Cell Wall Composition of Hemp Shiv Determined by Physical and Chemical Approaches
Abstract
:1. Introduction
- Chemical fractionation of the biomass to isolate cell wall molecules, by a non-conventional and non-destructive Van Soest version (not the final step of calcination).
- A physical and chemical characterisation of fractions from fractionation called “Van Soest Fractions” by Thermal Gravimetric Analysis (TGA) under argon or oxygen, Elementary Analysis (EA), Fourier Transformed Infrared (FT-IR) and Dynamic Vapor Sorption (DVS).
2. Materials and Methods
2.1. Preparation of Hemp Shiv
2.2. Van Soest Method on Raw Hemp Shiv
2.3. Non-Destructive Van Soest Method and Preparation of Fractions
2.4. Thermal Gravimetric Analysis (TGA)
2.5. Fourier Transformation Infrared Spectroscopy (FT-IR)
2.6. Elemental Analysis (EA)
2.7. Dynamic Vapour Sorption (DVS)
3. Results and Discussions
3.1. Chemical Characterisations
3.1.1. Conventional Van Soest Method
3.1.2. Elementary Analysis
3.1.3. Fourier Transformed InfraRed Spectroscopy (FT-IR)
3.2. Physical Characterisations
3.2.1. Thermal Gravimetric Analysis (TGA)
3.2.2. Dynamic Sorption Vapour (DVS)
4. Conclusions
- The emphasis of complexes between macromolecules in plant matter by their quantities and types.
- A better and detailed determination of hemp shiv chemical composition as highlighted in Figure 8: 2.5 ± 0.6% water, 4.4 ± 0.2% pectins, 42.6 ± 1.0% (Hemicellulose–Cellulose), 18.4 ± 1.6% (Cellulose–Hemicellulose), 29.0 ± 0.8% (Lignin–Cellulose) and 2.0 ± 0.4% linked lignin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Colinart, T.; Glouannec, P.; Chauvelon, P. Influence of the setting process and the formulation on the drying of hemp concrete. Constr. Build. Mater. 2012, 30, 372–380. [Google Scholar] [CrossRef]
- Arnaud, L.; Gourlay, E. Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Glé, P.; Gourdon, E.; Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 2011, 72, 249–259. [Google Scholar] [CrossRef]
- Delannoy, G.; Marceau, S.; Glé, P.; Gourlay, E.; Gueguen Minerbe, M.; Diafi, D.; Aamziane, S.; Farcas, F. Impact of hemp shiv extractives on hydration of portland cement. Constr. Build. Mater. 2020, 244, 118300. [Google Scholar] [CrossRef]
- Glé, P.; Lecompte, T.; Hélloin de Ménibus, A.; Lenormand, H.; Arufe, S.; Château, C.; Vanessa, F.; Celzard, A. Densities of hemp shiv for building: From multiscale characterization to application. Ind. Crops Prod. 2021, 164, 113390. [Google Scholar] [CrossRef]
- Pinthiaux, T.; Viet, D.; Vanderbossche, V.; Rigal, L.; Rouilly, A. Binderless materials obtained by thermo-compressive processing of lignocellulosic fibers: A comprehensive review. BioResources 2015, 10, 1915–1963. [Google Scholar]
- Diquélou, Y.; Gourlay, E.; Arnaud, L.; Kurek, B. Impact of hemp shiv on cement setting and hardening: Influence of the extracted components from the aggregates and study of the interfaces with the inorganic matrix. Cem. Concr. Compos. 2015, 55, 112–121. [Google Scholar] [CrossRef]
