Efficacy of Precocene I from Desmosstachya bipinnata as an Effective Bioactive Molecules against the Spodoptera litura Fab. and Its Impact on Eisenia fetida Savigny
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Sample Collection
2.3. Crude Extract Preparation
2.4. Isolation of Bioactive Compound
2.5. Fourier Transform Infrared Spectroscopy Analysis
2.6. NMR Analysis
2.7. Insect Culture
2.8. Mortality Bioassay
2.9. Development Studies
2.10. Antifeedant Activity
2.11. Histology Study
2.12. Earthworm Culture
2.13. Non-Target Acute Toxicity Assay
2.14. Statistical Analysis
3. Results
3.1. Identification of Db-Precocene I
3.2. Mortality Bioassay
3.3. Development Studies of S. litura
3.4. Antifeedant Activity
3.5. Earthworm Toxicity
3.6. Histology
3.7. FT-IR
3.8. HPLC
3.9. NMR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ridolfi, C.; Hoffman, V.; Baral, S. Post-Harvest Losses: Global Scale, Solutions, and Relevance to Ghana; International Food Policy Research Institute: Washington, DC, USA, 2018. [Google Scholar]
- Srivastava, P.; Singh, R.; Tripathi, S.; Raghubanshi, A.S. An urgent need for sustainable thinking in agriculture—An Indian scenario. Ecol. Indic. 2016, 67, 611–622. [Google Scholar] [CrossRef]
- Marchand, P.A. Synthetic agrochemicals: A necessary clarification about their use exposure and impact in crop protection. Environ. Sci. Pollut. Res. 2019, 26, 17996–18000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibanez, S.; Gallet, C.; Després, L. Plant Insecticidal Toxins in Ecological Networks. Toxins 2012, 4, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Senthil-Nathan, S. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front. Physiol. 2013, 4, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senthil-Nathan, S. A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents Against Mosquitoes. Front. Physiol. 2020, 10, 1591. [Google Scholar] [CrossRef]
- Chellappandian, M.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Karthi, S.; Thanigaivel, A.; Ponsankar, A. Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ. Internat. 2018, 113, 214–230. [Google Scholar] [CrossRef]
- Exley, C.; Guerriero, G. A reappraisal of biological silicification in plants? New Phytol. 2019, 223, 511–513. [Google Scholar] [CrossRef] [Green Version]
- Vonzun, S.; Messmer, M.M.; Boller, T.; Shrivas, Y.; Patil, S.S.; Riar, A. Extent of Bollworm and Sucking Pest Damage on Modern and Traditional Cotton Species and Potential for Breeding in Organic Cotton. Sustainability 2019, 11, 6353. [Google Scholar] [CrossRef] [Green Version]
- Senthil-Nathan, S.; Kalaivani, K. Efficacy of nucleopolyhedrovirus (NPV) and azadirachtin on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Biol. Control 2005, 34, 93–98. [Google Scholar] [CrossRef]
- Edwin, E.-S.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Chellappandian, M.; Karthi, S.; Narayanaswamy, R.; Stanley-Raja, V.; Sivanesh, H.; Ramasubramanian, R.; Al-Huqail, A.A.; et al. Toxicity of Bioactive Molecule Andrographolide against Spodoptera litura Fab and Its Binding Potential with Detoxifying Enzyme Cytochrome P450. Molecules 2021, 26, 5982. [Google Scholar] [CrossRef]
- CABI 2019. Datasheet 44520. Spodoptera litura (Taro Caterpillar). Available online: https://www.cabi.org/isc/datasheet/44520 (accessed on 12 October 2019).
