Multivariate Optimization of Pb2+ Adsorption onto Ethiopian Low-Cost Odaracha Soil Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent Preparation and Characterization Techniques
2.2. Batch Adsorption Experiments
2.3. Response Surface Method (RSM)
3. Result and Discussion
3.1. Characterization of Odaracha Adsorbent
3.1.1. Scanning Electron Microscopic (SEM) Studies
3.1.2. FT-IR Studies
3.1.3. Physical and Chemical Property of Odaracha Soil
3.1.4. Determination of the pH of the Point of Zero Charge (pHpzc)
3.2. Effect of Various Factors on the Adsorption of Pb2+
3.2.1. Effect of Contact Time
3.2.2. Effect of pH on Adsorption of Pb(II)
3.2.3. Effect of Adsorbent Dose on Adsorption Efficiency of Pb(II)
3.2.4. Effect of Initial Concentration of Adsorbate on Adsorption of Pb(II)
3.3. Response Surface Method (RSM) of Pb2+ Adsorption
3.4. Kinetic Study for Adsorption of Pb(II)
3.4.1. Pseudo First Order Kinetic Model
3.4.2. Pseudo Second Order Kinetic Model
3.5. Isotherm Model for Adsorption of Pb(II)
3.5.1. Langmuir Adsorption Isotherm Model for Pb2+
3.5.2. Freundlich Adsorption Isotherm Model for Pb(II)
3.6. Comparison of Pb2+ Adsorption Capacity of Natural Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nordberg, G.F.; Fowler, B.A.; Nordberg, M. Handbook on the Toxicology of Metals, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- ATSDR. Toxicological Profile for Lead; Pulic Health Service: Atlanta, GA, USA, 1999.
- Anielak, A.M.; Schmidt, R. Sorption of Lead and Cadmium Cations on Natural and Manganese-Modified Zeolite. Pol. J. Environ. Stud. 2011, 20, 15–19. [Google Scholar]
- Todd, A.C.; Wetmur, J.G.; Moline, J.M.; Godbold, J.H.; Levin, S.M.; Landrigan, P.J. Unraveling the chronic toxicity of lead: An essential priority for environmental health. Environ. Health Perspect 1996, 104, 141–146. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2011. [Google Scholar]
- Fabı´ola, V.; Danielle, M.; Antonio, U.; Vitor, J.P.; Selene, M.A. Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor. Chem. Eng. J. 2016, 290, 477–489. [Google Scholar]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewater: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Li, J.R.; Wang, X.; Yuan, B.; Fu, M.L. Layered chalcogenide for Cu2+ removal by ion-exchange from wastewater. J. Mol. Liq. 2014, 200, 205–212. [Google Scholar] [CrossRef]
- Prashant, M. Treating textile effluents by coagulation–flocculation method using different dosing compositions. Adv. Appl. Sci. Res. 2012, 3, 2514–2517. [Google Scholar]
- Vinodh, R.; Padmavathi, R.; Sangeetha, D. Separation of heavy metals from water samples using anion exchange polymers by adsorption process. Desalination 2011, 267, 267–276. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution. Sep. Purif. Technol. 2006, 50, 388–397. [Google Scholar] [CrossRef]
- Eren, E.; Afsin, B. An investigation of Cu(II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. J. Hazard. Mater. 2008, 151, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Veli, S.; Alyuz, B. Adsorption of copper and zinc from aqueous solutions by using natural clay. J. Hazard. Mater. 2007, 149, 226–233. [Google Scholar] [CrossRef]