- Wang, L.; Lenormand, H.; Zmamou, H.; Leblanc, N. Effect of soluble components from plant aggregates on the setting of the lime base binder. J. Renew. Mater. 2019, 7, 903–913. [Google Scholar] [CrossRef]
- Wang, L.; Lenormand, L.; Zmamou, H.; Leblanc, N. Effect of variability of hemp shiv on the setting of lime hemp concrete. Ind. Crops Prod. 2021, 171, 113915. [Google Scholar] [CrossRef]
- Viel, M.; Collet, F.; Lanos, C. Chemical and multi-physical characterization of agro-ressources by product as a possible raw building material. Ind. Crops Prod. 2018, 120, 214–237. [Google Scholar] [CrossRef]
- Arufe, S.; Hellouin de Menibus, A.; Leblanc, N.; Lenormand, H. Physico-chemical characterisation of plant particules with potential to produce biobased building materials. Ind Crops Prod. 2021, 171, 113901. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Int. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hussain, A.; Calabria-Holley, J.; Jiang, Y.; Lawrence, M. Development of novel building composites based on hemp and multi-functional silica matrix. J. Solgel Sci. Technol. 2018, 86, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Vignon, M.R.; Garcia-Jaldon, C.; Dupeyre, D. Steam explosion of woody hemp chènevotte. Int. J. Biol. Macromol. 1995, 17, 395–404. [Google Scholar] [CrossRef]
- Thomsen, A.B.; Rasmussen, S.K.; Bohn, V.; Nielsen, K.V.; Thygesen, A. Hemp Raw Materials: The Effect of Cultivar, Growth Conditions and Pretreatment on the Chemical Composition of the Fibres; Risø DTU-National Laboratory for Sustainable Energy: Roskilde, Denmark, 2005. [Google Scholar]
- Gandolfi, S.; Ottolina, G.; Riva, S.; Pedrocchi Fantoni, G.; Patel, I. Complete Chemical Analysis of Carmagnola Hemp Hurds and Structural Features of Its Components. BioResources 2013, 8, 2641–2656. [Google Scholar] [CrossRef]
- Garcia-Jaldon, C. Caractérisation Morphologique et Chimique du Chanvre (Cannabis sativa): Prétraitement à la Vapeur et Valorisation. Ph.D. Thesis, University Joseph Fourier, Grenoble, France, 1995. [Google Scholar]
- Arufe, S.; Hellouin de Menibus, A.; Leblanc, N.; Lenormand, H. Effect of retting on hemp shiv physicochemical properties. Ind. Crops Prod. 2021, 171, 113911. [Google Scholar] [CrossRef]
- Cappelletto, P.; Brizzi, M.; Mongardini, F.; Barberi, B.; Sannibale, M.; Nenci, G.; Poli, M.; Corsi, G.; Grassi, G.; Pasini, P. Italy-grown hemp: Yield, composition and cannabinoid content. Ind. Crops Prod. 2001, 13, 101–113. [Google Scholar] [CrossRef]
- Godin, B.; Ghysel, F.; Agneessens, R.; Schmit, T.; Gofflot, S.; Lamaudière, S.; Sinnaeve, G.; Goffart, J.-P.; Gerin, P.A.; Stilmant, D.; et al. Détermination de la cellulose, des hémicelluloses, de la lignine et des cendres dans diverses cultures lignocelluosiques dédiées à la production de bioéthanol de deuxième génération. Biotechnol. Agron. Soc. Environ. 2010, 14, 549–560. [Google Scholar]
