Study on the Dynamic Difference between Single and Mixed Residues of Three Neonicotinoids in Brassica chinensis L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Neonicotinoid Residues in Aerial Part of Brassica chinensis L.
2.1.1. Method Validation
2.1.2. Initial and Final Residues after Mixture Application
2.2. Dissipation Dynamic Analysis of Neonicotinoid Insecticides’ Residues
2.2.1. Data Analysis
2.2.2. Interaction Effect of Neonicotinoid Mixture
3. Materials and Methods
3.1. Reagents, Chemicals, and Materials
3.2. Field Experiment
3.3. Sample Preparation
3.4. Analysis by UPLC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kazuhiko, M.; Makoto, I.; David, B.S. Neonicotinoid Insecticides: Molecular Targets, Resistance, and Toxicity. Annu. Rev. Pharmacol. 2020, 60, 241–255. [Google Scholar]
- Elbert, A.; Haas, M.; Springer, B.; Thielert, W.; Nauen, R. Applied aspects of neonicotinoid uses in crop protection. Pest. Manag. Sci. 2008, 64, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Cui, K.; Yan, H.; Li, Y.; Chai, Y.; Liu, X.; Cheng, J.; Yu, X. Uptake and translocation of imidacloprid thiamethoxam and difenoconazole in rice plants. Environ. Pollut. 2017, 226, 479–485. [Google Scholar] [CrossRef]
- Seccia, S.; Fidente, P.; Barbini, D.; Morrica, P. Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. Anal. Chim. Acta 2005, 553, 21–26. [Google Scholar] [CrossRef]
- Van Dijk, T.C.; Van Staalduinen, M.A.; Van der Sluijs, J.P. Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS ONE 2013, 8, e62374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klarich, K.L.; Pflug, N.C.; DeWald, E.M.; Hladik, M.L.; Kolpin, D.W.; Cwiertny, D.; LeFevre, G.H. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Environ. Sci. Technol. Lett. 2017, 4, 168–173. [Google Scholar] [CrossRef]
- Xie, W.; Han, C.; Qian, Y.; Ding, H.; Chen, X.; Xi, J. Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 4426–4433. [Google Scholar] [CrossRef] [PubMed]
- Seccia, S.; Fidente, P.; Montesano, D.; Morrica, P. Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection. J. Chromatogr. A 2008, 1214, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, E.A.D.; Mulhauser, B.; Mulot, M.; Mutabazi, A.; Glauser, G.; Aebi, A. Aworldwide survey of neonicotinoids in honey. Science 2017, 358, 109–111. [Google Scholar] [CrossRef] [Green Version]
- Main, A.R.; Headley, J.V.; Peru, K.M.; Michel, N.L.; Cessna, A.J. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s prairie Pothole region. PLoS ONE 2014, 9, e92821. [Google Scholar] [CrossRef]
- Kapoor, U.; Srivastava, M.K.; Srivastava, A.K.; Patel, D.K.; Garg, V.; Srivastava, L.P. Analysis of imidacloprid residues in fruits vegetables cereals fruit juices and baby foods and daily intake estimation in and around Lucknow India. Environ. Toxicol. Chem. 2013, 32, 723–727. [Google Scholar] [CrossRef]
- Jallow, M.F.A.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y. Ahmad N Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait. Int. J. Environ. Res. Public Health 2017, 14, 833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.; Zhang, Q.; Zhao, C.; Wang, X.; Li, J.; Wang, D.; Zhou, Y.; Lu, X. Residues of Neonicotinoid Pesticides in Vegetables and Fruit and Health Risk Assessment of Human Exposure via Food Intake. Asian J. Ecotoxicol. 2016, 11, 67–81. [Google Scholar]
- USDA. Pesticide Data Program: Annual Summary Calendar Year. 2018. Available online: https://www.ams.usda.gov/sites/default/files/media/2018PDPAnnualSummary.pdf (accessed on 29 September 2021).
