueous systems. Chem. Eng. J. 2015, 279, 861–873. [Google Scholar] [CrossRef]
- Jaén-Gil, A.; Buttiglieri, G.; Benito, A.; Mir-Tutusaus, J.A.; Gonzalez-Olmos, R.; Caminal, G.; Barceló, D.; Sarrà, M.; Rodriguez-Mozaz, S. Combining biological processes with UV/H2O2 for metoprolol and metoprolol acid removal in hospital wastewater. Chem. Eng. J. 2021, 404, 126482. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J.K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Saeid, S.; Tolvanen, P.; Kumar, N.; Eränen, K.; Peltonen, J.; Peurla, M.; Mikkola, J.P.; Franz, A.; Salmi, T. Advanced oxidation process for the removal of ibuprofen from aqueous solution: A non-catalytic and catalytic ozonation study in a semi-batch reactor. Appl. Catal. B Environ. 2018, 230, 77–90. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Brillas, E.; Sirés, I.; Oturan, M.A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef]
- Sá, R.D.; Rodríguez-Pérez, A.P.; Rodrigues-Silva, F.; de Paula, V.C.S.; Prola, L.D.T.; de Freitas, A.M.; de Carvalho, K.Q.; de Liz, M.V. Treatment of a clinical analysis laboratory wastewater from a hospital by photo-Fenton process at four radiation settings and toxicity response. Environ. Sci. Pollut. Res. Int. 2021, 28, 24180–24190. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Sun, S.-P.; Yang, X.; Zhou, K.; Li, Y.; Wang, X.; Wu, Z.; Wu, W.D.; Chen, X.D. Enhanced emerging pharmaceuticals removal in wastewater after biotreatment by a low-pressure UVA/FeIII-EDDS/H2O2 process under neutral pH conditions. Chem. Eng. J. 2019, 366, 539–549. [Google Scholar] [CrossRef]
- Coledam, D.A.C.; Sánchez-Montes, I.; Silva, B.F.; Aquino, J.M. On the performance of HOCl/Fe2+, HOCl/Fe2+/UVA, and HOCl/UVC processes using in situ electrogenerated active chlorine to mineralize the herbicide picloram. Appl. Catal. B Environ. 2018, 227, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Schmid, A.; Tarpani, R.R.Z.; Miralles-Cuevas, S.; Cabrera-Reina, A.; Malato, S.; Azapagic, A. Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters. Sci. Total Environ. 2019, 650, 2210–2220. [Google Scholar] [CrossRef]
- Miralles-Cuevas, S.; Oller, I.; Ruiz Aguirre, A.; Sánchez Pérez, J.A.; Malato Rodríguez, S. Removal of pharmaceuticals at microg L−1 by combined nanofiltration and mild solar photo-Fenton. Chem. Eng. J. 2014, 239, 68–74. [Google Scholar] [CrossRef]
- Michael, S.G.; Michael-Kordatou, I.; Beretsou, V.G.; Jäger, T.; Michael, C.; Schwartz, T.; Fatta-Kassinos, D. Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater. Appl. Catal. B Environ. 2019, 244, 871–880. [Google Scholar] [CrossRef]
- Liao, C.H.; Gurol, M.D. Chemical Oxidation by Photolytic Decomposition of Hydrogen Peroxide. Environ. Sci. Technol. 1995, 29, 3007–3014. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; El-Din, M.G.; Bolton, J.R. Assessment of the UV/Chlorine process as an advanced oxidation process. Water Res. 2011, 45, 1890–1896. [Google Scholar] [CrossRef]
- Ma, H.; Brennan, A.; Diamond, S.A. Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environ. Toxicol. Chem. 2012, 31, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Fawzi Suleiman Khasawneh, O.; Palaniandy, P. Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: A review. Environ. Technol. Innov. 2021, 21, 101230. [Google Scholar] [CrossRef]
