Advances in [18F]Trifluoromethylation Chemistry for PET Imaging
Abstract
:1. Introduction
2. PET Imaging and Fluorine-18
PET and [18F]CF3 Group Chemistry
3. Major Strategies for the Generation of [18F]Trifluoromethyl Groups
3.1. 19F-to-18F Isotopic Exchange Chemistry
3.2. Nucleophilic Substitution/Addition Radiofluorinations
3.3. Difluorocarbene-Mediated Chemistry
3.4. Electrophilic Radiofluorinations
4. Examples of [18F]CF3 Compounds
4.1. Aliphatic [18F]CF3 Compounds
4.2. Aromatic [18F]CF3 Compounds
4.3. [18F]CF3-Heteroatom Compounds
5. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J.L.; Izawa, K.; Liu, H.; Soloshonok, V.A. Recent Advances in the Trifluoromethylation Methodology and New CF3-Containing Drugs. J. Fluor. Chem. 2014, 167, 37–54. [Google Scholar] [CrossRef]
- Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. [Google Scholar] [CrossRef]
- New Drug Therapy Approvals 2019. 2019, 44. Available online: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/new-drug-therapy-approvals-2019 (accessed on 13 October 2021).
- Tomashenko, O.A.; Grushin, V.V. Aromatic Trifluoromethylation with Metal Complexes. Chem. Rev. 2011, 111, 4475–4521. [Google Scholar] [CrossRef]
- Wang, H.; Jui, N.T. Catalytic Defluoroalkylation of Trifluoromethylaromatics with Unactivated Alkenes. J. Am. Chem. Soc. 2018, 140, 163–166. [Google Scholar] [CrossRef]
- Merchant, R.R.; Edwards, J.T.; Qin, T.; Kruszyk, M.M.; Bi, C.; Che, G.; Bao, D.-H.; Qiao, W.; Sun, L.; Collins, M.R.; et al. Modular Radical Cross-Coupling with Sulfones Enables Access to Sp 3 -Rich (Fluoro)Alkylated Scaffolds. Science 2018, 360, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhang, C.; Song, C.; Ma, Y. Progress in Copper-Catalyzed Trifluoromethylation. Beilstein J. Org. Chem. 2018, 14, 155–181. [Google Scholar] [CrossRef]
- Zhang, C. Application of Langlois’ Reagent in Trifluoromethylation Reactions. Adv. Synth. Catal. 2014, 356, 2895–2906. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Dixon, J.A.; O’Hara, F.; Funder, E.D.; Dixon, D.D.; Rodriguez, R.A.; Baxter, R.D.; Herlé, B.; Sach, N.; Collins, M.R.; et al. Practical and Innate Carbon–Hydrogen Functionalization of Heterocycles. Nature 2012, 492, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, J.; Früh, N.; Togni, A. Electrophilic Trifluoromethylation by Use of Hypervalent Iodine Reagents. Chem. Rev. 2015, 115, 650–682. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-A.; Cahard, D. Strategies for Nucleophilic, Electrophilic, and Radical Trifluoromethylations. J. Fluor. Chem. 2007, 128, 975–996. [Google Scholar] [CrossRef]
- Furuya, T.; Kamlet, A.S.; Ritter, T. Catalysis for Fluorination and Trifluoromethylation. Nature 2011, 473, 470–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetto, M.; Ferla, S.; Pertusati, F. Polyfluorinated Groups in Medicinal Chemistry. Future Med. Chem. 2015, 7, 527–546. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.S.; Wolf, A.P. Working against Time: Rapid Radiotracer Synthesis and Imaging the Human Brain. Acc. Chem. Res. 1997, 30, 181–188. [Google Scholar] [CrossRef]
