Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats
Abstract
:1. Introduction
2. Results
2.1. Structure of Novel Tetracyclic Triterpenoids
2.2. Effect of Novel Compounds on Plasma Glucose Levels
2.3. Effect of Novel Compounds on Plasma Insulin and C-Peptide Concentration
2.4. Effect of Novel Compounds on Liver and Muscle Glycogen Concentration
2.5. Effect of Novel Compounds on Glucose Metabolic (Glucokinase) and Gluconeogenic Enzymes (Glucose 6-Phosphatase) Activity
2.6. Effect of Novel Compounds on the Activity of Glycogen Metabolizing Enzymes
2.7. Effect of Novel Compounds on Lipid Markers
2.8. Effect of Novel Compounds on Glucose Oxidation in Skeletal Muscle
2.9. Effect of Novel Compounds on IR and IRS-1mRNA and Protein Expression in Skeletal Muscle
2.10. Effect of Novel Compounds on Akt mRNA andProtein Expression in Skeletal Muscle
2.11. Effect of Novel Compounds on GLUT4 mRNA and Protein Expression in Skeletal Muscle
2.12. The Binding Mode of Compounds with IRK and PPAR-γ
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Isolation and Identification of Compounds
4.3. In Vivo Analysis
4.3.1. Animals
4.3.2. Induction of Experimental Diabetes
4.3.3. Experimental Design
4.4. Determination of Blood Glucose
4.5. Measurement of Plasma Insulin and C-Peptide
4.6. Assessment of Tissue Glycogen
4.7. Estimation of Enzymes of Carbohydrate Metabolism
4.8. Assessment of Lipid Markers
4.9. Estimation of Glucose Oxidation
4.10. Gene expression Analysis
Isolation of Total RNA, Conversion of cDNA and Analysis of Real-Time PCR
4.11. Protein Expression Analysis
4.11.1. Preparation of Sample
4.11.2. Western Blot Analysis
4.12. Statistical Analysis
4.13. In Silico Analysis
4.13.1. Protein Preparation
4.13.2. Ligand Preparation
4.13.3. Molecular docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32, S157–S163. [Google Scholar] [CrossRef] [Green Version]
- Savage, D.B.; Petersen, K.F.; Shulman, G.I. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension 2005, 5, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001, 414, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Shiki, M.; Klip, A. Minireview: Recent developments in the regulation of glucose transporter-4 traffic: New signals, locations, and partners. Endocrinology 2005, 12, 5071–5078. [Google Scholar]
- Turcotte, L.P.; Fisher, J.S. Skeletal muscle insulin resistance: Roles of fatty acid metabolism and exercise. Phys. Ther. 2008, 11, 1279–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 24, 86. [Google Scholar] [CrossRef] [Green Version]
- Stein, J.D.; Newman-Casey, P.A.; Kim, D.D.; Nwanyanwu, K.H.; Johnson, M.W.; Hutton, D.W. Cost-effectiveness of various interventions for newly diagnosed diabetic macular edema. Ophthalmology 2013, 9, 1835–1842. [Google Scholar] [CrossRef] [Green Version]
- Veerapur, V.P.; Prabhakar, K.R.; Kandadi, M.R.; Srinivasan, K.K.; Unnikrishnan, M.K. Antidiabetic effect of Dodonaea viscosa aerial parts in high fat diet and low dose streptozotocin-induced type 2 diabetic rats: A mechanistic approach. Pharm. Biol. 2010, 10, 1137–1148. [Google Scholar] [CrossRef]