- Bedelean, H.; Maicaneanu, A.; Burca, S.; Stanca, M. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2009, 92, 407–418. [Google Scholar]
- Sher, F.; Hanif, K.; Rafey, A.; Khalid, U.; Zafar, A.; Ameen, M.; Eder, C.L. Removal of micropollutants from municipal wastewater using different types of activated carbons. J. Environ. Manag. 2021, 278, 111302. [Google Scholar] [CrossRef] [PubMed]
- Yohanis, B.; Seyoum, L.; Getachew, A. Removal of chromium from synthetic wastewater by adsorption onto Ethiopian low cost Odaracha adsorbent. Appl. Water Sci. 2020, 10, 227. [Google Scholar]
- Altaf, F.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Akram, M.A.; Safdar, A.; Butt, M.S.; Noor, T.; Sher, F. Synthesis and Characterization of PVA/Starch Hydrogel Membranes Incorporating Essential Oils Aimed to be Used in Wound Dressing Applications. J. Polym. Environ. 2021, 29, 156–174. [Google Scholar] [CrossRef]
- Jubeen, F.; Liaqat, A.; Amjad, F.; Sultan, M.; Iqbal, S.Z.; Sajid, I.; Niazi, M.B.K.; Sher, F. Synthesis of 5-fluorouracil co-crystals with novel organic acid as co-formers and its anticancer evaluation against HCT-116 colorectal cell lines. Cryst. Growth Des. 2020, 20, 2406–2414. [Google Scholar] [CrossRef]
- Kyziol-Komosinska, J.; Rosik-Dulewska, C.; Dzieniszewska, A.; Pająk, M.; Krzyzewska, I. Removal of Cr (III) ions from water and wastewater by sorption onto peats clays occurring in an overburden of lignite beds in Central Poland. Environ. Prot. Eng. 2014, 40, 5–22. [Google Scholar] [CrossRef]
- Adel, A.; Ayman, A.; Ibrahim, A. Heavy metal removal using SiO2-TiO2 binary oxide: Experimental design approach. Adsorption 2008, 14, 21–29. [Google Scholar]
- Dickson, D.; Liu, G.; Cai, Y. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates. J. Environ. Manag. 2017, 186, 261–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, Y.; Qian, Q.; Machida, M.; Tatsumoto, H. Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution. Carbon N. Y. 2006, 44, 195–202. [Google Scholar] [CrossRef]
- Potgieter, J.H.; Potgieter-Vermaaka, S.S.; Kalibantonga, P.D. Heavy metals removal from solution by palygorskite clay. Miner. Eng. 2006, 19, 463–470. [Google Scholar] [CrossRef]
- Adegoke, H.I.; Amooadekola, F.; Fatoki, O.S.; Ximba, B.J. Adsorption of Cr(VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies. Korean J. Chem. Eng. 2014, 31, 142–154. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Ali, S.M.; El-Dek, S.I.; Galal, A. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Mater. Sci. Eng. B 2013, 178, 744–751. [Google Scholar] [CrossRef]
- Yohanis, B.; Seyoum, L. Application of Response Surface Methodology to Optimize Removal Efficiency of Water Turbidity by Low-Cost Natural Coagulant (Odaracha soil) from Saketa District, Ethiopia. Results Chem. 2021, 3, 100108. [Google Scholar]
- Tsegaye, F.; Taddesse, A.M.; Teju, E.; Aschalew, M. Preparation and sorption property study of Fe3O4/Al2O3/ZrO2 composite for the removal of cadmium, lead and chromium ions from aqueous solutions. Bull. Chem. Soc. Ethiop. 2020, 34, 105–121. [Google Scholar] [CrossRef]
- Awan, M.; Qazi, I.; Khalid, I. Removal of heavy metals through adsorption using sand. J. Environ. Sci. 2003, 15, 413–416. [Google Scholar]