- Godin, B.; Agneessens, R.; Gofflot, S.; Lamaudière, S.; Sinnaeve, G.; Gerin, P.A.; Delcare, J. Revue bibliographique sur les méthodes d’analyse des polysaccharides structuraux des biomasses lignocellulosiques. Biotechnol. Agron. Soc. Environ. 2011, 15, 165–182. [Google Scholar]
- Jeffries, T.W. Biodegradation of lignin-carbohydrate complexes. Biodegradation 1990, 1, 163–176. [Google Scholar] [CrossRef]
- Kang, X.; Kirui, A.; Dickwella Widanage, M.C.; Mentink-Vigier, F.; Cosgrove, D.J.; Wang, T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 2019, 10, 347. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shakeel, U.; Saif Ur Rehman, M.; Li, H.; Xu, X.; Xu, J. Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. J. Clean. Prod. 2020, 253, 120076. [Google Scholar] [CrossRef]
- Yaich, A.I.; Edlund, U.; Albertsson, A.-C. Transfer of Biomatrix/Wood Cell Interactions to Hemicellulose-Based Materials to Control Water Interaction. Chem. Rev. 2017, 117, 8177–8207. [Google Scholar] [CrossRef]
- Tarasov, D.; Leitch, M.; Fatehi, P. Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnol. Biofuels 2018, 11, 269. [Google Scholar] [CrossRef] [Green Version]
- Golestani, J. Extraction of Hemicelluloses from Softwood and Hardwood Cellulosic Fibers by Enzymatic Treatments. Ph.D. Thesis, University of Grenoble Alpes, Grenoble, France, 2020. [Google Scholar]
- Arufe, S.; Sineiro, J.; Moreira, R. Determination of thermal transitions of gluten-free chestnut flour doughs enriched with brown seaweed powders and antioxidant properties of baked cookies. Heliyon 2019, 5, e01805. [Google Scholar] [CrossRef] [Green Version]
- Brebu, M.; Vasile, C. Thermal Degradation of Lignin—A Review. Cell. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Tarabanko, V.E.; Tarabanko, N. Catalytic Oxidation of Lignin into the Aromatic Aldehydes: General Process Trends and Development Prospects. Int. J. Mol. Sci. 2017, 18, 2421. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmet, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Jiang, Y.; Lawrence, M.; Hussain, A.; Ansell, M.; Walker, P. Comparative moisture and heat sorption properties of fibre and shiv derived from hemp and flax. Cellulose 2019, 26, 823–843. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.W. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 2009, 157, 174–209. [Google Scholar] [CrossRef] [PubMed]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 2010, 1, 36–50. [Google Scholar]
- Brazdausks, P.; Tupciauskas, R.; Andzs, M.; Rizhikovs, J.; Puke, M.; Paze, A.; Meile, C.; Vedernikovs, N. Preliminary study of the biorefinery concept to obtain furfural and binder-less panels from hemp (Cannabis sativa L.) shives. Energy Procedia 2015, 72, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, G.; Behr, M.; Legay, S.; Mangeot-Peter, L.; Zorzan, S.; Ghoniem, M.; Hausman, J.F. Transcriptomic profiling of hemp bast fibres at different developmental stages. Sci. Rep. 2017, 7, 4961. [Google Scholar] [CrossRef] [Green Version]
