New Polyesterified Ursane Derivatives from Leaves of Maesa membranacea and Their Cytotoxic Activity
Abstract
:1. Introduction
2. Results
2.1. Structure Elucidation
2.2. Cytotoxic Activity
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Plant Material
4.3. Extraction and Isolation of 1–4
Characterization of the Isolated Compounds 1–4
4.4. Cell Culture and Cytotoxicity Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
1D NMR | One-dimensional nuclear magnetic resonance spectroscopy |
2D NMR | Two-dimensional nuclear magnetic resonance spectroscopy |
CC | Conventional column chromatography |
CDCl3 | Deuterated chloroform |
COSY | Correlation spectroscopy (2D NMR experiment) |
EtOAc | Ethyl acetate |
HMBC | Heteronuclear multiple bond correlation (2D NMR experiment) |
HRESIMS | High-resolution electrospray ionization mass spectrometry |
HSQC | Heteronuclear single quantum coherence (2D NMR experiment) |
LDH | Lactate dehydrogenase |
MeCN | Acetonitrile |
MeOH | Methanol |
NOESY | Nuclear Overhauser effect spectroscopy (2D NMR experiment) |
Q-TOF | Quadrupole time-of-flight |
RP-HPLC | Reversed-phase high-performance liquid chromatography |
TLC | Thin-layer chromatography |
References
- WFO 2021. Maesa Forssk. Published on the Internet. Available online: http://www.worldfloraonline.org/taxon/wfo-4000022843 (accessed on 5 May 2021).
- Anderberg, A.A.; Ståhl, B.; Källersjö, M. Maesaceae, a new primuloid family in the order Ericales s.l. Taxon 2000, 49, 184–187. [Google Scholar] [CrossRef]
- Desta, B. Ethiopian traditional herbal drugs. Part I: Studies on the toxicity and therapeutic activity of local taenicidal medications. J. Ethnopharmacol. 1995, 45, 27–33. [Google Scholar] [CrossRef]
- Bhat, R.B.; Jacobs, T.V. Traditional herbal medicine in Transkei. J. Ethnopharmacol. 1995, 48, 2–12. [Google Scholar] [CrossRef]
- Novy, J.W. Medicinal plants of the eastern region of Madagascar. J. Ethnopharmacol. 1997, 55, 119–126. [Google Scholar] [CrossRef]
- De Smet, P.A.G.M. Traditional pharmacology and medicine in Africa. Ethnopharmacological themes in sub-Saharan art objects and utensils. J. Ethnopharmacol. 1998, 63, 1–175. [Google Scholar] [CrossRef]
- Taylor, R.S.L.; Manandhar, N.P.; Hudson, J.B.; Towers, G.H.N. Antiviral activities of Nepalese medicinal plants. J. Ethnopharmacol. 1996, 52, 157–163. [Google Scholar] [CrossRef]
- Natarajan, B.; Paulsen, B.S. An ethnopharmacological study from Thane District, Maharashtra, India: Traditional knowledge compared with modern biological science. Pharm. Biol. 2000, 38, 139–151. [Google Scholar] [CrossRef]
- Faruque, M.O.; Uddin, S.B.; Barlow, J.W.; Hu, S.; Dong, S.; Cai, Q.; Li, X.; Hu, X. Quantitative ethnobotany of medicinal plants used by indigenous communities in the Bandarban District of Bangladesh. Front. Pharmacol. 2018, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Phumthum, M.; Balslev, H.; Kantasrila, R.; Kaewsangsai, S.; Inta, A. Ethnomedicinal plant knowledge of the Karen in Thailand. Plants 2020, 9, 813. [Google Scholar] [CrossRef]
- Sindambiwe, J.B.; Baldly, A.M.; De Bruyne, T.; Pieters, L.; van den Heuvel, H.; Claeys, M.; van den Berghe, D.A.; Vlietinck, A.J. Triterpenoid saponins from Maesa lanceolata. Phytochemistry 1996, 41, 269–277. [Google Scholar] [CrossRef]
- Tuntiwachwuttikulo, P.; Pancharoen, R.; Mahabusarakam, W.; Wiriyachitra, P.; Taylor, W.C.; Bubb, W.A.; Towers, G.H.N. A triterpenoid saponin from Maesa ramentacea. Phytochemistry 1997, 44, 491–495. [Google Scholar] [CrossRef]
- Germonprez, N.; van Puyvelde, L.; Maes, L.; van Tri, M.; de Kimpe, N. New pentacyclic triterpene saponins with strong anti-leishmanial activity from the leaves of Maesa balansae. Tetrahedron 2004, 60, 219–228. [Google Scholar] [CrossRef]
- Chandrasekhar, C.; Prabhu, K.R.; Venkateswarlu, V. Isolation of a new quinone from Maesa macrophylla. Phytochemistry 1970, 9, 415–417. [Google Scholar] [CrossRef]
- Mossa, J.S.; Muhammad, I.; Ramadan, A.F.; Mirza, H.H.; El-Feraly, F.S.; Hufford, C.D. Alkylated benzoquinone derivatives from Maesa lanceolata. Phytochemistry 1999, 50, 1063–1068. [Google Scholar] [CrossRef]
- Manguro, L.O.A.; Lemmen, P.; Ugi, I.; Kraus, W. Flavonol glycosides of Maesa lanceolata leaves. Nat. Prod. Sci. 2002, 8, 77–82. [Google Scholar]
- WFO 2021. Maesa membranacea A.DC. Published on the Internet. Available online: https://www.worldfloraonline.org/taxon/wfo-0001085875 (accessed on 5 May 2021).