- Wang, Y.-H.; Lan, Y.; Huang, C.-B. Adsorption Behavior Of Pb2+ And Cd2+ Ions on Bauxite Flotation Tailings. J. Cent. South. Univ. Technol. 2008, 15, 183–187. [Google Scholar] [CrossRef]
- Tang, C.; Shu, Y.; Zhang, R.; Li, X.; Song, J.; Li, B.; Yuting, Z.; Danling, O. Comparison of the removal and adsorption mechanisms of cadmium and lead from aqueous solution by activated carbons prepared from Typha angustifolia and Salix matsudana. RSC Adv. 2017, 7, 16092–16103. [Google Scholar] [CrossRef] [Green Version]
- Senthil Kumar, P.; Gayathri, R. Adsorption Of Pb2+ Ions from Aqueous Solutions Onto Bael Tree Leaf Powder: Isotherms, Kinetics and Thermodynamics Study. J. Eng. Sci. Technol. 2009, 4, 381–399. [Google Scholar]
- Anis, M.; Haydar, S.; Bari, A.J. Adsorption of Lead and Copper from Aqueous Solution Using Unmodified Wheat Straw. Environ. Eng. Manag. J. 2013, 12, 2117–2124. [Google Scholar] [CrossRef]
- Hayeeye, F.; Yu, Q.J.; Sattar, M.; Chinpa, W.; Sirichote, O. Adsorption of Pb2+ ions from aqueous solutions by gelatin/activated carbon composite bead form. Adsorpt. Sci. Technol. 2018, 36, 355–371. [Google Scholar] [CrossRef]
- Abdel Ghani, N.T.; Elchaghaby, G.A. Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ion from wastewater by adsorption. Int. J. Environ. Sci Tech. 2007, 4, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Babel, S.; Kurniawan, T.A. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004, 54, 951–967. [Google Scholar] [CrossRef]
- Bin, Y.; Zhang, Y.; Shukla, A.; Shukla, S.S.; Dorris, K.L. The removal of heavy metal from aqueous solutions by sawdust adsorption—Removal of copper. J. Hazard. Mater. 2000, 80, 33–42. [Google Scholar]
- Sari, A.; Tuzen, M.; Citak, D.; Soylak, M. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. J. Hazard. Mater. 2007, 148, 387–394. [Google Scholar] [CrossRef]
- Ghorbani, F.; Younesi, H.; Ghasempouri, S.M.; Zinatizadeh, A.A.; Amini, M.; Daneshi, A. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem. Eng. J. 2008, 145, 267–275. [Google Scholar] [CrossRef]
- Gebrehawaria, G.; Hussen, A.; Rao, V.M. Removal of hexavalent chromium from aqueous solutions using barks of Acacia albida and leaves of Euclea schimperi. Int. J. Environ. Sci. Technol. 2015, 12, 1569–1580. [Google Scholar] [CrossRef] [Green Version]
- Ketcha, M.J.; Anagho, G.S.; Nsami, N.J.; Kammegne, A.M. Kinetic and equilibrium studies of the adsorption of lead(II) ions from aqueous solution onto two Cameroon clays: Kaolinite and smectite. J. Environ. Chem. Ecotoxicol. 2011, 3, 290–297. [Google Scholar]
- Mondal, N.K.; Basu, S.; Das, B. Decontamination and optimization study of hexavalent chromium on modified chicken feather using response surface methodology. Appl. Water Sci. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef]
- Tripathi, P.; Srivastava, V.C.; Kumar, A. Optimization of an azo dye batch adsorption parameters using Box–Behnken design. Desalination 2009, 249, 1273–1279. [Google Scholar] [CrossRef]
- Ahmadi, M.; Vahabzadeh, F.; Bonakdarpour, B.; Mofarrah, E.; Mehranian, M. Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation. J. Hazard. Mater. 2005, 123, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Foroughi, M.; Rahmani, A.R.; Asgari, G.; Nematollahi, D.; Yetilmezsoy, K.; Samarghandi, M.R. Optimization of a three-dimensional electrochemical system for tetracycline degradation using box-behnken design. Fresenius Environ. Bull. 2018, 27, 1914–1922. [Google Scholar]