- Hassan, M.M.; Curley, S.A.; Li, D.; Kaseb, A.; Davila, M.; Abdalla, E.K.; Javle, M. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer 2010, 15, 1938–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamid, K.; Alqahtani, A.; Kim, M.S.; Cho, J.L.; Cui, P.H.; Li, C.G.; Groundwater, P.W.; Li, G.Q. Tetracyclic Triterpenoids in Herbal Medicines and their Activities in Diabetes and its Complications. Curr. Top. Med. Chem. 2015, 15, 2406–2430. [Google Scholar] [CrossRef]
- Lee, W.K.; Kao, S.T.; Liu, I.M.; Cheng, J.T. Ginsenoside Rh2 is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats. Horm. Metab. Res. 2007, 5, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Jung, T.W.; Lee, H.J.; Kim, S.G.; Shin, Y.S.; Whang, W.K. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch. Pharm. Res. 2011, 7, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.T.; Mehendale, S.R.; Li, X.; Quigg, R.; Wang, X.; Wang, C.Z.; Wu, J.A.; Aung, H.H.; Rue, P.; Bell, G.I.; et al. Anti-diabetec effect of ginsenoside Re in ob/ob mice. Biochim. Biophys. Acta 2005, 3, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.Y.; Yuan, H.D.; Chung, I.K.; Chung, S.H. Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. J. Agric. Food Chem. 2009, 57, 1532–1537. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Pen, W.; Huang, Y.; Fan, H.; Li, S. Ginsenoside-Rg1 from Panax notoginseng prevents hepatic fibrosis induced by thioacetamide in rats. Eur. J. Pharmacol. 2010, 634, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Nguyen, X.M.; Lane, J.; Wang, P. Relationship between obesity and diabetes in a US adult population: Findings from the National Health and Nutrition. Obes. Surg. 2011, 3, 351–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, M.J.; Ye, J.M.; Turner, N.; Hohnen-Behrens, C.; Ke, C.Q.; Tang, C.P.; Chen, T.; Weiss, H.G.; Gesing, E.R.; Rowland, A.; et al. Antidiabeticactivitiesoftriterpenoidsisolatedfrombittermelonassociatedwithactivationof the AMPK pathway. Chem. Biol. 2008, 3, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.L.; Huang, H.K.; Chang, C.I.; Tsai, C.P.; Chou, C.H. A cell-based screening identifies compounds from the stem of Momordicacharantia that overcome insulin resistance and activate AMP-activated protein kinase. J. Agric. Food Chem. 2008, 16, 6835–6843. [Google Scholar] [CrossRef] [PubMed]
- Daisy, P.; Balasubramanian, K.; Rajalakshmi, M.; Eliza, J.; Selvaraj, J. Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats. Phytomed 2010, 17, 28–36. [Google Scholar] [CrossRef]
- Putta, S.; Yarla, N.S.; Kilari, E.K.; Surekha, C.; Aliev, G.; Divakara, M.B.; Santosh, M.S. Therapeutic Potentials of Triterpenes in Diabetesand its Associated Complications. Curr. Top. Med. Chem. 2016, 23, 2532–2542. [Google Scholar] [CrossRef]
- Daisy, P.; Rajalakshmi, M. Hypolipidemic, hepato-protective and renal damage recovering effects of catechin isolated from the methanolic extract of Cassia fistula stem bark on Streptozotocin-induced diabetic Wistar rats: A biochemical and morphological analysis. Med. Chem. Res. 2012, 21, 4535. [Google Scholar]
- Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pac. J. Trop. Dis. 2012, 2, 239–250. [Google Scholar] [CrossRef]