- Nagoshi, R.N.; Ni Htain, N.; Boughton, D.; Zhang, L.; Xiao, Y.; Nagoshi, B.Y.; Mota-Sanchez, D. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 2020, 10, 1421. [Google Scholar] [CrossRef] [Green Version]
- Hadapad, A.; Chaudhari, C.S.; Kulye, M.; Chaudele, A.G.; Salunkhe, G.N. Studies on chitin synthesis inhibitors against gram pod borer, Helicoverpa armigera (Hub.). J. Nat. Con. 2001, 13, 137–140. [Google Scholar]
- Ulrichs, C.h.; Mewis, I. Seasonal abundance of two armyworm species, Spodoptera exigua (Hübner) and Spodoptera litura (F.) in the Philippines. Commun. Agric. Appl. Biol. Sci. 2004, 69, 323–328. [Google Scholar]
- Senthil-Nathan, S. Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 2006, 84, 98–108. [Google Scholar] [CrossRef]
- Mallikarjuna, N.; Kranthi, K.R.; Jadhav, D.R.; Kranthi, S.; Chandra, S. Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. J. Appl. Entomol. 2004, 128, 321–328. [Google Scholar] [CrossRef]
- Ateyyat, M.; Abu-Romman, S.; Abu-Darwish, M.; Ghabeish, I. Impact of Flavonoids against Woolly Apple Aphid, Eriosoma lanigerum (Hausmann) and Its Sole Parasitoid, Aphelinus mali (Hald.). J. Agric. Sci. 2012, 4, 227. [Google Scholar] [CrossRef]
- Wightman, J.A.; Amin, P.W. Groundnut pests and their control in the semi-arid tropics. Trop. Pest Manag. 1988, 34, 218–226. [Google Scholar] [CrossRef]
- Dinesh-Kumar, A.; Srimaan, E.; Chellappandian, M.; Vasantha-Srinivasan, P.; Karthi, S.; Thanigaivel, A.; Ponsankar, A.; Chanthini, K.M.-P.; Shyam-Sundar, N.; Annamalai, M.; et al. Target and non-target response of Swietenia Mahagoni Jacq. chemical constituents against tobacco cutworm Spodoptera litura Fab. and earthworm, Eudrilus eugeniae Kinb. Chemosphere 2018, 199, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Senthil-Nathan, S.; Kalaivani, K. Combined effects of azadirachtin and nucleo polyhedrovirus (SpltNPV) on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) larvae. Biol. Control. 2006, 39, 96–104. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Revathi, K.; Nisha, S.; Kirubakaran, S.A.; Sathish-Narayanan, S.; Senthil-Nathan, S. Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic. Biochem. Physiol. 2012, 104, 65–71. [Google Scholar] [CrossRef]
- Grzywacz, D.; Richards, A.; Rabindra, R.J.; Saxena, H.; Rupela, O.P. Efficacy of biopesticides and natural plant products for H. armigera control. In Heliothis/Helicoverpa Management—Emerging Trends and Strategies for Future Research; Sharma, H.C., Ed.; Oxford & IBH: New Delhi, India, 2005; pp. 371–389. [Google Scholar]
- Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Thanigaivel, A.; Edwin, E.-S.; Ponsankar, A.; Selin-Rani, S.; Pradeepa, V.; Sakthi-Bhagavathy, M.; Kalaivani, K.; Hunter, W.B.; et al. Developmental response of Spodoptera litura Fab. to treatments of crude volatile oil from Piper betle L. and evaluation of toxicity to earthworm, Eudrilus eugeniae Kinb. Chemosphere 2016, 155, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Wightman, J.A.; Dick, K.M.; Rao, G.V.R.; Shanower, T.C.; Gold, C.G. Pests of groundnut in semi-arid tropics. In Insect Pests of Tropical Food Legumes; Singh, S.R., Ed.; J. Wiley & Sons: Chichester, UK, 1990; pp. 243–322. [Google Scholar]
- Gandhi, K.; Patil, R.H.; Srujana, Y. Field resistance of Spodoptera litura (Fab.) to conventional insecticides in India. Crop Prot. 2016, 88, 103–108. [Google Scholar]
- Karthi, S.; Vaideki, K.; Shivakumar, M.S.; Ponsankar, A.; Thanigaivel, A.; Chellappandian, M.; Vasantha-Srinivasan, P.; Chanthini, K.M.; Hunter, W.B.; Senthil-Nathan, S. Effect of on the mortality of Aspergillus flavus and activity of antioxidant enzymes of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae. Pestic. Biochem. Physiol. 2018, 149, 54–60. [Google Scholar] [CrossRef]