- EFloras 2008, Published on the Internet. Available online: https://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200016860 (accessed on 5 May 2021).
- Whitney, C.W.; Min, V.S.; Giang, L.H.; Can, V.V.; Barber, K.; Lanh, T.T. Learning with elders: Human ecology and ethnobotany explorations in northern and central Vietnam. Hum. Organ. 2016, 75, 71–86. [Google Scholar] [CrossRef]
- Chi, V.V. Dictionary of Vietnamese Medicinal Plants. Med. Publ. Hanoi 2012, 1, 963–964. [Google Scholar]
- Le, N.T.; Tran, H.G.; Vu, T.K.O.; Pham, T.D.; Dinh, N.T.; Stojakowska, A.; Truong, B.N. Chemical constituents isolated from stems of Maesa membranacea. Vietnam J. Sci. Technol. Eng. 2020, 62, 15–18. [Google Scholar] [CrossRef]
- Jantas, D.; Malarz, J.; Le, T.N.; Stojakowska, A. Neuroprotective properties of kempferol derivatives from Maesa membranacea against oxidative stress-induced cell damage: An association with cathepsin D inhibition and PI3K/Akt activation. Int. J. Mol. Sci. 2021, 22, 10363. [Google Scholar] [CrossRef]
- Mahato, S.B.; Kundu, A.P. 13C NMR spectra of pentacyclic triterpenoids—A compilation and some salient features. Phytochemistry 1994, 37, 1517–1575. [Google Scholar] [CrossRef]
- Bruno, M.; Savona, G.; Hueso-Rodriguez, J.A.; Pascual, C.; Rodriguez, B. Ursane and oleanane triterpenoids from Salvia argentea. Phytochemistry 1987, 26, 497–501. [Google Scholar] [CrossRef]
- Alves, J.S.; de Castro, J.C.M.; Freire, M.O.; da-Cunha, E.V.L.; Barbosa-Filho, J.M.; da Silva, M.S. Complete assignment of the 1H and 13C NMR spectra of four triterpenes of the ursane, artane, lupane and friedelane groups. Magn. Reson. Chem. 2000, 38, 201–206. [Google Scholar] [CrossRef]
- Kojima, H.; Ogura, H. Configurational studies on hydroxy groups at C-2, 3 and 23 or 24 of oleanane and ursane-type triterpenes by NMR spectroscopy. Phytochemistry 1989, 28, 1703–1710. [Google Scholar] [CrossRef]
- Kisiel, W.; Michalska, K.; Szneler, E. Norisoprenoids from aerial parts of Cichorium pumilum. Biochem. Syst. Ecol. 2004, 32, 343–346. [Google Scholar] [CrossRef]
- Yamano, Y.; Ito, M. Synthesis of optically active vomifoliol and roseoside stereoisomers. Chem. Pharm. Bull. 2005, 53, 541–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.; Hao, Z.-Y.; Zhang, G.-J.; Zhang, Q.-J.; Chen, R.-Y.; Yu, D.-Q. Cytotoxic triterpenoid saponins from Lysimachia clethroides. J. Nat. Prod. 2011, 74, 2128–2136. [Google Scholar] [CrossRef] [PubMed]
- Manguro, L.O.A.; Lemmen, P.; Hao, P.; Wong, K.-C. Triterpene saponins of Maesa lanceolata stem wood. J. Asian Nat. Prod. Res. 2012, 14, 987–1001. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, J.; Kaiya, T. Terpenoids of Rhododendron japonicum. Phytochemistry 1983, 22, 2547–2552. [Google Scholar] [CrossRef]
- Sakakibara, J.; Kaiya, T.; Fukuda, H.; Ohki, T. 6β-Hydroxyursolic acid and other triterpenoids of Enkianthus cernuus. Phytochemistry 1983, 22, 2553–2555. [Google Scholar] [CrossRef]