- Din, A.U.; Khan, M.; Shah, M.Z.; Rauf, A.; Rashid, U.; Khalil, A.A.; Zaman, K.; Al-Awthan, Y.S.; Al-Duais, M.A.; Bahattab, O.; et al. Antidiabetic activity of Ficusonolide, a Triterpene lactone from ficusfoveolata (Wall. ex Miq.): In vitro, in vivo, and in Silico approaches. ACS Omega 2021, 6, 27351–27357. [Google Scholar] [CrossRef]
- Castellano, J.M.; Guinda, A.; Delgado, T.; Rada, M.; Cayuela, J.A. Biochemical basis of the Antidiabetic activity of Oleanolic acid and related pentacyclic Triterpenes. Diabetes 2013, 62, 1791–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Farswan, M.; Ali, S.; Afzal, M.; Al-Abbasi, F.A.; Kazmi, I.; Anwar, F. Antidiabetic potential of triterpenoid saponin isolated from Primula denticulate. Pharm. Biol. 2014, 52, 750–755. [Google Scholar] [CrossRef]
- Naik, S.R.; Filho, J.M.; Dhuley, J.N.; Deshmukh, V. Probable mechanism of hypoglycemic activity of bassic acid, a natural product isolated from Bumelia sartorum. J. Ethnopharmacol. 1991, 33, 37–44. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Ravi, K.; Sivagnanam, K.; Subramanian, S. Beneficial effects of aloe vera leaf gel extract on lipid profile status in rats with streptozotoc indiabetes. Clin. Exp. Pharmacol. Physiol. 2006, 3, 232–237. [Google Scholar] [CrossRef]
- Pari, L.; Rajarajeswari, N. Efficacy of coumarin on hepatic key enzymes of glucosemetabolism in chemical induced type 2 diabetic rats. Chem. Biol. Interact. 2009, 3, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.; Saravanan, R. Efficacy of Asiatic acid, a pentacyclic triterpene on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats. Phytomed 2013, 20, 230–236. [Google Scholar] [CrossRef]
- Mukherjee, S.; Maitra, A. Molecular & genetic factors contributing to insulin resistance in polycystic ovary syndrome. Ind. J. Med. Res. 2010, 131, 743–760. [Google Scholar]
- Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat–fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (ζ/λ) activities. Diabetes 2001, 50, 1901–1910. [Google Scholar] [CrossRef] [Green Version]
- Osbak, K.K.; Colclough, K.; Saint-Martin, C.; Beer, N.L.; Bellanné-Chantelot, C.; Ellard, S.; Gloyn, A.L. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 2009, 30, 1512–1526. [Google Scholar] [CrossRef] [PubMed]
- Gospin, R.; Leu, J.P.; Zonszein, J. Diagnostic criteria and classification of diabetes. In Principles of Diabetes Mellitus, 3rd ed.; Springer: Boston, MA, USA, 2017. [Google Scholar] [CrossRef]
- Karnieli, E.; Armoni, M. Transcriptional regulation of the insulin-responsive glucose transporter GLUT4gene: From physiology to pathology. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E38–E45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joost, H.G.; Schürmann, A. The genetic basis of obesity associatedtype2diabetes(diabesity) in polygenic mouse models. Mamm. Genome 2014, 25, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etsassala, N.G.; Ndjoubi, K.O.; Mbira, T.J.; Pearce, B.; Pearce, K.; Iwuoha, E.I.; Hussein, A.A.; Benjeddou, M. Glucose-uptake activity and cytotoxicity of Diterpenes and Triterpenes isolated from Lamiaceae plant species. Molecules 2020, 25, 4129. [Google Scholar] [CrossRef] [PubMed]
- Gamede, M.; Mabuza, L.P.; Ngubane, P.; Khathi, A. The Effects of Plant-Derived Oleanolic Acid on Selected Parameters of Glucose Homeostasis in a Diet-Induced Pre-Diabetic Rat Model. Molecules 2018, 23, 794. [Google Scholar] [CrossRef] [Green Version]
- Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem. 2014, 16, 1923–1938. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, P.; Nisha, J.; Rajalakshmi, M. Virtual screening of potential inhibitor against FtsZ protein from Staphylococcus aureus. Interdiscip. Sci. 2014, 6, 331–339. [Google Scholar] [CrossRef]
- Daisy, P.; Vijayalakshmi, P.; Selvaraj, C.; Singh, S.K.; Saipriya, K. Targeting multidrug resistant mycobacterium tuberculosis HtrA2 with identical chemical entities of fluoroquinolones. Ind. J. Pharm. Sci. 2012, 74, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Narenkumar, J.; Ananthaselvam, A.; Alsalhi, M.S.; Devanesan, S.; Kadier, A.; Kannan, M.M.; Rajasekar, A. Effect of crude methanolic extract of Lawsoniainermis for anti-biofilm on mild steel 1010 and its effect on corrosion in a re-circulating wastewater system. J. King Saud Univ. Sci. 2021, 33, 101611. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.R.; Jamshidi, S.H.; Farhangi, A.; Verdi, S.M.; Rad, B.L. Induction of diabetes by Streptozotocin in rats Indian. J. Clin. Biochem. 2007, 2, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Rajalakshmi, M.; Daisy, P. Process for preparation of a Novel Compound 17-[(E)-4-Ethyl-1’,5’-Dimethyl- 2’-Hexenyl]-11-Hydroxy-5-Hydroxymethyl)-13,14-Dimethyl-5,6,7,11,12,13,14,15,16,17-Decahydro-3hcyclopenta[A]Phenanthren-3-One From Cassia Fistula Stem Barkwith anti-diabetic activity. Intellect. Prop. India-Off. J. 2012, 48, 2012-2879/CHE/2012. [Google Scholar]
- Rajalakshmi, M.; Daisy, P. Process for preparation of a Novel Compound 17-[(e)-1’,5’-dimethyl-2’-hexenyl]-11-hydroxy-5-(hydroxymethyl)-13,14-dimethyl-5,6,7,11,12,13,14,15,16,17-decahydro-3hcyclopenta[a]phenanthren-3-one from Cassia fistula stem bark with anti-diabetic activity. Intellect. Prop. India-Off. J. 2012, 48, 2012-2880/CHE/2012. [Google Scholar]
- Rajalakshmi, M.; Daisy, P. Process for preparation of a Novel Compound 17-[(2E,5E)-4,7-diethyl-l,8-dimethyl-2,5-nonadienyl]-ll-hydroxy-5-(hydroxymethyl)-13,14-dimethyI-5,6,7,ll,12,13,14,15,16,17-decahydro-3H-cyclopenta[a]phenanthren-3-one from Cassia fistula stem bark with anti-diabetic activity. Intellect. Prop. India-Off. J. 2012, 48, 2012-2881/CHE/2012. [Google Scholar]
- Hassid, W.Z.; Abraham, S. Determination of glycogen with an throne reagent. Meth. Enzymol. 1975, 3, 34–37. [Google Scholar]
- Baginsky, E.S.; Foa, P.P.; Zak, B. Methods of Enzymatic Analysis, 2nd ed.; Bergmeyer, H.U., Gawehn, K., Eds.; Academic Press: New York, NY, USA, 1992; Volume 2, pp. 876–880. [Google Scholar]
- Kraft, L.A.; Johnson, A.D. Epididymal carbohydrate metabolism. II. Substrates and pathway utilization of caput and cauda epididymal tissue from the rabbit, rat and mouse. Comp. Biochem. Physiol. B 1972, 42, 451–461. [Google Scholar] [CrossRef]
- Fourney, R.M.; Miyakoshi, J.; Day, R.S.; Paterson, M.C. Northern blotting: Efficient RNA staining and transfer. Focus 1988, 10, 5–7. [Google Scholar]
- Kannan, M.M.; Vanitha, J.; Jiang, S.; Ramachandran, S. Impact of colchicine treatment on sorghum bicolor BT × 623. Mol. Plant. Breed. 2013, 4, 128–135. [Google Scholar] [CrossRef]