- Xiong, K.-L.; Yang, Q.-W.; Gong, S.-G.; Zhang, W.-G. The Role of Positron Emission Tomography Imaging of β-Amyloid in Patients with Alzheimer’s Disease. Nucl. Med. Commun. 2010, 31, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Matthews, P.M.; Rabiner, E.A.; Passchier, J.; Gunn, R.N. Positron Emission Tomography Molecular Imaging for Drug Development. Br. J. Clin. Pharmacol. 2012, 73, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ametamey, S.M.; Honer, M.; Schubiger, P.A. Molecular Imaging with PET. Chem. Rev. 2008, 108, 1501–1516. [Google Scholar] [CrossRef]
- Gewirtz, H. Cardiac PET: A Versatile, Quantitative Measurement Tool for Heart Failure Management. JACC Cardiovasc. Imaging 2011, 4, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Papathanassiou, D.; Bruna-Muraille, C.; Liehn, J.-C.; Nguyen, T.D.; Curé, H. Positron Emission Tomography in Oncology: Present and Future of PET and PET/CT. Crit. Rev. Oncol./Hematol. 2009, 72, 239–254. [Google Scholar] [CrossRef]
- Zhu, A.; Lee, D.; Shim, H. Metabolic Positron Emission Tomography Imaging in Cancer Detection and Therapy Response. Semin. Oncol. 2011, 38, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, J.G.; Mankoff, D.A.; O’Sullivan, F.; Peterson, L.M.; Schwartz, D.L.; Conrad, E.U.; Spence, A.M.; Muzi, M.; Farwell, D.G.; Krohn, K.A. Hypoxia and Glucose Metabolism in Malignant Tumors: Evaluation by [18F]Fluoromisonidazole and [18F]Fluorodeoxyglucose Positron Emission Tomography Imaging. Clin. Cancer Res. 2004, 10, 2245–2252. [Google Scholar] [CrossRef] [Green Version]
- Lien, V.T.; Riss, P.J. Radiosynthesis of [18F]Trifluoroalkyl Groups: Scope and Limitations. BioMed Res. Int. 2014, 2014, 380124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhakaran, J.; Underwood, M.D.; Parsey, R.V.; Arango, V.; Majo, V.J.; Simpson, N.R.; Van Heertum, R.; Mann, J.J.; Kumar, J.S.D. Synthesis and in Vivo Evaluation of [18F]-4-[5-(4-Methylphenyl)-3-(Trifluoromethyl)-1H-Pyrazol-1-Yl]Benzenesulfonamide as a PET Imaging Probe for COX-2 Expression. Bioorg. Med. Chem. 2007, 15, 1802–1807. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, M.; Yang, G.; Torchon, G.; Ackerstaff, E.; Humm, J.; Koutcher, J.; Ouerfelli, O. Radiosynthesis of the Tumor Hypoxia Marker [18F]TFMISO via O-[18F]Trifluoroethylation Reveals a Striking Difference between Trifluoroethyl Tosylate and Iodide in Regiochemical Reactivity toward Oxygen Nucleophiles. Bioorg. Med. Chem. 2011, 19, 2287–2297. [Google Scholar] [CrossRef] [Green Version]