- Sashida, Y.; Ogawa, K.; Mori, N.; Yamanouchi, T. Triterpenoids from the fruit galls of Actinidia polygama. Phytochemistry 1992, 31, 2801–2804. [Google Scholar] [CrossRef]
- Kaweetripob, W.; Mahidol, C.; Thongnest, S.; Prawat, H.; Ruchirawat, S. Polyoxygenated ursane and oleanane triterpenes from Siphonodon celastrineus. Phytochemistry 2016, 129, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Gallard, J.-F.; Adeline, M.-T.; Dumontet, V.; Tri, M.V.; Sévenet, T.; Paȉs, M. Six triterpenoid saponins from Maesa laxiflora. J. Nat. Prod. 1999, 62, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Apers, S.; De Bruyne, T.E.; Claeys, M.; Vlietinck, A.J.; Pieters, L.A.C. New acylated triterpenoid saponins from Maesa lanceolata. Phytochemistry 1999, 52, 1121–1131. [Google Scholar] [CrossRef]
- Koike, K.; Kudo, M.; Jia, Z.; Nikaido, T.; Ide, Y.; Sakura, T. New triterpenoid saponins from Maesa japonica. J. Nat. Prod. 1999, 62, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Koike, K.; Jia, Z.; Nikaido, T. New triterpenoid saponins from Maesa tenera. Chem. Pharm. Bull. 2001, 49, 758–761. [Google Scholar] [CrossRef] [Green Version]
- Foubert, K.; Gorella, T.; Faizal, A.; Cos, P.; Maes, L.; Apers, S.; Geelen, D.; Pieters, L. Triterpenoid saponins from Maesa argentea leaves. Planta Med. 2016, 82, 1568–1575. [Google Scholar] [CrossRef]
- Ngo, M.T.; Han, J.W.; Yoon, S.; Bae, S.; Kim, S.-Y.; Kim, H.; Choi, G.J. Discovery of new triterpenoid saponins isolated from Maesa japonica with antifungal activity against rice blast fungus Magnaporthe oryzae. J. Agric. Food Chem. 2019, 67, 7706–7715. [Google Scholar] [CrossRef]
- Wang, R.; Jin, M.; Jin, C.; Sun, J.; Ye, C.; Zong, T.; Chen, G.; Zhou, W.; Li, G. Three new ursane-type triterpenoids from the roots of Sanguisorba officinalis L. and their cytotoxic activity. Phytochem. Lett. 2019, 32, 96–100. [Google Scholar] [CrossRef]
- Deng, Y.; Hua, J.; Wang, W.; Zhan, Z.; Wang, A.; Luo, S. Cytotoxic terpenoids from the roots of Dracocephalum taliense. Molecules 2017, 23, 57. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.-H.; Yu, Z.-P.; Wang, Y.-Y.; Bao, J.; Zhu, K.-K.; Yuan, T.; Zhang, H. Triterpenoids and triterpenoid saponins from Dipsacus asper and their cytotoxic and antibacterial activities. Phytochemistry 2019, 162, 241–249. [Google Scholar] [CrossRef]
- Zare, S.; Mirkhani, H.; Firuzi, O.; Moheimanian, N.; Asadollahi, M.; Pirhadi, S.; Chandran, J.N.; Schneider, B. Antidiabetic and cytotoxic polyhydroxylated oleanane and ursane type triterpenoids from Salvia grossheimii. Bioorg. Chem. 2020, 104, 104297. [Google Scholar] [CrossRef] [PubMed]