- Awaad, A.S.; Mohamed, N.H.; Maitland, D.J.; Soliman, G.A. Anti-ulcerogenic activity of extract and some isolated flavonoids from Desmostachia bipinnata (L.) Stapf. Rec. Nat Prod. 2008, 2, 76–82. [Google Scholar]
- Ramadan, M.A.; Safwat, N.A. Antihelicobacter activity of aflavonoid compound isolated from Desmostachya bipinnata. Aust. J. Basic Appl. Sci. 2009, 3, 2270–2277. [Google Scholar]
- Golla, U.; Bhimathati, S.S.R. Evaluation of Antioxidant and DNA Damage Protection Activity of the Hydroalcoholic Extract ofDesmostachya bipinnataL. Stapf. Sci. World J. 2014, 2014, 215084. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Choudhury, N.S.K.; Patro, V.J.; Pradhan, D.K.; Jana, G.K. Analgesic, antipyretic and anti-inflammatory effect of the whole plant extract of Desmostachya bipinnata Stapf (Poaceae) in albino rats. Drug Invent. Today 2009, 1, 150–153. [Google Scholar]
- Joshi, K.; Mandavia, M.; Golakiya, B. Comparative Study of Phytochemical Analysis, Antimicrobial and Antioxidant Activity of Different Root Extracts of Desmostachya bipinnata Stapf (Kush). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Lavelle, P.; Spain, A.V. Soil Ecology; Kluwer: London, UK, 2001. [Google Scholar]
- ISO. Soil Quality-Effect of Pollutants on Earthworms (Eisenia fetida): Part 2: Determination of Effect on Reproduction; Guideline DIS11268-2; International Standards Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Lin, L.J.; Zhu, X.M.; Shao, J.R.; Jiang, X.J.; Yang, Y.X. Effect of compound pollution of Zinc and chromium on soil enzyme activity at different growth stages of rice plant. J. Nuclear Agric. Sci. 2007, 21, 623–629. [Google Scholar]
- Wu, S.; Zhang, H.; Zhao, S.; Wang, J.; Li, H.; Chen, J. Biomarker responses of earthworms (Eisenia fetida) exposured to phenanthrene and pyrene both singly and combined in microcosms. Chemosphere 2012, 87, 285–293. [Google Scholar] [CrossRef]
- Sforzini, S.; Boeri, M.; Dagnino, A.; Oliveri, L.; Bolognesi, C.; Viarengo, A. Genotoxicity assessment in Eisenia and reicoelomocytes: A study of the induction of DNA damage and micronuclei in earthworms exposed to B[a]P and TCDD-spiked soils. Mutat. Res. 2012, 746, 35–41. [Google Scholar] [CrossRef]
- Reinecke, S.; Reinecke, A. Biomarker response and biomass change of earthworms exposed to chlorpyrifos in microcosms. Ecotoxicol. Environ. Saf. 2007, 66, 92–101. [Google Scholar] [CrossRef]
- OECD. Earthworm Acute Toxicity Tests. Chemicals Testing Guideline 207; Organization for Economic Cooperation and Development (OECD) Publications: Paris, France, 1984. [Google Scholar]
- Ponsankar, A.; Sahayaraj, K.; Senthil-Nathan, S.; Vasantha-Srinivasan, P.; Karthi, S.; Thanigaivel, A.; Petchidurai, G.; Madasamy, M.; Hunter, W.B. Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Environ. Sci. Pollut. Res. 2019, 27, 23390–23401. [Google Scholar] [CrossRef] [PubMed]
- Rattanapan, A.; Visetson, S.; Milne, J.; Ngernsiri, L.; Sudthongkong, C.; Bullangpoti, V. Molecular detection of gene responsible for expression of detoxification enzyme in Spodoptera litura (F.). In Proceedings of the 7th National Plant Protection, Cheing Mai, Thailand, 27 March 2012. [Google Scholar]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: London, UK, 1971; p. 383. [Google Scholar]