- Huiban, M.; Tredwell, M.; Mizuta, S.; Wan, Z.; Zhang, X.; Collier, T.L.; Gouverneur, V.; Passchier, J. A Broadly Applicable [18F]Trifluoromethylation of Aryl and Heteroaryl Iodides for PET Imaging. Nat. Chem. 2013, 5, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Kee, C.W.; Tack, O.; Guibbal, F.; Wilson, T.C.; Isenegger, P.G.; Imiołek, M.; Verhoog, S.; Tilby, M.; Boscutti, G.; Ashworth, S.; et al. [18F]-Trifluoromethanesulfinate Enables Direct C–H [18F]-Trifluoromethylation of Native Aromatic Residues in Peptides. J. Am. Chem. Soc. 2020, 142, 1180–1185. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S.H. Difluorocarbene-Derived Trifluoromethylthiolation and [18F]Trifluoromethylthiolation of Aliphatic Electrophiles. Angew. Chem. Int. Ed. 2015, 54, 13236–13240. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Berger, F.; Jia, H.; Ford, J.; Wortman, A.; Börgel, J.; Genicot, C.; Ritter, T. Aryl Sulfonium Salts for Site-Selective Late-Stage Trifluoromethylation. Angew. Chem. Int. Ed. 2019, 58, 14615–14619. [Google Scholar] [CrossRef]
- Yang, L.; Dong, T.; Revankar, H.M.; Zhang, C.-P. Recent Progress on Fluorination in Aqueous Media. Green Chem. 2017, 19, 3951–3992. [Google Scholar] [CrossRef]
- Verhoog, S.; Kee, C.W.; Wang, Y.; Khotavivattana, T.; Wilson, T.C.; Kersemans, V.; Smart, S.; Tredwell, M.; Davis, B.G.; Gouverneur, V. [18F]-Trifluoromethylation of Unmodified Peptides with 5-[18F]-(Trifluoromethyl)Dibenzothiophenium Trifluoromethanesulfonate. J. Am. Chem. Soc. 2018, 140, 1572–1575. [Google Scholar] [CrossRef]
- Mizuta, S.; Stenhagen, I.S.R.; O’Duill, M.; Wolstenhulme, J.; Kirjavainen, A.K.; Forsback, S.J.; Tredwell, M.; Sandford, G.; Moore, P.R.; Huiban, M.; et al. Catalytic Decarboxylative Fluorination for the Synthesis of Tri- and Difluoromethyl Arenes. Org. Lett. 2013, 15, 2648–2651. [Google Scholar] [CrossRef]
- Dolbier, W.R.; Li, A.-R.; Koch, C.J.; Shiue, C.-Y.; Kachur, A.V. [18F]-EF5, a Marker for PET Detection of Hypoxia: Synthesis of Precursor and a New Fluorination Procedure. Appl. Radiat. Isot. 2001, 54, 73–80. [Google Scholar] [CrossRef]
- Kachur, A.V.; Dolbier, W.R.; Xu, W.; Koch, C.J. Catalysis of Fluorine Addition to Double Bond: An Improvement of Method for Synthesis of [18F]PET Agents. Appl. Radiat. Isot. 2010, 68, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Riss, P.J.; Aigbirhio, F.I. A Simple, Rapid Procedure for Nucleophilic Radiosynthesis of Aliphatic [18F]Trifluoromethyl Groups. Chem. Commun. 2011, 47, 11873. [Google Scholar] [CrossRef]
- van der Born, D.; Pees, A.; Poot, A.J.; Orru, R.V.A.; Windhorst, A.D.; Vugts, D.J. Fluorine-18 Labelled Building Blocks for PET Tracer Synthesis. Chem. Soc. Rev. 2017, 46, 4709–4773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Born, D.; Herscheid, J.D.M.; Orru, R.V.A.; Vugts, D.J. Efficient Synthesis of [18F]Trifluoromethane and Its Application in the Synthesis of PET Tracers. Chem. Commun. 2013, 49, 4018. [Google Scholar] [CrossRef] [PubMed]
- Pees, A.; Vosjan, M.J.W.D.; Vasdev, N.; Windhorst, A.D.; Vugts, D.J. Fluorine-18 Labelled Ruppert–Prakash Reagent ([18F]Me3SiCF3) for the Synthesis of 18F-Trifluoromethylated Compounds. Chem. Commun. 2021, 57, 5286–5289. [Google Scholar] [CrossRef]