- USDA. Pesticide Data Program: Annual Summary Calendar Year. 2019. Available online: https://www.ams.usda.gov/sites/default/files/media/2019PDPAnnualSummary.pdf (accessed on 29 September 2021).
- Felix, F.S.; Dajana, L.; Hannes, P.; Almut, M.; Joern, K.; Andreas, E.S.; Thomas, O.J.; Albert, B.; Oliver, P. Pesticide mixture effects on liver protein abundance in HepaRG cells. Toxicology 2021, 458, 152839. [Google Scholar]
- Farouk, M.; Hussein, L.A.E.; El-Azab, N.F. Simultaneous determination of three neonicotinoid insecticide residues and their metabolite in cucumbers and soil by quechers clean up and liquid chromatography with diode-array detection. Anal. Methods 2016, 8, 4563–4575. [Google Scholar] [CrossRef]
- Hernandez, A.F.; Parron, T.; Tsatsakis, A.M.; Requena, M.; Alarcon, R.; Lopez-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Faust, M.; Altenburger, R.; Backhaus, T.; Blanck, H.; Boedeker, W.; Gramatica, P.; Hamer, V.; Scholze, M.; Vighi, M.; Grimme, L.H. Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat. Toxicol. 2003, 63, 43–63. [Google Scholar] [CrossRef]
- Silva, E.; Rajapakse, N.; Kortenkamp, A. Something from “nothing”-eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ. Sci. Technol. 2002, 36, 1751–1756. [Google Scholar] [CrossRef] [PubMed]
- Maloney, E.M.; Liber, K.; Headley, J.V.; Peru, K.M.; Morrissey, C.A. Neonicotinoid insecticide mixtures: Evaluation of laboratory-based toxicity predictions under semi-controlled field conditions. Environ. Pollut. 2018, 243, 1727–1739. [Google Scholar] [CrossRef]
- Backhaus, T.; Blanck, H.; Faust, M. Hazard and Risk Assessment of Chemical Mixtures under REACH-State of the Art, Gaps and Options for Improvement. BMC. Evol. Biol. 2010, 10, 15. [Google Scholar]
- Backhaus, T.; Faust, M. Predictive environmental risk assessment of chemical mixtures: A conceptual framework. Environ. Sci. Technol. 2012, 46, 2564–2573. [Google Scholar] [CrossRef] [PubMed]
- Belden, J.B.; Gilliom, R.J.; Lydy, M.J. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr. Environ. Assess Manag. 2007, 3, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Khay, S.; Choi, J.H.; Abd El-Aty, A.M.; Mamun, M.I.; Park, B.J.; Goudah, A. Dissipation behavior of lufenuron benzoylphenylurea insecticide in/on Chinese cabbage applied by foliar spraying under greenhouse conditions. Bull. Environ. Contam. Toxicol. 2008, 81, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Fantke, P.; Juraske, R. Variability of pesticide dissipation half-lives in plants. Environ. Sci. Technol. 2013, 47, 3548–3562. [Google Scholar] [CrossRef]