- Ahmadi, S.; Igwegbe, C.A.; Rahdar, S. The application of thermally activated persulfate for degradation of Acid Blue 92 in aqueous solution. Int. J. Ind. Chem. 2019, 10, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Zrinyi, N.; Pham, A.L.-T. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution. Water Res. 2017, 120, 43–51. [Google Scholar] [CrossRef]
- Loos, G.; Scheers, T.; Van Eyck, K.; Van Schepdael, A.; Adams, E.; Van der Bruggen, B.; Cabooter, D.; Dewil, R. Electrochemical oxidation of key pharmaceuticals using a boron doped diamond electrode. Sep. Purif. Technol. 2018, 195, 184–191. [Google Scholar] [CrossRef]
- Gonzaga, I.M.D.; Moratalla, A.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Cañizares, P.; Rodrigo, M.A.; Saez, C. Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes. Sci. Total Environ. 2020, 736, 139536. [Google Scholar] [CrossRef] [PubMed]
- Cotillas, S.; Lacasa, E.; Herraiz, M.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. The Role of the Anode Material in Selective Penicillin G Oxidation in Urine. Chem. Electro.Chem. 2019, 6, 1376–1384. [Google Scholar] [CrossRef]
- Kobayashi, T.; Hirose, J.; Sano, K.; Kato, R.; Ijiri, Y.; Takiuchi, H.; Tanaka, K.; Goto, E.; Tamai, H.; Nakano, T. Application of electrolysis for detoxification of an antineoplastic in urine. Ecotoxicol. Environ. Saf. 2012, 78, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, A.J.; Cabot, P.L.; Brillas, E.; Sirés, I. A comprehensive study on the electrochemical advanced oxidation of antihypertensive captopril in different cells and aqueous matrices. Appl. Catal. B Environ. 2020, 277, 119240. [Google Scholar] [CrossRef]
- Parra, K.N.; Gul, S.; Aquino, J.M.; Miwa, D.W.; Motheo, A.J. Electrochemical degradation of tetracycline in artificial urine medium. J. Solid State Electrochem. 2016, 20, 1001–1009. [Google Scholar] [CrossRef]
- Perea, L.A.; Palma-Goyes, R.E.; Vazquez-Arenas, J.; Romero-Ibarra, I.; Ostos, C.; Torres-Palma, R.A. Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent. Sci. Total Environ. 2019, 648, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, S.; Rodrigo, M.; Cañizares, P.; Roa, G.; Barrera, C.; Ramirez, J.; Sáez, C. On the degradation of 17-β estradiol using boron doped diamond electrodes. Processes 2020, 8, 710. [Google Scholar] [CrossRef]
- Cotillas, S.; Lacasa, E.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Removal of pharmaceuticals from the urine of polymedicated patients: A first approach. Chem. Eng. J. 2018, 331, 606–614. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Berrio-Perlaza, K.E.; Torres-Palma, R.A. Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: Evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways. Environ. Sci. Pollut. Res. 2017, 24, 23771–23782. [Google Scholar] [CrossRef] [PubMed]
- Palma, R.E.; Serna-Galvis, E.; Ramirez, J.E.; Torres, R.A. Electrochemical Degradation of Naproxen (NPX) and Diclofenac (DFC) through Active Chlorine Species (Cl2-active): Considerations on Structural Aspects and Degradation in Urine. ECS Trans. 2021, 100, 55–71. [Google Scholar] [CrossRef]