- Gonzalez, D.; Quintero-Moreno, A.; Palomares, R.; Rojas, N.; Araujo, O.; Soto, G. Use of Gliricidia sepium in feed supplementation of crossbred heifers and its effect on growth and the onset of puberty. Rev. Cient. 2003, 13, 45–52. [Google Scholar]
- Liu, Y.; Wan, Q.; Gao, L.; Zhao, J. High-fat diet feeding impairs both the expression and activity of AMPKa in rat skeletal muscle. Biochem. Biophys. Res. Commun. 2006, 339, 701–707. [Google Scholar] [CrossRef]
- Peinnequin, A.; Mouret, C.; Birot, O.; Alonso, A.; Mathieu, J.; Clarençon, D.; Agay, D.; Chancerelle, Y.; Multon, E. Rat pro-inflammatory cytokine and cytokine related mRNA real-time polymerase chain reaction using SYBR green. BMC Immunol. 2004, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dombrowski, D.; Roy, D.; Mareotte, B.; Marette, A. A new procedure for the isolation of plasma membrane, T-tubules and internal membranes from skeletal muscles. Am. J. Phys. 1996, 270, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R. Protein Measurement with the Folin Phenol reagement. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Duncan, B.D. Multiple range tests for correlated and heteroscedastic means. Biometrics 1957, 13, 359–364. [Google Scholar] [CrossRef]
Compound | Receptor | Docking Score (kcal/mol) | Docking Energy (kcal/mol) | H-Bond |
---|---|---|---|---|
Novel compound 1 | 1-IRK | −10.57 | −106.28 | SER 1090 ALA 1080 |
Novel compound 2 | 1-IRK | −10.36 | −98.84 | GLN 1004 PHE 1151 |
Novel compound 3 | 1-IRK | −10.21 | −98.01 | ALA 1080 PHE 1151 ASP 1083 |
Novel compound 1 | PPAR-γ | −10.81 | −103.72 | GLN 283 |
Novel compound 2 | PPAR-γ | −10.46 | −95.40 | ASP 260 SER 342 |
Novel compound 3 | PPAR-γ | −10.01 | −96.62 | ASP 260 GLU 343 |
Name of Gene | Primer Sequence | Amplicon Size | Reference |
---|---|---|---|
Rat IR | FW: 5′-GCC ATC CCG AAA GCG AAG ATC-3’ RW: 5′-TCT GGG TCC TGA TTG CAT-3’ | 224 bp | [51] |
Rat IRS-1 | FW: 5’-GCC AAT CTT CAT CCA GTT GCT-3’ RW: 5’-CAT CGT GAA GAA GGC ATA GGG-3’ | 336 bp | [51] |
Rat Akt | FW: 5′-GGA AGC CTT CAG TTT GGA TCC CAA-3′ RW: 5′-AGT GGA AAT CCA GTT CCG AGC TTG-3′ | 146bp | NM_017093.1 |
Rat GLUT4 | FW: 5′-GGG CTG TGA GTG AGT GCT TTC-3′ RW: 5′-CAG CGA GGC AAG GCT AGA-3′ | 150 bp | [52] |
Rat β-actin | FW: 5′-AAG TCC CTC ACC CTC CCA AAA G-3’ RW: 5′-AAG CAA TGC TGT CAC CTT CCC-3’ | 374 bp | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indu, S.; Vijayalakshmi, P.; Selvaraj, J.; Rajalakshmi, M. Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules 2021, 26, 6812. https://doi.org/10.3390/molecules26226812
Indu S, Vijayalakshmi P, Selvaraj J, Rajalakshmi M. Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules. 2021; 26(22):6812. https://doi.org/10.3390/molecules26226812
Chicago/Turabian StyleIndu, Sabapathy, Periyasamy Vijayalakshmi, Jayaraman Selvaraj, and Manikkam Rajalakshmi. 2021. "Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats" Molecules 26, no. 22: 6812. https://doi.org/10.3390/molecules26226812
APA StyleIndu, S., Vijayalakshmi, P., Selvaraj, J., & Rajalakshmi, M. (2021). Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules, 26(22), 6812. https://doi.org/10.3390/molecules26226812