- Surya Prakash, G.K.; Alauddin, M.M.; Hu, J.; Conti, P.S.; Olah, G.A. Expedient Synthesis of [18F]-Labeled Alpha-Trifluoromethyl Ketones. J. Label. Compd. Radiopharm. 2003, 46, 1087–1092. [Google Scholar] [CrossRef]
- Gómez, A.B.; González, M.A.C.; Lübcke, M.; Johansson, M.J.; Halldin, C.; Szabó, K.J.; Schou, M. Efficient DBU Accelerated Synthesis of [18F]-Labelled Trifluoroacetamides. Chem. Commun. 2016, 52, 13963–13966. [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.N.; González, M.A.C.; Jiang, X.; Johansson-Holm, L.; Lati, M.P.; Elgland, M.; Nordeman, P.; Antoni, G.; Szabó, K.J. Base-Catalysed [18F]-Labelling of Trifluoromethyl Ketones. Application to the Synthesis of [18F]-Labelled Neutrophil Elastase Inhibitors. Chem. Commun. 2021, 57, 8476–8479. [Google Scholar] [CrossRef] [PubMed]
- Johnström, P.; Stone-Elander, S. The [18F]-Labelled Alkylating Agent 2,2,2-Trifluoroethyl Triflate: Synthesis and Specific Activity. J. Label. Compd. Radiopharm. 1995, 36, 537–547. [Google Scholar] [CrossRef]
- Szpera, R.; Isenegger, P.G.; Ghosez, M.; Straathof, N.J.W.; Cookson, R.; Blakemore, D.C.; Richardson, P.; Gouverneur, V. Synthesis of Fluorinated Alkyl Aryl Ethers by Palladium-Catalyzed C–O Cross-Coupling. Org. Lett. 2020, 22, 6573–6577. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.D.; Chen, T.Q.; Neubig, M.E.; Hong, C.M.; Theulier, C.A.; Kobylianskii, I.J.; Janabi, M.; O’Neil, J.P.; Toste, F.D. A Catalytic Fluoride-Rebound Mechanism for C(Sp3)-CF3 Bond Formation. Science 2017, 356, 1272–1276. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, M.V.; Brooks, A.F.; Rodnick, M.E.; Carpenter, G.M.; Shao, X.; Desmond, T.J.; Sherman, P.; Quesada, C.A.; Hockley, B.G.; Kilbourn, M.R.; et al. High Affinity Radiopharmaceuticals Based Upon Lansoprazole for PET Imaging of Aggregated Tau in Alzheimer’s Disease and Progressive Supranuclear Palsy: Synthesis, Preclinical Evaluation, and Lead Selection. ACS Chem. Neurosci. 2014, 5, 718–730. [Google Scholar] [CrossRef]
- Kramer, V.; Brooks, A.F.; Haeger, A.; Kuljis, R.O.; Rafique, W.; Koeppe, R.A.; Raffel, D.M.; Frey, K.A.; Amaral, H.; Scott, P.J.H.; et al. Evaluation of [18F]-N-Methyl Lansoprazole as a Tau PET Imaging Agent in First-in-Human Studies. ACS Chem. Neurosci. 2020, 11, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Frost, A.B.; Brambilla, M.; Exner, R.M.; Tredwell, M. Synthesis and Derivatization of 1,1-[18F]Difluorinated Alkenes. Angew. Chem. Int. Ed. 2019, 58, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Gruber, S.; Ametamey, S.M.; Schibli, R. Unexpected Reactivity of Cyclic Perfluorinated Iodanes with Electrophiles. Chem. Commun. 2018, 54, 8999–9002. [Google Scholar] [CrossRef]
- Josse, O.; Labar, D.; Georges, B.; Marchand-Brynaert, J. Synthesis of [18F]-Labeled EF3 [2-(2-Nitroimidazol-1-Yl)-N-(3,3,3-Trifuoropropyl)-Acetamide], a Marker for PET Detection of Hypoxia. Bioorg. Med. Chem. 2001, 9, 665–675. [Google Scholar] [CrossRef]