- Jojoa-Sierra, S.D.; Silva-Agredo, J.; Herrera-Calderon, E.; Torres-Palma, R.A. Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO 2 anodes. Sci. Total Environ. 2017, 575, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Sordello, F.; Fabbri, D.; Rapa, L.; Minero, C.; Minella, M.; Vione, D. Electrochemical abatement of cefazolin: Towards a viable treatment for antibiotic-containing urine. J. Clean. Prod. 2021, 289, 125722. [Google Scholar] [CrossRef]
- Zwiener, C.; Glauner, T.; Sturm, J.; Wörner, M.; Frimmel, F.H. Electrochemical reduction of the iodinated contrast medium iomeprol: Iodine mass balance and identification of transformation products. Anal. Bioanal. Chem. 2009, 395, 1885–1892. [Google Scholar] [CrossRef]
- Herraiz-Carboné, M.; Cotillas, S.; Lacasa, E.; Moratalla, Á.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Improving the biodegradability of hospital urines polluted with chloramphenicol by the application of electrochemical oxidation. Sci. Total Environ. 2020, 725, 138430. [Google Scholar] [CrossRef]
- Ouarda, Y.; Tiwari, B.; Azaïs, A.; Vaudreuil, M.-A.; Ndiaye, S.D.; Drogui, P.; Tyagi, R.D.; Sauvé, S.; Desrosiers, M.; Buelna, G.; et al. Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process: Kinetic study and toxicity assessment. Chemosphere 2018, 193, 160–169. [Google Scholar] [CrossRef]
- Feng, L.; Serna-Galvis, E.A.; Oturan, N.; Giannakis, S.; Torres-Palma, R.A.; Oturan, M.A. Evaluation of process influencing factors, degradation products, toxicity evolution and matrix-related effects during electro-Fenton removal of piroxicam from waters. J. Environ. Chem. Eng. 2019, 7, 103400. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Dolatabadi, M. Removal of acetaminophen from hospital wastewater using electro-Fenton process. Environ. Earth Sci. 2018, 77, 53. [Google Scholar] [CrossRef]
- Moratalla, Á.; Araújo, D.M.; Moura, G.O.M.A.; Lacasa, E.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Pressurized electro-Fenton for the reduction of the environmental impact of antibiotics. Sep. Purif. Technol. 2021, 276, 119398. [Google Scholar] [CrossRef]
- Gonzaga, I.M.D.; Moratalla, A.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Cañizares, P.; Rodrigo, M.A.; Saez, C. Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis. Chem. Eng. J. 2021, 420, 129999. [Google Scholar] [CrossRef]
- Gonzaga, I.M.D.; Moratalla, A.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Cañizares, P.; Rodrigo, M.A.; Saez, C. Novel Ti/RuO2IrO2 anode to reduce the dangerousness of antibiotic polluted urines by Fenton-based processes. Chemosphere 2021, 270, 129344. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, I.M.D.; Dória, A.R.; Moratalla, A.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Cañizares, P.; Rodrigo, M.A.; Saez, C. Electrochemical systems equipped with 2D and 3D microwave-made anodes for the highly efficient degradation of antibiotics in urine. Electrochim. Acta 2021, 392, 139012. [Google Scholar] [CrossRef]
- Cotillas, S.; de Vidales, M.J.M.; Llanos, J.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. J. Hazard. Mater. 2016, 319, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, M.A.Q.; Ferro, S.; Martínez-Huitle, C.A.; Vong, Y.M. Boron doped diamond electrode for the wastewater treatment. J. Braz. Chem. Soc. 2006, 17, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Fierro, S. Electrochemical oxidation of organic compounds in aqueous acidic media on ‘active’ and ‘non-active’ type electrodes. In Electrolysis: Theory, Types and Applications; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2010; pp. 135–209. [Google Scholar]