- Sommerwerk, S.; Heller, L.; Kuhfs, J.; Csuk, R. Urea derivatives of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines. Eur. J. Med. Chem. 2016, 119, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Podolak, I.; Galanty, A.; Żmudzki, P.; Koczurkiewicz, P.; Piska, K.; Pękala, E.; Janeczko, Z. Two new triterpenoid saponins from the leaves of Impatiens parviflora DC. and their cytotoxic activity. Ind. Crop. Prod. 2017, 96, 71–79. [Google Scholar] [CrossRef]
Position | δH (ppm), J (Hz) | δC (ppm) | HMBC (H→C) |
---|---|---|---|
1α | 1.74 m | 41.38 | C-2, C-3, C-9, C-10, C-25 |
1β | 1.50 m | C-2, C-3, C-5, C-10, C-25 | |
2β | 5.29 ddd (9.6, 4.8, 4.4) | (70.05/70.09/70.10) d | C-OAc |
3β | 3.49 brs | 77.49 | C-1, C-2, C-4, C-5, C-23, C-24 |
4 | - | 38.69 | - |
5α | 1.63 brs | 46.95 | C-4, C-10, C-24, C-25 |
6α | 5.50 brs | (70.05/70.09/70.10) d | C-4/10, C-8 |
7α | 1.70 m | 36.44 | C-4/10, C-6, C-9 |
7β | 1.79 m | C-8 | |
8 | - | 42.50 | - |
9α | 2.17 d (8.8) | 51.50 | C-8, C-10, C-11, C-25, C-26 |
10 | - | 38.76 | - |
11β | 5.65 dd (8.8, 3.2) | (70.05/70.09/70.10) d | C-9, C-10, C-12, C-13, C-27, C-1′ |
12 | 5.33 d (3.2) | 124.82 | C-9, C-11, C-14, C-18, C-19, C-27 |
13 | - | 142.37 | - |
14 | - | 42.60 | - |
15α | 1.83 m | 26.35 | C-14, C-18 |
15β | 1.08 m | - | |
16α | 1.13 a m | 26.72 e | - |
16β | 1.88 m | C-28 | |
17 | - | 36.91 | - |
18β | 1.96 m | 48.89 | C-14, C-15, C-17, C-20, C-28, C-29 |
19α | 1.77 m | 40.60 | C-21, C-29 |
20 | - | 71.24 | - |
21α | 1.84 m | 38.56 | C-17, C-20, C-22 |
21β | 1.92 m | C-20 | |
22β | 4.88 brs | 78.46 | C-16, C-17, C-18, C-20, C-21, C-OAc |
23α | 1.10 b s | 28.44 | C-3, C-4, C-5, C-24 |
24β | 1.13 a s | 23.14 | C-3, C-4, C-5, C-23 |
25β | 1.55 s | 19.45 | C-1, C-5, C-9, C-10, C-26 |
26β | 1.29 s | 18.61 | C-7, C-8, C-9 |
27α | 1.23 s | 23.07 | C-13, C-14, C-15 |
28β | 0.81 s | 21.11 | C-16, C-17, C-18, C-22 |
29β | 0.91 c d (6.4) | 12.40 | C-18, C-19, C-20 |
30α | 1.19 s | 29.07 | C-13, C-19, C-20, C-21, C-22 |
OH (C-20) | 2.77 s | - | C-20, C-21, C-30 |
OAc (C-22)_CO | - | 169.39 | - |
OAc (C-2/6)_CO | - | 169.71 | - |
OAc (C-2/6)_CO | - | 170.27 | - |
OAc_CH3 | 2.04 s | 21.20 | OAc (C-2/6)_CO, C-2/6 |
OAc_CH3 | 2.08 s | 21.87 | OAc (C-2/6)_CO, C-2/6 |
OAc_CH3 | 2.11 s | 21.24 | OAc (C-22)_CO, C-22 |
1′ | - | 176.28 | - |
2′ | 2.28 m | 41.61 | C-1′, C-3′, C-4′, C-5′ |
3′a | 1.43 m | 26.72 e | C-1′, C-2′, C-4′, C-5′ |
3′b | 1.67 m | C-1′, C-2′, C-4′, C-5′ | |
4′ | 0.90 c t (7.4) | 11.84 | C-2′, C-3′ |
5′ | 1.10 b d (6.8) | 16.15 | C-1′, C-2′, C-3′ |
Position | δH (ppm), J (Hz) | δC (ppm) | HMBC (H→C) |
---|---|---|---|
1α | 1.74 m | 42.11 | C-2, C-9, C-10, C-25 |
1β | 2.33 dd (12.8, 4.0) | C-2, C-3, C-5, C-10, C-25 | |
2β | 5.33 a m | 70.37 | C-9, C-10, C-OAc |
3β | 3.49 brs | 77.52 | C-1, C-2, C-4, C-5, C-23, C-24 |
4 | - | 38.73 | - |
5α | 1.62 brs | 47.17 | C-4, C-24, C-25 |
6α | 5.49 brs | 70.26 | - |
7α | 1.69 m | 36.72 | C-4/10, C-26 |
7β | 1.77 m | C-4/10 | |
8 | - | 42.51 | - |