- Cheguillaume, A.; Gillart, J.; Labar, D.; Grégoire, V.; Marchand-Brynaert, J. Perfluorinated Markers for Hypoxia Detection: Synthesis of Sulfur-Containing Precursors and [18F]-Labelling. Bioorg. Med. Chem. 2005, 13, 1357–1367. [Google Scholar] [CrossRef]
- Angelini, G.; Speranza, M.; Shiue, C.-Y.; Wolf, A.P. H18F+ Sb2O3: A New Selective Radiofluorinating Agent. J. Chem. Soc. Chem. Commun. 1986, 924–925. [Google Scholar] [CrossRef]
- Das, M.K.; Mukherjee, J. Radiosynthesis of [18F] Fluoxetine as a Potential Radiotracer for Serotonin Reuptake Sites. Appl. Radiat. Isot. 1993, 44, 835–842. [Google Scholar] [CrossRef]
- Verhoog, S.; Pfeifer, L.; Khotavivattana, T.; Calderwood, S.; Collier, T.; Wheelhouse, K.; Tredwell, M.; Gouverneur, V. Silver-Mediated 18F-Labeling of Aryl-CF3 and Aryl-CHF2 with [18F]-Fluoride. Synlett 2015, 27, 25–28. [Google Scholar] [CrossRef]
- Kilbourn, M.R.; Pavia, M.R.; Gregor, V.E. Synthesis of Fluorine-18 Labeled GABA Uptake Inhibitors. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1990, 41, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Hammadi, A.; Crouzel, C. Synthesis of [18F]-(S)-Fluoxetine: A Selective Serotonine Uptake Inhibitor. J. Label. Compd. Radiopharm. 1993, 33, 703–710. [Google Scholar] [CrossRef]
- Turkman, N.; Liu, D.; Pirola, I. Novel Late-Stage Radiosynthesis of 5-[18F]-Trifluoromethyl-1,2,4-Oxadiazole (TFMO) Containing Molecules for PET Imaging. Sci. Rep. 2021, 11, 10668. [Google Scholar] [CrossRef]
- Chang, C.-P.; Huang, H.-L.; Huang, J.-K.; Hung, M.-S.; Wu, C.-H.; Song, J.-S.; Lee, C.-J.; Yu, C.-S.; Shia, K.-S. Fluorine-18 Isotope Labeling for Positron Emission Tomography Imaging. Direct Evidence for DBPR211 as a Peripherally Restricted CB1 Inverse Agonist. Bioorg. Med. Chem. 2019, 27, 216–223. [Google Scholar] [CrossRef]
- Ivashkin, P.; Lemonnier, G.; Cousin, J.; Grégoire, V.; Labar, D.; Jubault, P.; Pannecoucke, X. [18F]CuCF 3: A [18F]Trifluoromethylating Agent for Arylboronic Acids and Aryl Iodides. Chem. Eur. J. 2014, 20, 9514–9518. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Telu, S.; Haskali, M.B.; Morse, C.L.; Pike, V.W. A Gas Phase Route to [18F]Fluoroform with Limited Molar Activity Dilution. Sci. Rep. 2019, 9, 14835. [Google Scholar] [CrossRef] [PubMed]
- Rühl, T.; Rafique, W.; Lien, V.T.; Riss, P.J. Cu(i)-Mediated 18F-Trifluoromethylation of Arenes: Rapid Synthesis of 18F-Labeled Trifluoromethyl Arenes. Chem. Commun. 2014, 50, 6056–6059. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Lee, J.Y.; Lee, Y.-S.; Jeong, J.M. Design and Synthesis of Enantiopure 18F-Labelled [18F]Trifluoromethyltryptophan from 2-Halotryptophan Derivatives via Copper(I)-Mediated [18F]Trifluoromethylation and Evaluation of Its in Vitro Characterization for the Serotonergic System Imaging. J. Label. Compd. Radiopharm. 2019, 62, 566–579. [Google Scholar] [CrossRef]