- Arshadi, M.; Amiri, M.; Mousavi, S. Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash. Water Resour. Ind. 2014, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sag, Y.; Aktay, F. Kinetic studies on sorption of Cr (VI) and Cu (II) ions by chitin, chitosan and Rhizopus arrhizus. Biochem. Eng. J. 2002, 12, 143–153. [Google Scholar] [CrossRef]
- Rahman, M.S.; Sathasivam, K. Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models. J. Biomed. Biotech. 2015, 2015, 1–13. [Google Scholar]
- Owalude, S.O.; Tella, A.C. Removal of hexavalent chromium from aqueous solutions by adsorption on modified groundnut hull. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S.; Kirthika, K. Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 2009, 4, 351–363. [Google Scholar]
- Goldberg, S. Equations and Models Describing Adsorption Processes in Soils. Chem. Process. Soils 2005, 8, 489–517. [Google Scholar]
- Mohan, S.; Karthikeyan, J. Removal of lignin and tannin color from aqueous solution by adsorption onto activated charcoal. Environ. Pollut. 1997, 97, 183–187. [Google Scholar] [CrossRef]
- Paliulis, D. Adsorptive Removal of Pb2+ Ions from Aqueous Solutions by Peat. Pol. J. Environ. Stud. 2015, 24, 1213–1218. [Google Scholar] [CrossRef]
- Horsfall Jnr, M.; Spiff, A.I. Studies on the effect of pH on the sorption of Pb2+ and Cd2+ ions from aqueous solutions by Caladium bicolor (Wild Cocoyam) biomass. Electron. J. Biotechnol. 2004, 7, 14–15. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.V.; Phuong, Q.T.; Nguyen, T.D.; Hong Le, N.T. A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology. Adsorpt. Sci. Technol. 2016, 35, 72–85. [Google Scholar] [CrossRef]
- Miao, D.; Liu, F.; Liu, Y.; Chen, H. Adsorption of Pb2+ and Ni2+ Ions by Montmorillonite: Isotherm, Kinetic and Thermodynamic Studies. Adsorpt. Sci. Technol. 2009, 27, 785–795. [Google Scholar] [CrossRef]
- Hefne, J.A.; Mekhemer, W.K.; Alandis, N.M.; Aldayel, O.A.; Alajyan, T. Kinetic and thermodynamic study of the adsorption of Pb(II) from aqueous solution to the natural and treated bentonite. Int. J. Phys. Sci. 2008, 3, 281–288. [Google Scholar]
- Melichová, Z.; Hromadea, L. Adsorption of Pb2+ and Cu2+ Ions from Aqueous Solutions on Natural Bentonite. Pol. J. Environ. Stud. 2013, 22, 457–464. [Google Scholar]
Chemical Property | Physical Property | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | H2O | LOI | Soil Texture % | |||
Clay | Silt | Sand | |||||||||
Wt.% | 30.94 | 8.71 | 5.18 | 25.12 | 1.44 | 0.3 | <0.01 | 8.63 | 56.7 | 28.1 | 15.2 |
Contact Time (min) | pH | Dose (g/L) | Cf (mg/L) | Cr Adsorption % | q mg/g |
---|---|---|---|---|---|
60 | 6 | 15 | 5.905 ± 0.375 | 91.565 | 4.273 |
120 | 6 | 15 | 5.786 ± 0.217 | 91.735 | 4.281 |
180 | 6 | 15 | 1.964 ± 0.036 | 97.194 | 4.536 |
240 | 6 | 15 | 2.202 ± 0.206 | 96.854 | 4.520 |
pH | Contact Time (min) | Dose (g/L) | Cf (mg/L) | Cr Adsorption % | q mg/g |
---|---|---|---|---|---|
3 | 120 | 15 | 7.202 ± 0.206 | 89.711 | 4.187 |
4 | 120 | 15 | 5.786 ± 0.217 | 91.735 | 4.281 |