- Nidheesh, P.V.; Zhou, M.; Oturan, M.A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 2018, 197, 210–227. [Google Scholar] [CrossRef]
- Ramos, M.D.N.; Santana, C.S.; Velloso, C.C.V.; da Silva, A.H.M.; Magalhães, F.; Aguiar, A. A review on the treatment of textile industry effluents through Fenton processes. Process. Saf. Environ. Prot. 2021, 155, 366–386. [Google Scholar] [CrossRef]
- Cotillas, S.; Clematis, D.; Cañizares, P.; Carpanese, M.P.; Rodrigo, M.A.; Panizza, M. Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes. Chemosphere 2018, 199, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Araújo, D.M.D.; Cotillas, S.; Sáez, C.; Cañizares, P.; Martínez-Huitle, C.A.; Rodrigo, M.A. Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. J. Electroanal. Chem. 2015, 757, 144–149. [Google Scholar] [CrossRef]
- Bampos, G.; Petala, A.; Frontistis, Z. Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. Environments 2021, 8, 85. [Google Scholar] [CrossRef]
Parameters | Units | Range | Compound | Units | Range |
---|---|---|---|---|---|
HCO3− | mg dm−3 | 0–85 | Saccharose | mg dm−3 | 0–30 |
CO32− | 0–6 | Glucose | 0–30 | ||
Cl− | 50–2000 | COD | mg O2 dm−3 | 300–420 | |
SO42− | 4–70 | BOD5 | 187–304 | ||
Ca2+ | 2–20 | pH | - | 7.0–7.5 | |
K+ | 3–75 | Antibiotics | 0.0001–100 | ||
Mg2+ | 2–4 | Analgesics and anti-inflammatories | mg dm−3 | 0.00013–40 | |
Na+ | 25–1200 | Betablocker | 10–20 | ||
S2− | 0–15 | Hypertensive | 10–20 | ||
PO43- | 5–30 | Antidepressant | 0.00387–0.008 | ||
NO3− | 0–10 | Anticonvulsants | 0.0006–0.005 | ||
NH4+ | 10–70 | Enterococci | UCF mL−1 | 103–106 | |
Urea | 10–1300 | Escherichia coli | 103–106 | ||
Humic acid | mg dm−3 | 0–10 | Fecal coliforms | CFU mL−1 | 103–104 |
Citric acid | 0–10 | Total coliforms | 105–107 |
Effluent | Technology | Operation Parameters | Target Drug | Concentration | % Elimination | Ref. |
---|---|---|---|---|---|---|
HWW | Electrocoagulation | Aluminium electrodes (61 cm2), monopole configuration. 1000 mA | Dexamethasone | 100 μg L−1 | ~30 (45 min) | [18] |
HWW | Adsorption | Porous activated carbons prepared with Caesalpinia ferrea. | Captopril | 25 mg L−1 | CFAC.0.5/89.63 (60 min) | [19] |
CFAC.1.0/95.96 (60 min) | ||||||
CFAC 0.5 (ratio of 0.5:1.0 of ZnCl2/CF at 600 °C) | CFAC.1.5/97.67 (60 min) | |||||
CFAC 1.0. (ratio of 1.0:1.0 of ZnCl2/CF at 600 °C) | 50 mg L−1 | CFAC.0.5/86.08 (60 min) | ||||
CFAC.1.0/92.07 (60 min) | ||||||
CFAC 1.5. (ratio of 1.5:1.0 of ZnCl2/CF at 600 °C) | CFAC.1.5/94.22 (60 min) | |||||
HWW | Biological | Leptosphaerulina sp. (a Colombian native fungus). Conical flaks are inoculated and incubated at 28 °C and 160 rpm for 8 days. | Oxacillin | 16 mg L−1 | 100 (6 days) | [20] |
HWW | Adsorption | Activated carbons derived from Brazil nutshells: BNS1.0 (ratio of 1.0:1.0 of ZnCl2/BN at 600 °C) BNS1.5 (ratio of 1.5:1.0 of ZnCl2/BN at 600 °C) | Acetaminophen | 40 mg L−1 | BNS1.0/98.29 (30 min) BNS1./98.83 (30 min) | [22] |
80 mg L−1 | BNS1.0/96.38 (30 min) BNS1.5/97.04 (30 min) | |||||