- Selin-Rani, S.; Senthil-Nathan, S.; Revathi, K.; Chandrasekaran, R.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Ponsankar, A.; Edwin, E.S.; Pradeepa, V. Toxicity of Alangium salvifolium Wang chemical constituents against the tobacco cutworm Spodoptera litura Fab. Pestic. Biochem. Physiol. 2016, 126, 92–101. [Google Scholar] [CrossRef]
- Nathan, S.S.; Sehoon, K. Effects of Melia azedarach L. extract on the teak defoliator Hyblaea puera Cramer (Lepidoptera: Hyblaeidae). Crop. Prot. 2006, 25, 287–291. [Google Scholar] [CrossRef]
- Sadek, M.M. Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis (Lep., Noctuidae). J. Appl. Entomol. 2003, 127, 396–404. [Google Scholar] [CrossRef]
- Raymond, D.N.; Omar, F.; Mady, N.; Abdoulaye, D.; Joseacute, M.A. Toxic effects of neem products (Azadirachta indica A. Juss) on Aedes aegypti Linnaeus 1762 larvae. Afr. J. Biotechnol. 2007, 6, 2846–2854. [Google Scholar] [CrossRef]
- Pradeepa, V.; Sathish-Narayanan, S.; Kirubakaran, S.A.; Thanigaivel, A.; Senthil-Nathan, S. Toxicity of aristolochic acids isolated from Aristolochia indica Linn (Aristolochiaceae) against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Exp. Parasitol. 2015, 153, 8–16. [Google Scholar] [CrossRef]
- Senthil-Nathan, S. A review of bio pesticides and their mode of action against insect pests. In Environmental Sustainability—Role of Green Technologies; Springer-Verlag: Berlin, Germany, 2015; pp. 49–63. [Google Scholar]
- Singh, B.; Kaur, T.; Kaur, S.; Manhas, R.K.; Kaur, A. Insecticidal potential of an endophytic Cladosporium velox against Spodoptera litura mediated through inhibition of alpha glycosidases. Pestic. Biochem. Physiol. 2016, 131, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Edwin, E.-S.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Thanigaivel, A.; Ponsankar, A.; Pradeepa, V.; Selin-Rani, S.; Kalaivani, K.; Hunter, W.B.; Abdel-Megeed, A.; et al. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop. 2016, 163, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Senthil-Nathan, S.; Choi, M.-Y.; Paik, C.-H.; Kalaivani, K. The toxicity and physiological effect of goniothalamin, a styryl-pyrone, on the generalist herbivore, Spodoptera exigua Hübner. Chemosphere 2008, 72, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Taning, C.N.T.; Bonneure, E.; Mangelinckx, S.; Smagghe, G.; Shah, M.M. Insecticidal activity of plant-derived extracts against different economically important pest insects. Phytoparasit 2017, 45, 113–124. [Google Scholar] [CrossRef]
- Ayil-Gutiérrez, B.A.; Teyer, L.F.S.; Vazquez-Flota, F.; Monforte-González, M.; Tamayo-Ordóñez, Y.; Tamayo-Ordóñez, M.C.; Rivera, G. Biological effects of natural products against Spodoptera spp. Crop. Prot. 2018, 114, 195–207. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Seada, M.A.; Ignell, R.; Al Assiuty, A.N.; Anderson, P. Functional Characterization of the Gustatory Sensilla of Tarsi of the Female Polyphagous Moth Spodoptera littoralis. Front. Physiol. 2018, 9, 1606. [Google Scholar] [CrossRef]
- Yazdani, E.; Sendi, J.J.; Aliakbar, A.; Senthil-Nathan, S. Effect of Lavandula angustifolia essential oil against lesser mulberry pyralid Glyphodes pyloalis Walker (Lep: Pyralidae) and identification of its major derivatives. Pestic. Biochem. Physiol. 2013, 107, 250–257. [Google Scholar] [CrossRef]
- Sollai, G.; Crnjar, R. The contribution of gustatory input to larval acceptance and female oviposition choice of potential host plants in Papilio hospiton (Géné). Arch. Insect Biochem. Physiol. 2019, 100, e21521. [Google Scholar] [CrossRef] [Green Version]