- Fantke, P.; Gillespie, B.W.; Juraske, R.; Jolliet, O. Estimating half-lives for pesticide dissipation from plants. Environ. Sci. Technol. 2014, 48, 8588–8602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paramasivam, M.; Deepa, M.; Selvi, C.; Chandrasekaran, S. Dissipation kinetics of beta-cyfluthrin and imidacloprid in tea and their transfer from processed tea to infusion. Ecotox. Environ. Safe 2017, 144, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Han, Y.; Jiangyuan, C.; Luo, Y.; Xu, W.; Luo, H.; Pang, G. Revealing the biodiversity and the response of pathogen to a combined use of procymidone and thiamethoxam in tomatoes. Food Chem. 2019, 284, 73–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, S.; Zhang, H.; Shen, G.; Zhang, W. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application. Sci. Total Environ. 2017, 607, 1348–1356. [Google Scholar] [CrossRef]
- Huete-Soto, A.; Masís-Mora, M.; Lizano-Fallas, V.; Chin-Pampillo, J.S.; Carazo-Rojas, E.; Rodríguez-Rodríguez, C.E. Simultaneous removal of structurally different pesticides in a biomixture: Detoxification and effect of oxytetracycline. Chemosphere 2017, 169, 558–567. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, J.; Cheng, Z.; Wang, P.; Zhou, Z.; Liu, D. The effect of antibiotics on the persistence of herbicides in soil under the combined pollution. Chemosphere 2018, 204, 303–309. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, W.; Ma, Q.; Wang, J.; Zhou, H.; Jiang, C. The combined effect of sulfadiazine and copper on soil microbial activity and community structure. Ecotoxicol. Environ. Safe 2016, 134, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R.; Ebbinghaus-Kintscher, U.; Schmuck, R. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest. Manag. Sci. 2001, 57, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.R.; Hutson, D.H. Metabolic Pathways of Agrochemicals; Part 2: Insecticides and Fungicides; Royal Society of Chemistry: Cambridge, UK, 1999; pp. 105–126. [Google Scholar]
- Nauen, R.; Ebbinghaus-Kintscher, U.; Salgado, V.L.; Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Physiology 2003, 76, 55–69. [Google Scholar] [CrossRef]
- Yokota, T.; Mikata, K.; Nagasaki, H.; Ohta, K. Absorption, tissue distribution, excretion, and metabolism of clothianidin in rats. J. Agric. Food Chem. 2003, 51, 7066–7072. [Google Scholar] [CrossRef] [PubMed]
Dose A | Dose B | ||||||||
---|---|---|---|---|---|---|---|---|---|
Insecticide | Treatments | Kinetic Equation | k (d−1) | R2 | DT50 (d) | Kinetic Equation | k (d−1) | R2 | DT50 (d) |
IMI | Single IMI | Ct = 0.948e−0.179t | 0.179 | 0.937 | 3.88 | Ct = 3.207e−0.159t | 0.159 | 0.920 | 4.36 |
IMI + ACE | Ct = 1.529e−0.140t | 0.140 | 0.959 | 4.94 | Ct = 3.903e−0.166t | 0.166 | 0.932 | 4.18 | |
IMI + TMX | Ct = 2.065e−0.140t | 0.140 | 0.962 | 4.96 | Ct = 3.014e−0.119t | 0.119 | 0.932 | 5.82 | |
IMI + ACE + TMX | Ct = 1.814e−0.128t | 0.128 | 0.930 | 5.42 | Ct = 3.063e−0.116t | 0.116 | 0.909 | 5.99 | |
ACE | Single ACE | Ct = 0.744e−0.169t | 0.169 | 0.909 | 4.10 | Ct = 1.903e−0.149t | 0.149 | 0.966 | 4.66 |
IMI + ACE | Ct = 0.606e−0.164t | 0.164 | 0.956 | 4.22 | Ct = 2.593e−0.153t | 0.153 | 0.952 | 4.52 | |