HWW | Biodegradation (Biological) | Pseudomonas aeruginosa (1.5 × 108 CFU mL−1) | Dicloxacillin | 40 mg L−1 | 100 (52 h) | [33] |
Microbial consortium (Pseudomonas aeruginosa, Citrobacter freundii, Klebsiella pneumoniae, and Escherichia coli) (1.5 × 108 CFU mL−1) | 100 (3.75 h) | |||||
HWW | Adsorption | Activated carbon filters with different concentrations of kenaf: K-36-500/36% K-60-500/60% K-85-500/85% | Paracetamol | 120 mg L−1 | K-36-500/~42 (1000 min) K-60-500/~83 (1000 min) K-85-500/~68 (1000 min) | [34] |
HWW | Adsorption | Sawdust adsorbent modified. Adsorbent dose 3.6 g L−1 and pH 8.3 | Tetracycline | ~0.25 mg L−1 | ~100 (53 min) | [35] |
HWW | Adsorption | Activated carbons with Bertholletia excelsa capsules: CCP.600 (ratio of 1.0:1.0 of ZnCl2/CCP at 600 °C) CCP.700 (ratio of 1.0:1.0 of ZnCl2/CCP at 700 °C) | Amoxicillin | 30 mg L−1 | CCP.600/98.01 (30 min) CCP.700/98.60 (30 min) | [36] |
60 mg L−1 | CCP.600/97.28 (30 min) CCP.700/97.76 (30 min) | |||||
HWW | Adsorption | Magnetic adsorbent was prepared from Olive kernel (MA-OK). Adsorbent dose = 0.5 g L−1, pH = 6 | Amoxicillin | 200 mg L−1 | 95.31 (90 min) | [37] |
300 mg L−1 | 89.81 (90 min) | |||||
400 mg L−1 | 97.90 (90 min) | |||||
HWW | Electrocoagulation | Three aluminium plates anodes and three iron plates cathodes. V = 30 V, pH = 7 | Cefazolin | 0.0423 mg L−1 | 94 (30 min) | [38] |
HWW | Electrocoagulation | Two aluminium plate electrodes at 12.5 mA cm−2; pH = 7.78 | Ciprofloxacin | 154 μg L−1 | 100 (20 min) | [39] |
HWW | Electrocoagulation-persulfate | Two aluminium anodes and two aluminium cathodes at 2.75 mA cm−2; pH = 7. PS concentration of 0.84 mM | Ciprofloxacin | 3.5 mg L−1 | 81 (40 min) | [40] |
HWW | Electrocoagulation-adsorption | Aluminium electrodes at pH 7.8, 15.5 mA cm−2, 0.7 g L−1 chitosan | Cefazolin | 60 mg L−1 | 100 (23 min) | [41] |
Urine | Nanofiltration | Stainless steel dead-end stirred cell with an area of 54 cm2: Desal 5 DK membrane (150–300 Da) NF270 membrane (300 Da) | Paclitaxel Etoposide Cyclophosphamide Ifosfamide | 0.5 mg L−1 | Desal 5 DK >95/>95/96.6/96.3 | [42] |
NF270 >95/>95/81.1/82.5 |
Effluent | Technology | Operation Parameters | Target Drug | Concentration | % Elimination | Ref. |
---|---|---|---|---|---|---|
HWW | Catalytic Ozonation | 37.5 mg O3/min | Meropenem | 6 mg L−1 | 100 (11.7 min) | [45] |
HWW | H2O2/Fe-Mn binary oxide | [H2O2]0 = 6.0 mM, 2.0 g L−1 of Fe-Mn binary oxide | Sulfamethoxazole | 0.1 mg L−1 | 100 (10 min) | [46] |
1.6 mg L−1 | 92.8 (10 min) | |||||
HWW | H2O2/magnetite | [H2O2] = 25 ppm; [Magnetite] = 1 g L−1; pH0 = 5; T = 25 °C. | Sulfamethoxazole | 5 mg L−1 | ~30 (240 min) | [47] |
Urine | Photo-Fenton | Simulated solar light at constant UVA intensity of 30 W m−2. 20 ppm Fe2+, pH = 3. [H2O2]0 = 400 mg L−1 (replenished when it dropped below 100 mg L−1). Two types of urine: diluted 1:10 and undiluted. | Iohexol | 600 mg L−1 | Diluted urine ~95 (120 min) | [48] |
6000 mg L−1 | Undiluted urine ~48 (360 min) | |||||
HWW | Solar Photo-Fenton | [H2O2]0 = 25 mg L−1, multiple addition of iron = 10 mg L−1 and pH = 5.0. | Anastrozole | 50 μg L−1 | ~50 (120 min) | [49] |
HWW | Solar Photo-Fenton and adsorption | Solar Photo Fenton process: three Fe2+ additions (5 mg dm−3 Fe2+ each and 150 mg dm−3) Adsorption: 14 mg of avocado seed activated carbon | Flutamide and transformation products | 500 μg L−1 | Solar Photo-Fenton: 58 (120 min) Adsorption: >97 (40 min) | [50] |