9α | 1.81 b m | 54.64 | C-8, C-10, C-11, C-25/26 |
10 | - | 38.87 | - |
11β | 4.46 dd (8.8; 2.6) | 67.85 | C-8, C-9 |
12 | 5.34 a d (3.1) | 129.83 | C-9, C-11, C-14, C-18, C-27 |
13 | - | 140.08 | - |
14 | - | 42.89 | - |
15α | 1.83 m | 26.20 | - |
15β | 1.07 m | C-8, C-14- | |
16α | 1.13 c m | 26.82 | - |
16β | 1.87 m | - | |
17 | - | 37.09 | - |
18β | 1.94 d m | 49.10 | C-12, C-13, C-14, C-15, C-17, C-28 |
19α | 1.80 b m | 40.33 | C-18, C-29 |
20 | - | 71.28 | - |
21α | 1.88 m | 38.60 | C-17 |
21β | 1.93 d m | C-17, C-19 | |
22β | 4.90 brs | 78.53 | C-16, C-17, C-18, C-20, C-21, C-OAc |
23α | 1.11 s | 28.69 | C-3, C-4, C-5, C-24 |
24β | 1.15 c s | 23.33 | C-3, C-4, C-5, C-23 |
25β | 1.59 s | 18.96 | C-1, C-5, C-9, C-10 |
26β | 1.26 s | 18.87 | C-7, C-8, C-9 |
27α | 1.21 e s | 23.57 | C-8, C-13, C-15 |
28β | 0.81 s | 21.20 | C-16, C-17, C-18, C-22 |
29β | 0.91 d (6.4) | 12.53 | C-18, C-19, C-20, C-21, C-30 |
30α | 1.21 e s | 29.07 | C-19, C-20, C-21, C-22 |
OH (C-20) | 2.80 brs | - | - |
OAc (C-22)_CO | - | 169.40 | - |
OAc (C-2/6)_CO | - | 170.05 | - |
OAc (C-2/6)_CO | - | 170.34 | - |
OAc_CH3 | 2.07 s | 21.87 | OAc (C-2/6)_CO, C-2/6 |
OAc_CH3 | 2.08 s | 21.38 | OAc (C-2/6)_CO, C-2/6 |
OAc_CH3 | 2.12 s | 21.28 | OAc (C-22)_CO, C-22 |
Compound | IC50 (μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Prostate Normal and Cancer Cells a | Keratinocytes and Melanoma Cells b | Colon Cancer c | ||||||
PNT-2 | DU145 | PC3 | HaCaT | A375 | HTB140 | HT29 | Caco-2 | |
1 | >100 | 35.83 (50.00) d | 41.64 (58.15) d | >100 | >100 | >50 | >100 | 35.65 (49.79) d |
2 | >100 | >100 | >50 | >100 | >100 | >100 | >100 | >50 |
Doxorubicin | 1.38 | 3.18 | >50 | 4.68 | 0.59 | 5.71 | 1.53 | 3.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalska, K.; Galanty, A.; Le, T.N.; Malarz, J.; Vuong, N.Q.; Pham, V.C.; Stojakowska, A. New Polyesterified Ursane Derivatives from Leaves of Maesa membranacea and Their Cytotoxic Activity. Molecules 2021, 26, 7013. https://doi.org/10.3390/molecules26227013
Michalska K, Galanty A, Le TN, Malarz J, Vuong NQ, Pham VC, Stojakowska A. New Polyesterified Ursane Derivatives from Leaves of Maesa membranacea and Their Cytotoxic Activity. Molecules. 2021; 26(22):7013. https://doi.org/10.3390/molecules26227013
Chicago/Turabian StyleMichalska, Klaudia, Agnieszka Galanty, Thanh Nguyen Le, Janusz Malarz, Nguyen Quoc Vuong, Van Cuong Pham, and Anna Stojakowska. 2021. "New Polyesterified Ursane Derivatives from Leaves of Maesa membranacea and Their Cytotoxic Activity" Molecules 26, no. 22: 7013. https://doi.org/10.3390/molecules26227013
APA StyleMichalska, K., Galanty, A., Le, T. N., Malarz, J., Vuong, N. Q., Pham, V. C., & Stojakowska, A. (2021). New Polyesterified Ursane Derivatives from Leaves of Maesa membranacea and Their Cytotoxic Activity. Molecules, 26(22), 7013. https://doi.org/10.3390/molecules26227013