- Ross, K.; Mazza, G. Characteristics of lignin from flax shives as affected by extraction conditions. Int. J. Mol. Sci. 2010, 11, 4035–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, H.; Shimomura, K.; Okazaki, K. Carbonate formation during pyrolysis under CO2 and its effect on char oxidation. Proc. Combust. Inst. 2014, 35, 2423–2430. [Google Scholar] [CrossRef]
- Cao, J.; Xiao, G.; Xu, X.; Shen, D.; Jin, B. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process. Technol. 2013, 106, 41–47. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Wesner, K.; Pommer, L.; Broström, M. Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 2014, 110, 130–137. [Google Scholar] [CrossRef]
- Shen, D.; Zhang, L.; Xue, J.; Guan, S.; Liu, Q.; Xiao, R. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions. Renew. Sustain. Energy Rev. 2015, 127, 363–371. [Google Scholar] [CrossRef]
- Silva, G.B.; Ionashiro, M.; Carrara, T.B.; Crivellari, A.C.; Tiné, M.A.; Prado, J.; Carpita, N.C.; Buckeridge, M.S. Cell wall polysaccharides from fern leaves: Evidence for mannan-rich type III cell wall in Adiantum raddianum. Phytochemistry 2011, 72, 2352–2360. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, W.; Mabon, R.; Broadbelt, L.J. A Critical Review on Hemicellulose Pyrolysis. Energy Technol. 2016, 4, 1–29. [Google Scholar] [CrossRef]
- Hu, B.; Xie, W.-L.; Li, H.; Li, K.; Qiang, L.; Yang, Y.-P. On the mechanism of xylan pyrolysis by combined experimental and computational approaches. Proc. Combust. Inst. 2021, 38, 4215–4223. [Google Scholar] [CrossRef]
- Usino, D.O.; Supriyanto, S.; Ylitervo, P.; Pettersson, A.; Richards, T. Influence of temperature and time on initial pyrolysis of cellulose and xylan. J. Anal. Appl. Pyrolysis 2020, 147, 104782. [Google Scholar] [CrossRef]
- Kymäläinen, H.R.; Sjöberg, A.M. Flax and Hemp Fibres as Raw Materials for Thermal Insulations. Build. Environ. 2008, 43, 1261–1269. [Google Scholar] [CrossRef]
- McNaught, A.D.; Wilkinson, A. IUPAC Compendium of Chemical Terminology, 2nd ed.; The Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar]
- Collet, F.; Bart, M.; Serres, L.; Miriel, J. Porous structure and water vapour sorption of hemp-based materials. Constr. Build. Mater. 2008, 22, 1271–1280. [Google Scholar] [CrossRef]
- Mathlouthi, M. Water content, water activity, water structure and stability of foodstuffs. Food Control 2001, 12, 409–417. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
References | Cellulose | Hemicellulose | Lignin | Soluble Compounds | Proteins | Ashes |
---|---|---|---|---|---|---|
Hussain et al., 2018 [13] | 44.0 | 18.0–27.0 | 22.0–28.0 | 1.0–6.0 | - | 1.0–2.0 |
Vignon et al., 1995 [14] | 44.0 | 18.0 | 28.0 | 5.0 | 3.0 | 2.0 |
Thomsen et al., 2005 [15] | 48.0 | 21.0–25.0 | 17.0–19.0 | - | - | - |
Gandolfi et al., 2013 [16] | 44.0 | 25.0 | 23.0 | 4.0 | 1.2 | |
Garcia-Jaldon, 1995 [17] | 48.0 | 12.0 | 28.0 | 7.0 | 3.0 | 2.0 |
Arufe et al., 2021 [11] | 49.0 | 21.6 | 8.1 | 17.2 | 4.1 | |
Arufe et al., 2021 [18] | 46.1 | 21.5 | 8.5 | 21.1 | 2.8 | |
Cappelletto et al., 2001 [19] | 51.6 | 21.5 | 12.9 | 12.9 | 6.6 | |