HWW | UV/H2O2 | Photo-oxidation process. UV254 lamp (15 W), [H2O2]0 = 25 mg L−1 | Metoprolol | 2.0 μg L−1 | 71.6 (10 min) | [51] |
Metoprolol acid | 2.0 μg L−1 | 88.7 (10 min) | ||||
HWW | UV (275 nm)/ Chlorination | Glass reactor with magnetic stirrer. UV-LED of 275 nm. [Free available chlorine] = 15 mg L−1, pH = 7 | Ciprofloxacin | 10 mg L−1 | 100 (60 min) | [52] |
HWW | TiO2-photocatalysis | Laboratory-scale photoreactor. UV lamp (365 nm) = 125 W. pH 7.6, TiO2 dosage is 563 mg L−1 | Metformin | 10 mg L−1 | 98 (150 min) | [53] |
Amoxicillin | 10 mg L−1 | 90 (150 min) | ||||
Urine | TiO2-photocatalysis | [TiO2]: 0.5 g L−1, pH: 6.1, UVA light: 75 W | Losartan | 43.38 μmol L− | ~35 (20 min) | [54] |
Urine | UV/Persulfate | [PS] = 500 μmol L−1, pH = 6.1, UVC light: 60 W. | Losartan | 43.38 μmol L−1 | ~35 (20 min) | [54] |
HWW | Nano-photocatalysis | ZnO concentration on the plat: 0.6 g L−1. pH = 11, reaction time 90 min. | Ciprofloxacin | 3 mg L−1 | 90.25 (90 min) | [55] |
HWW | Thermally activated persulfate | Sodium persulfate = 10 mM, phosphate buffer = 50 μM. 20 mL, pH = 7.5, T = 70 °C. | Naproxen | 50 μM | ~100 (10 min) | [56] |
HWW | UV/H2O2 and biological process | Photo-oxidation process: Immersion-type photo-reactor. UV lamp (15 W), [H2O2]: 15 mg L−1 with a reaction time of 10 min. Bioreactor with activated sludge were operated as a batch with reaction time of 24 h | Metoprolol Metropolol acid | 2.0 μg L−1 2.0 μg L−1 | Bioreactor-UV/H2O2 85.7 98.5 UV/H2O2-Bioreactor 85.6 99.5 | [57] |
Effluent | Technology | Operation Parameters | Target Drug | Concentration | % Elimination | Ref. |
---|---|---|---|---|---|---|
HWW | Electrooxidation | Two circular mesh anodes (Nb/BDD)/cathodes (Ti) at 35.4 mA cm−2. Flowrate: 1 L min−1 | Caffeine | 93 µg L−1 | >50 (120 min) | [21] |
Dihydrocabamazenine | 4.9 µg L−1 | |||||
Desvenlafaxine | 8 µg L−1 | |||||
Sulfamethoxazole | 3 µg L−1 | |||||
Venlafaxine | 3.87 µg L−1 | |||||
2-Hydroxy Ibuprofen | 69 µg L−1 | |||||
Carbamazepine | 0.62 µg L−1 | |||||
4-Hydroxy Diclofenac | 0.13 µg L−1 | |||||
Diclofenac | 0.16 µg L−1 | |||||
Ibuprofen | 20 µg L−1 | |||||
Clarithromycin | 0.06 µg L−1 | |||||
HWW | Electrooxidation | Flow-through electrochemical cell. BDD electrodes layer at 0.9 and 3.1 A and 50 °C | Iopromide 17-alpha-ethinylestradiol Sulfamethoma-zole Diclofenac | 0.5 or 10 mg L−1 | 0.5 mg L−1-0.9 A: ~32/95/99/87 (180 min) 0.5 mg L−1-3.1 A: ~78/100/100/100 (180 min) 10 mg L−1-3.1 A: ~100/100/100/100 (540 min) | [74] |
Urine | Electrooxidation | BDD anodes with boron content of 100, 200, 1300, 2500 and 8000 ppm and stainless steel (cathode) at 30.00 mA cm−2 | Penicillin G | 50 mg L−1 | BDD100/98.03 at 6.4 Ah dm−3 BDD200/100.00 at 6.4 Ah dm−3 BDD1300/94.50 at 6.4 Ah dm−3 BDD2500/89.90 at 6.4 Ah dm−3 BDD8000/94.29 at 6.4 Ah dm−3 | [75] |
Urine | Electrooxidation | Single compartment electrochemical cell. BDD anode at 10 and 100 mA cm−2 MMO anode at 10 and 100 mA cm−2 | Penicillin G | 100 mg L−1 | BDD: 100.00 (10 mA cm−2; 2.60 Ah dm−3)/100.00 (100 mA cm−2; 1.54 Ah dm−3) MMO:100.00 (10 mA cm−2; 12.30 Ah dm−3) /100.00 (100 mA cm−2; 5.61 Ah dm−3) | [76] |