- Nathan, S.S.; Kalaivani, K.; Murugan, K.; Chung, P.G. The toxicity and physiological effect of neem limonoids on Cnaphalocrocis medinalis (Guenée) the rice leaffolder. Pestic. Biochem. Physiol. 2005, 81, 113–122. [Google Scholar] [CrossRef]
- Yooboon, T.; Pengsook, A.; Ratwatthananon, A.; Pluempanupat, W.; Bullangpoti, V. A plant-based extract mixture for controlling Spodoptera litura (Lepidoptera: Noctuidae). Chem. Biol. Technol. Agric. 2019, 6, 5. [Google Scholar] [CrossRef]
- Ponsankar, A.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Thanigaivel, A.; Edwin, E.-S.; Selin-Rani, S.; Kalaivani, K.; Hunter, W.B.; Alessandro, R.T.; Abdel-Megeed, A.; et al. Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol. Environ. Saf. 2016, 133, 260–270. [Google Scholar] [CrossRef]
- Jeyasankar, A.; Raja, N.; Ignacimuthu, S. Antifeedant and growth inhibitory activities of Syzygium lineare against Spodoptera litura (Lep: Noct). Curr. Res. J. Biol. Sci. 2010, 2, 173–177. [Google Scholar]
- Kamaraj, C.; Rahuman, A.A.; Bagavan, A. Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol. Res. 2008, 103, 325–331. [Google Scholar] [CrossRef]
- Srivastava, S.; Kumar, K. Juvenilizing effects of ethoxy precocene in a lepidopteran insect. Indian J. Exp. Biol. 1999, 37, 379–383. [Google Scholar]
- Zhou, F.; Zhu, G.; Zhao, H.; Wang, Z.; Xue, M.; Li, X.; Xu, H.; Ma, X.; Liu, Y. Sterilization Effects of Adult-targeted Baits Containing Insect Growth Regulators on Delia antiqua. Sci. Rep. 2016, 6, 32855. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, G.; Kachhwaha, N.; Dabi, I. Comparative studies on carbofuran-induced changes in some cytoplasmic and mitochondrial enzymes and proteins of epigeic, anecic and endogeic earthworms. Pestic. Biochem. Physiol. 2010, 96, 30–35. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundar, N.S.; Karthi, S.; Sivanesh, H.; Stanley-Raja, V.; Chanthini, K.M.-P.; Ramasubramanian, R.; Ramkumar, G.; Ponsankar, A.; Narayanan, K.R.; Vasantha-Srinivasan, P.; et al. Efficacy of Precocene I from Desmosstachya bipinnata as an Effective Bioactive Molecules against the Spodoptera litura Fab. and Its Impact on Eisenia fetida Savigny. Molecules 2021, 26, 6384. https://doi.org/10.3390/molecules26216384
Sundar NS, Karthi S, Sivanesh H, Stanley-Raja V, Chanthini KM-P, Ramasubramanian R, Ramkumar G, Ponsankar A, Narayanan KR, Vasantha-Srinivasan P, et al. Efficacy of Precocene I from Desmosstachya bipinnata as an Effective Bioactive Molecules against the Spodoptera litura Fab. and Its Impact on Eisenia fetida Savigny. Molecules. 2021; 26(21):6384. https://doi.org/10.3390/molecules26216384
Chicago/Turabian StyleSundar, Narayanan Shyam, Sengodan Karthi, Haridoss Sivanesh, Vethamonickam Stanley-Raja, Kanagaraj Muthu-Pandian Chanthini, Ramakrishnan Ramasubramanian, Govindaraju Ramkumar, Athirstam Ponsankar, Kilapavoor Raman Narayanan, Prabhakaran Vasantha-Srinivasan, and et al. 2021. "Efficacy of Precocene I from Desmosstachya bipinnata as an Effective Bioactive Molecules against the Spodoptera litura Fab. and Its Impact on Eisenia fetida Savigny" Molecules 26, no. 21: 6384. https://doi.org/10.3390/molecules26216384
APA StyleSundar, N. S., Karthi, S., Sivanesh, H., Stanley-Raja, V., Chanthini, K. M. -P., Ramasubramanian, R., Ramkumar, G., Ponsankar, A., Narayanan, K. R., Vasantha-Srinivasan, P., Alkahtani, J., Alwahibi, M. S., Hunter, W. B., Senthil-Nathan, S., Patcharin, K., Abdel-Megeed, A., Shawer, R., & Ghaith, A. (2021). Efficacy of Precocene I from Desmosstachya bipinnata as an Effective Bioactive Molecules against the Spodoptera litura Fab. and Its Impact on Eisenia fetida Savigny. Molecules, 26(21), 6384. https://doi.org/10.3390/molecules26216384