5 | 120 | 15 | 5.774 ± 0.206 | 91.752 | 4.282 |
6 | 120 | 15 | 5.595 ± 0.055 | 92.007 | 4.294 |
Dose (g/L) | pH | Contact Time (min) | Cf (mg/L) | Cr Adsorption % | q mg/g |
---|---|---|---|---|---|
1 | 6 | 180 | 23.274 ± 0.206 | 66.752 | 46.726 |
5 | 6 | 180 | 6.976 ± 0.055 | 90.034 | 12.605 |
10 | 6 | 180 | 3.274 ± 0.412 | 95.323 | 6.673 |
15 | 6 | 180 | 1.964 ± 0.036 | 97.194 | 4.536 |
Contact Time (min) | Dose (g/L) | pH | Co (mg/L) | Av Cf (mg/L) | Pb Adsorption % | q mg/g |
---|---|---|---|---|---|---|
180 | 15 | 6 | 30 | 0.548 ± 0.021 | 98.175 | 1.963 |
180 | 15 | 6 | 50 | 1.238 ± 0.055 | 97.524 | 3.251 |
180 | 15 | 6 | 70 | 1.964 ± 0.036 | 97.194 | 4.536 |
180 | 15 | 6 | 90 | 3.071 ± 0.094 | 96.587 | 5.795 |
180 | 15 | 6 | 110 | 5.512 ± 0.135 | 94.989 | 6.966 |
180 | 15 | 6 | 130 | 13.869 ± 0.206 | 89.332 | 7.742 |
180 | 15 | 6 | 150 | 22.083 ± 0.149 | 85.278 | 8.528 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remark |
---|---|---|---|---|---|---|
Model | 2.966 × 10−6 | 9 | 3.295 × 10−7 | 32.71 | <0.0001 | Significant |
A-Contact time | 1.708 × 10−6 | 1 | 1.708 × 10−6 | 169.54 | <0.0001 | Significant |
B-pH | 2.667 × 10−7 | 1 | 2.667 × 10−7 | 26.48 | <0.0001 | Significant |
C-Dose | 2.925 × 10−7 | 1 | 2.925 × 10−7 | 29.03 | <0.0001 | Significant |
AB | 8.482 × 10−8 | 1 | 8.482 × 10−8 | 8.42 | 0.0099 | Significant |
AC | 2.860 × 10−8 | 1 | 2.860 × 10−8 | 2.84 | 0.1103 | Not significant |
BC | 4.000 × 10−12 | 1 | 4.000 × 10−12 | 0.0004 | 0.9843 | Not significant |
A2 | 2.588 × 10−7 | 1 | 2.588 × 10−7 | 25.69 | <0.0001 | Significant |
B2 | 6.236 × 10−8 | 1 | 6.236 × 10−8 | 6.19 | 0.0235 | Significant |
C2 | 5.465 × 10−9 | 1 | 5.465 × 10−9 | 0.5425 | 0.4715 | Not significant |
Residual | 1.713 × 10−7 | 17 | 1.007 × 10−8 | |||
Lack of Fit | 1.713 × 10−7 | 10 | 1.713 × 10−8 | 4.31 | 0.1402 | Not significant |
Pure Error | 0.0000 | 7 | 0.0000 | |||
Cor Total | 3.137 × 10−6 | 26 |
Coagulant | Metal | First Order | |||
---|---|---|---|---|---|
Odaracha | Lead | qe (exp) | k1 | R2 | |
4.536 | 2.482 | 0.5809 | |||
Second Order | |||||
k2 | R2 | ||||
4.536 | 4.6339 | 0.9988 |
Adsorbent. | Metal | Langmuir | |||
---|---|---|---|---|---|
Odaracha | Lead | KL | R2 | ||
120.48 | 0.0171 | 0.0139 | 0.9498 | ||
Freundlich | |||||
R2 | |||||
2.117 | 0.9223 | 0.9687 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birhanu, Y.; Leta, S. Multivariate Optimization of Pb2+ Adsorption onto Ethiopian Low-Cost Odaracha Soil Using Response Surface Methodology. Molecules 2021, 26, 6477. https://doi.org/10.3390/molecules26216477
Birhanu Y, Leta S. Multivariate Optimization of Pb2+ Adsorption onto Ethiopian Low-Cost Odaracha Soil Using Response Surface Methodology. Molecules. 2021; 26(21):6477. https://doi.org/10.3390/molecules26216477
Chicago/Turabian StyleBirhanu, Yohanis, and Seyoum Leta. 2021. "Multivariate Optimization of Pb2+ Adsorption onto Ethiopian Low-Cost Odaracha Soil Using Response Surface Methodology" Molecules 26, no. 21: 6477. https://doi.org/10.3390/molecules26216477
APA StyleBirhanu, Y., & Leta, S. (2021). Multivariate Optimization of Pb2+ Adsorption onto Ethiopian Low-Cost Odaracha Soil Using Response Surface Methodology. Molecules, 26(21), 6477. https://doi.org/10.3390/molecules26216477