Urine | Electrooxidation | Pair of platinum-based iridium oxide composite electrodes at 1 A. The urine was diluted 2-fold, 4-fold and 8-fold. | Methotrexate | 880.2 μM | 2-fold/98.66 (4 h) 4-fold/99.98 (4 h) 8-fold/100.00 (4 h) | [77] |
Urine | Electrooxidation | Anodic oxidation-H2O2. Three types of anodes. BDD, Pt and IrO2. Cathode: carbon-PTFE air diffusion electrode, pH = 3 at 33.3 mA cm−2 | Captopril | 0.23 mM | BDD anode:100.00 (60 min) Pt anode: 100.00 (60 min) IrO2 anode: 87.00 (60 min) | [80] |
Urine | Solar Photo Electro-Fenton | A solar planar pre-pilot flow plant. Anode: Pt plate. Cathode: carbon-PTFE air diffusion electrode. Flow rate: 180 L h−1 and 0.5 mM Fe2+ at 50 mA cm−2 and pH 3 and 35 °C Three synthetic urine solutions Urine 1: 13.9 mM urea + 0.073 mM uric acid + 0.367 mM creatinine Urine 2: 27.8 mM urea + 0.146 mM uric acid + 0.734 mM creatinine Urine 3: 55.6 mM urea + 0.292 mM uric acid + 1.470 mM creatinine | Captopril | 0.23 mM | Urine 1: 100 (15 min) Urine 2: 100 (20 min) Urine 3: 100 (30 min) | [80] |
Urine | Electrooxidation | One-compartment filter-press flow cell. Flow rate: 460 mL min−1. Ti/Ru0.3Ti0.7O2 DSA® at 10,20,30 and 40 mA cm−2 | Tetracycline | 200 mg L−1 | 10 mA cm−2: ~52.00 (3 h) 20 mA cm−2: ~83.00 (3 h) 30 mA cm−2: ~99.00 (3 h) 40 mA cm−2: ~100.00 (3 h) | [81] |
Urine | Electrooxidation | MMO-Ti/RuO2-IrO2 anode and zirconium spiral (cathode) at 4.0 mA cm−2 | Cephalexin | 86.0 μM | ~100.00 (2 h or 0.43 Ah dm−3) | [82] |
Urine | Electrooxidation | BDD with 500 ppm of boron (Diacell cell) at 20, 50 and 100 mA cm−2. Flow rate: 6.67 mL s−1. Urine in methanol. | 17-β Estradiol | 10 mg L−1 | 20 mA cm−2: 100~7 Ah dm−3 50 mA cm−2:100~13 Ah dm−3 100 mA cm−2:100~15 Ah dm−3 | [83] |
Urine | Electrooxidation | Single compartment electrochemical cell. BDD anode with boron content of 500 ppm at 100 and 1000 A m−2 | Ibuprofen Cloxacillin | 10 mg L−1 1 mg L−1 | 100 A m−2: Ibuprofen/100~32 Ah dm−3; Cloxacillin/100 18 Ah dm−3 1000 A m−2: Ibuprofen/100~28 Ah dm−3; Cloxacillin/100~13 Ah dm−3 | [84] |
HWW | Electrooxidation | Ti/IrO2 rectangular (anode) and zirconium spiral (cathode). pH = 6.5 at 5 mA cm−2 | Cephalexin | 40 µM | ~60 (30 min) | [85] |
Urine | Electrooxidation | Undivided cell equipped with a Ti/IrO2 anode and a zirconium spiral cathode. pH = 6.0 and 5 mA cm−2 | Naproxen Diclofenac | 40 µM 40 µM | 20 (60 min) 30 (60 min) | [86] |
Urine | Electrooxidation | MMO-Ti/IrO2 anode and Titanium cathode at 6.53 mA cm−2 | Norfloxacin | 125.0 μM | ~65 (180 min) | [87] |
Urine | Electrooxidation | Undivided cell. Pt sheet was used as anode and a glassy carbon was used as cathode. Current density range: 0.5–150.0 mA cm−2 | Cefazolin | 100.0 μM | 0.5 mA cm−2: ~100 (500 min) 5.0 mA cm−2: ~100 (160 min) 50.0 mA cm−2: ~100 (40 min) 150.0 mA cm−2: ~100 (10 min) | [88] |
Urine | Electrooxidation | A platinum net was used as anode and reticulated nickel foam electrode was used as cathode and. V: 1 V | Iomeprol | 0.1 mM | 100 (120 min) | [89] |
Urine | Electrooxidation | Single compartment electrochemical cell. BDD anode and stainless steel (cathode) at 1.25, 2.5 and 5 mA cm−2. MMO-RuO2 anode and stainless steel (cathode) at 1.25, 2.5 and 5 mA cm−2. | Chloramphenicol | 100 mg L−1 | BDD at 1.25 mA cm−2/100 (8 Ah dm−3) BDD at 2.5 mA cm−2/100 (8 Ah dm−3) BDD at 5 mA cm−2 /~90 (6.46 Ah dm−3) MMO at 1.25 mA cm−2/36.86 (8 Ah dm−3) MMO at 2.5 mA cm−2/25.88 (8 Ah dm−3) MMO at 5 mA cm−2/16.26 (6.46 Ah dm−3) | [90] |