ACE +TMX | Ct = 0.909e−0.156t | 0.156 | 0.903 | 4.45 | Ct = 2.335e−0.164t | 0.164 | 0.937 | 4.22 | |
IMI + ACE + TMX | Ct = 0.357e−0.119t | 0.119 | 0.957 | 5.83 | Ct = 1.644e−0.155t | 0.155 | 0.958 | 4.48 | |
TMX | Single TMX | Ct = 0.651e−0.175t | 0.175 | 0.936 | 3.97 | Ct = 1.865e−0.242t | 0.242 | 0.933 | 2.87 |
IMI + TMX | Ct = 0.795e−0.131t | 0.131 | 0.941 | 5.28 | Ct = 1.494e−0.103t | 0.103 | 0.914 | 6.74 | |
ACE +TMX | Ct = 0.748e−0.128t | 0.128 | 0.935 | 5.42 | Ct = 1.798e−0.138t | 0.138 | 0.911 | 5.01 | |
IMI + ACE + TMX | Ct = 0.486e−0.117t | 0.117 | 0.973 | 5.94 | Ct = 1.206e−0.132t | 0.132 | 0.930 | 5.27 |
Dose A | Dose B | ||||
---|---|---|---|---|---|
Insecticide | Treatments | Regression Equation | R | Regression Equation | R |
IMI | IMI + ACE | y = 0.175 + 1.29 x1 + 0.194 x2 | 0.9695 | y = −0.076 + 1.047 x1 + 0.310 x2 | 0.9907 |
IMI + TMX | y = 0.259 − 0.235 x1 + 3.11 x2 | 0.9684 | y = 0.555 + 0.561 x1 + 0.399 x2 | 0.9918 | |
IMI + ACE + TMX | y = 0.307 − 0.512 x1 + 3.31 x2 − 0.206 x3 | 0.9537 | y = 0.665 − 0.468 x1 + 0.868 x2 + 1.27 x3 | 0.9988 | |
ACE | IMI + ACE | y = 0.0215 + 0.532 x1 + 0.106 x2 | 0.9594 | y = 0.0283 + 0.462 x1 + 0.565 x2 | 0.9881 |
ACE +TMX | y = 0.0561 + 0.866 x1 + 0.316 x2 | 0.9789 | y = 0.154 + 0.502 x1 + 0.684 x2 | 0.9905 | |
IMI + ACE + TMX | y = 0.0718 + 0.0155 x1 + 0.452 x2 − 0.0273 x3 | 0.9652 | y = 0.0168 − 0.174 x1 + 0.176 x2 + 0.980 x3 | 0.9936 | |
TMX | IMI + TMX | y = 0.121 + 1.24 x1 − 0.741 x2 | 0.9902 | y = 0.427 + 0.144 x1 + 0.363 x2 | 0.9921 |
ACE +TMX | y = 0.114 + 0.123 x1 + 0.852 x2 | 0.9880 | y = 0.264 + 0.319 x1 + 0.535 x2 | 0.9940 | |
IMI + ACE + TMX | y = 0.0979 − 0.0764 x1 + 0.414 x2 + 0.261 x3 | 0.9353 | y = 0.118 + 0.102 x1 + 0.078 x2 + 0.334 x3 | 0.9915 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Rao, Q.; Zhang, Q.; Liu, X.; Song, W.; Guan, S.; Chen, S.; Song, W. Study on the Dynamic Difference between Single and Mixed Residues of Three Neonicotinoids in Brassica chinensis L. Molecules 2021, 26, 6495. https://doi.org/10.3390/molecules26216495
Lu Y, Rao Q, Zhang Q, Liu X, Song W, Guan S, Chen S, Song W. Study on the Dynamic Difference between Single and Mixed Residues of Three Neonicotinoids in Brassica chinensis L. Molecules. 2021; 26(21):6495. https://doi.org/10.3390/molecules26216495
Chicago/Turabian StyleLu, Yangyang, Qinxiong Rao, Qicai Zhang, Xing Liu, Wei Song, Shuhui Guan, Shanshan Chen, and Weiguo Song. 2021. "Study on the Dynamic Difference between Single and Mixed Residues of Three Neonicotinoids in Brassica chinensis L." Molecules 26, no. 21: 6495. https://doi.org/10.3390/molecules26216495
APA StyleLu, Y., Rao, Q., Zhang, Q., Liu, X., Song, W., Guan, S., Chen, S., & Song, W. (2021). Study on the Dynamic Difference between Single and Mixed Residues of Three Neonicotinoids in Brassica chinensis L. Molecules, 26(21), 6495. https://doi.org/10.3390/molecules26216495