Godin et al., 2010 [20] | 47.5 | 6.4 | 8.0 | 29.4 | 8.8 | |
Viel et al., 2018 [10] | 49.9 | 21.4 | 9.5 | 17.7 | 0.6 |
Nomenclature | 1st Derivative | 2nd Derivative |
---|---|---|
To | dm/dT = 0 | Inflexion point of d2m/dT2 vs. T |
Tp | LM | d2m/dT2 = 0 |
Tf | dm/dT = 0 | Inflexion point of d2m/dT2 vs. T |
Cellulose | Hemicellulose | Soluble Compounds | Lignin | Ashes | |
---|---|---|---|---|---|
Dry basis (g ×/100 g dry mass) | 49.0 ± 2.8 | 21.5 ± 1.7 | 18.6 ± 0.8 | 8.1 ± 0.6 | 2.8 ± 0.1 |
Organic mass (g ×/100 g organic mass) | 50.4 ± 2.8 | 22.2 ± 1.8 | 19.1 ± 0.8 | 8.3 ± 0.6 | - |
% Carbon | % Hydrogen | % Nitrogen | % Sulfur | % Oxygen Calculated | |
---|---|---|---|---|---|
Control | 45.5 ± 0.1 | 6.2 ± 0.1 | 0.01 ± 0.01 | 0.05 ± 0.1 | 48.3 ± 0.1 |
FA | 44.9 ± 0.1 | 6.3 ± 0.1 | 0.01 ± 0.01 | 0.01 ± 0.1 | 48.7 ± 0.1 |
FB | 46.1 ± 0.1 | 6.3 ± 0.2 | 0.01 ± 0.01 | 0 | 47.5 ± 0.1 |
FC | 53.3 ± 0.5 | 5.4 ± 0.1 | 0.03 ± 0.01 | 1.86 ± 0.1 | 39.4 ± 0.2 |
Cell Wall Compounds | Control | FA | FB | FC | |
---|---|---|---|---|---|
Argon | Water | 2.7 ± 0.8 (40–140 °C) | 2.0 ± 0.1 (45–130 °C) | 1.2 ± 0.2 (40–130 °C) | 2.3 ± 1.2 (40–130 °C) |
Pectins | 3.5 ± 0.6 (140–220 °C) | 83.8 ± 1.2 (180–510 °C) | 4.0 ± 0.3 (130–230 °C) | ||
(Hemicellulose–Cellulose) | 24.7 ± 4.6 (220–300 °C) | 23.5 ± 2.1 (190–330 °C) | 8.6 ± 1.1 (260–345 °C) | ||
(Lignin–Cellulose) | 38.8 ± 6.4 (300–420 °C) | 53.7 ± 3.4 (330–500 °C) | 17.6 ± 1.0 (345–450 °C) | ||
Oxygen | Water | 2.5 ± 0.6 (40–120 °C) | 2.0 ± 0.0 (45–150 °C) | 1.5 ± 0.1 (40–115 °C) | 3.0 ± 0.1 (45–140 °C) |
Pectins | 4.4 ± 0.2 (150–220 °C) | 74.6 ± 0.2 (160–360 °C) | 80.3 ± 1.0 (180–385 °C) | 5.2 ± 0.3 (145–230 °C) | |
(Hemicellulose–Cellulose) | 42.6 ± 1.0 (220–285 °C) | 19.7 ± 10.7 (230–300 °C) | |||
(Cellulose–Hemicellulose) | 18.4 ± 1.6 (285–310 °C) | 26.4 ± 1.9 (300–355 °C) | |||
(Lignin–Cellulose) | 29.0 ± 0.8 (310–400 °C) | 22.7 ± 0.3 (360–430 °C) | 16.6 ± 0.9 (410–500 °C) | 48.3 ± 3.8 (350–540 °C) | |
Lignin | 2.0 ± 0.4 (400–430 °C) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diakité, M.-S.; Lenormand, H.; Lequart, V.; Arufe, S.; Martin, P.; Leblanc, N. Cell Wall Composition of Hemp Shiv Determined by Physical and Chemical Approaches. Molecules 2021, 26, 6334. https://doi.org/10.3390/molecules26216334
Diakité M-S, Lenormand H, Lequart V, Arufe S, Martin P, Leblanc N. Cell Wall Composition of Hemp Shiv Determined by Physical and Chemical Approaches. Molecules. 2021; 26(21):6334. https://doi.org/10.3390/molecules26216334
Chicago/Turabian StyleDiakité, Maya-Sétan, Hélène Lenormand, Vincent Lequart, Santiago Arufe, Patrick Martin, and Nathalie Leblanc. 2021. "Cell Wall Composition of Hemp Shiv Determined by Physical and Chemical Approaches" Molecules 26, no. 21: 6334. https://doi.org/10.3390/molecules26216334
APA StyleDiakité, M. -S., Lenormand, H., Lequart, V., Arufe, S., Martin, P., & Leblanc, N. (2021). Cell Wall Composition of Hemp Shiv Determined by Physical and Chemical Approaches. Molecules, 26(21), 6334. https://doi.org/10.3390/molecules26216334