HWW | MBR-Electrooxidation | Submerged membrane bioreactor (MBR) in continuous mode. Electrooxidation reactor in discontinuous mode. Nb/BDD anode at 0.5 A. | Carbamazepine Ibuprofen Estradiol Venlafaxine | 10 µg L−1 10 µg L−1 10 µg L−1 0.2 µg L−1 | MBR-EO ~97 (40 min) | [91] |
HWW/urine | Electro-Fenton | BDD anode, 3D-Carbon-felt (cathode), 0.1 mM Fe2+ pH: 3 at 4.17 mA cm−2 | Piroxicam | 25.6 mg L−1 | 100 (120 min) | [92] |
HWW | Electro-Fenton | Two iron plate electrodes. 2.75 pH solution, 122.5 μL L−1 H2O2 and 8 mA cm−2 | Acetaminophen | 1.35 mg L−1 | 100 (10 min) | [93] |
Urine | Electro-Fenton | Microfluidic Flow-Through reactor. Pressurized system. 3D-MMO-IrO2Ta2O5 anode and modified 3D-titanium mesh with CB/PTFE cathode, pH 3, 5 mA cm−2, and 10.8 g goethite (heterogeneous catalyst). Gauge pressure range: 0, 1, 2 and 3 bar | Meropenem | 50 mg L−1 | 0 bar: 80.60 (0.8 Ah dm−3) 1 bar: 89.03 (0.8 Ah dm−3) 2 bar: 91.60 (0.8 Ah dm−3) 3 bar: 94.64 (0.8 Ah dm−3) | [94] |
Urine | Electrooxidation and photo-electro oxidation | Microwave-made MMO-Ti/RuO2IrO2 anode and stainless steel (cathode). BDD anode with a boron content of 200 ppm and stainless steel (cathode). Current density: 30 mA cm−2. UVC lamp 9W in photo-electrooxidation. | Penicillin G | 50 mg L−1 | EO-MMO: ~94.0 (8 h) EO-BDD: ~89.0 (8 h) PhEO-MMO: ~100.0 (8 h) PhEO-BDD: ~98.0 (8 h) | [95] |
Urine | Electro-Fenton or photo Electro-Fenton | Two different anode: 200 ppm BDD and a MMO- Ti/Ru0.5Ir0.5O2. Cathode: modified carbon felt. 120 mA. 0.5 mM of Fe2+, pH 3 and a 9W UVC lamp for the PhEF tests | Penicillin G | 50 mg L−1 | EF-MMO: 99.0 (8 h) EF-BDD: 98.4 (8 h) PhEF-MMO: 100.0 (8 h) PhEF-BDD: 99.6 (8 h) | [96] |
Urine | Electrooxidation and photo-electro oxidation | Two experimental configurations: Conventional stirred-tank Anode: 2D-MMO-Ti/RuO2IrO2 plate Cathode: stainless steel Microfluidic Flow-Through Anode: 3D-MMO-Ti/RuO2IrO2 foam Cathode: stainless steel Current density: 30 mA cm−2. UVC lamp 9 W in photo-electrooxidation. | Penicillin G Meropenem Chloramphenicol | 50 mg L−1 50 mg L−1 50 mg L−1 | Conventional stirred-tank: EO: >70% (6.4 Ah dm−3) PhEO: 82% (6.4 Ah dm−3) Microfluidic Flow-Through EO > 70% (6.4 Ah dm−3) PhEO: 100% (6.4 Ah dm−3) | [97] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moratalla, Á.; Cotillas, S.; Lacasa, E.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules 2021, 26, 6813. https://doi.org/10.3390/molecules26226813
Moratalla Á, Cotillas S, Lacasa E, Cañizares P, Rodrigo MA, Sáez C. Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules. 2021; 26(22):6813. https://doi.org/10.3390/molecules26226813
Chicago/Turabian StyleMoratalla, Ángela, Salvador Cotillas, Engracia Lacasa, Pablo Cañizares, Manuel A. Rodrigo, and Cristina Sáez. 2021. "Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine" Molecules 26, no. 22: 6813. https://doi.org/10.3390/molecules26226813
APA StyleMoratalla, Á., Cotillas, S., Lacasa, E., Cañizares, P., Rodrigo, M. A., & Sáez, C. (2021). Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules, 26(22), 6813. https://doi.org/10.3390/molecules26226813