- King, A.; Doepner, A.; Turton, D.; Ciobota, D.M.; Da Pieve, C.; Wong Te Fong, A.-C.; Kramer-Marek, G.; Chung, Y.-L.; Smith, G. Radiosynthesis of the Anticancer Nucleoside Analogue Trifluridine Using an Automated 18F-Trifluoromethylation Procedure. Org. Biomol. Chem. 2018, 16, 2986–2996. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Lin, Q.; Hu, B.; Zhang, Y.; Chen, W.; Zhu, J.; Zhao, Y.; Choi, H.S.; Shi, H.; Cheng, D. P2X7 PET Radioligand 18F-PTTP for Differentiation of Lung Tumor from Inflammation. J. Nucl. Med. 2019, 60, 930–936. [Google Scholar] [CrossRef] [Green Version]
- Carroll, L.; Evans, H.L.; Spivey, A.C.; Aboagye, E.O. Mn–Salen Catalysed Benzylic C–H Activation for the Synthesis of Aryl [18F]CF3 -Containing PET Probes. Chem. Commun. 2015, 51, 8439–8441. [Google Scholar] [CrossRef] [Green Version]
- Ido, T.; Irie, T.; Kasida, Y. Isotope Exchange with 18F on Super-Conjugate System. J. Label. Compd. Radiopharm. 1979, 16, 153–154. [Google Scholar]
- Khotavivattana, T.; Verhoog, S.; Tredwell, M.; Pfeifer, L.; Calderwood, S.; Wheelhouse, K.; Collier, T.L.; Gouverneur, V. [18F]-Labeling of Aryl-SCF3, -OCF3 and -OCHF2 with [18F]Fluoride. Angew. Chem. Int. Ed. 2015, 54, 9991–9995. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D.-H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S.H. An Unconventional Mechanistic Insight into SCF3 Formation from Difluorocarbene: Preparation of [18F]-Labeled α-SCF3 Carbonyl Compounds. Angew. Chem. Int. Ed. 2017, 56, 3196–3200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Ma, H.; Zhang, Z.; Lin, L.; Yuan, G.; Tang, X.; Nie, D.; Jiang, S.; Yang, G.; Tang, G. Synthesis of Enantiopure [18F]-Trifluoromethyl Cysteine as a Structure-Mimetic Amino Acid Tracer for Glioma Imaging. Theranostics 2019, 9, 1144–1153. [Google Scholar] [CrossRef]
- Carbonnel, E.; Besset, T.; Poisson, T.; Labar, D.; Pannecoucke, X.; Jubault, P. [18F]-Fluoroform: A [18F]-Trifluoromethylating Agent for the Synthesis of SCF218F-Aromatic Derivatives. Chem. Commun. 2017, 53, 5706–5709. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Q.; Wilson, T.C.; Verhoog, S.; Lu, L.; Gouverneur, V.; Shen, Q. Synthesis and Reactivity of α-Cumyl Bromodifluoromethanesulfenate: Application to the Radiosynthesis of [18F]ArylSCF3. Angew. Chem. Int. Ed. 2019, 58, 2413–2417. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francis, F.; Wuest, F. Advances in [18F]Trifluoromethylation Chemistry for PET Imaging. Molecules 2021, 26, 6478. https://doi.org/10.3390/molecules26216478
Francis F, Wuest F. Advances in [18F]Trifluoromethylation Chemistry for PET Imaging. Molecules. 2021; 26(21):6478. https://doi.org/10.3390/molecules26216478
Chicago/Turabian StyleFrancis, Felix, and Frank Wuest. 2021. "Advances in [18F]Trifluoromethylation Chemistry for PET Imaging" Molecules 26, no. 21: 6478. https://doi.org/10.3390/molecules26216478
APA StyleFrancis, F., & Wuest, F. (2021). Advances in [18F]Trifluoromethylation Chemistry for PET Imaging. Molecules, 26(21), 6478. https://doi.org/10.3390/molecules26216478