Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General
3.2. General Procedure for the Synthesis of 3-Alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl) 1H-Pyrazol-5(4H)-ones 4a–d and of 9-Alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones 5d–g, Starting from 1,2-Diaza-1,3-dienes 1d–g and Propargyl Alcohol 2a
3.3. General Procedure for the Synthesis of Tert-Butyl 2-(3-(Allyloxy)-4-ethoxy-4-oxobutan-2-ylidene) Hydrazinecarboxylate (3d) or Tert-Butyl 2-(3-(but-2-en-1-yloxy)-4-ethoxy-4-oxobutan-2-ylidene) Hydrazinecarboxylate (3e), Starting from 1,2-Diaza-1,3-diene 1h and Allyl (2b) or Crotyl (2c) Alcohol
3.4. General Procedure for the Synthesis of 4-Allyl-4-hydroxy-3-alkyl-1-aryl-1H-pyrazol-5(4H)-ones 6a–d, Starting from 1,2-Diaza-1,3-dienes 1d–g and Allyl Alcohol 2b
3.5. General Procedure for the Synthesis of 4-Allyl-4-hydroxy-3-methyl-1-alcoxycarbonyl-1H-pyrazol-5(4H)-one 6e, Starting from 3d
4. DFT Calculations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Khan, H.; Mubarak, M.S.; Amin, S. Antifungal Potential of Alkaloids as an Emerging Therapeutic Target. Curr. Drug Targets 2017, 18, 1825–1835. [Google Scholar] [CrossRef]
- Ain, Q.-U.; Khan, H.; Mubarak, M.S.; Pervaiz, A. Plant Alkaloids Antiplatelet Agent: Drugs of the Future in the Light of Recent Developments. Front. Pharmacol. 2016, 7, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A.; Basha, A. Indole Alkaloids; Harwood Academic Publishers: Amsterdam, The Netherlands, 1997. [Google Scholar]
- The Alkaloids: Chemistry and Biology; Cordell, G.A. (Ed.) Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Marti, C.; Carreire, E.M. Construction of Spiro[pyrrolidine-3,3′-oxindoles]—Recent Applications to the Synthesis of Oxindole Alkaloids. Eur. J. Org. Chem. 2003, 2003, 2209–2219. [Google Scholar] [CrossRef]
- Varvounis, G. Pyrazol-3-ones. Part IV: Synthesis and Applications. In Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; Academic Press: New York, NY, USA, 2009; Volume 98, pp. 143–223. [Google Scholar]
- Dhawan, S.; Narang, R.; Khatik, G.L.; Chopra, H.K.; Nayak, S.K. Strategies for chemical synthesis of pyrazolone derivatives and their bio-significance. J. Chem. Pharm. Res. 2016, 8, 969–981. [Google Scholar]
- Horton, D.A.; Bourne, G.T.; Smythe, M.L. The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Chem. Rev. 2003, 103, 893–930. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.E.; Moustafa, A.H.; Tolbah, M.M.; Zohdy, H.F.; Haikal, A.Z. Synthesis and Antimicrobial Evaluation of Novel Pyrazolones and Pyrazolone Nucleosides. Nucleosides Nucleotides Nucleic Acids 2012, 31, 783–800. [Google Scholar] [CrossRef]
- Castagnolo, D.; Manetti, F.; Radi, M.; Bechi, B.; Pagano, M.; De Logu, A.; Meleddu, R.; Saddi, M.; Botta, M. Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of rigid pyrazolones. Bioorg. Med. Chem. 2009, 17, 5716–5721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saidachary, G.; Veera Prasad, K.; Divya, D.; Sing, A.; Ramesh, U.; Sridhar, B.; China Raju, B. Convenient one-pot synthesis, anti-mycobacterial and anticancer activities of novel benzoxepinoisoxazolones and pyrazolones. Eur. J. Med. Chem. 2014, 76, 460–469. [Google Scholar] [CrossRef]
- Sujatha, K.; Shanthi, G.; Selvam, N.P.; Manoharan, S.; Perumal, P.T.; Rajendran, M. Synthesis and antiviral activity of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) against peste des petits ruminant virus (PPRV). Bioorg. Med. Chem. Lett. 2009, 19, 4501–4503. [Google Scholar] [CrossRef]
- Bondock, S.; Rabie, R.; Etman, H.A.; Fadda, A.A. Synthesis and antimicrobial activity of some new heterocycles incorporating antipyrine moiety. Eur. J. Med. Chem. 2008, 43, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- Casas, J.S.; Castellano, E.E.; Ellena, J.; Garcia-Tasende, M.S.; Peres-Paralle, M.L.; Sanchez, A.; Sanchez-Gonzales, A.; Sordo, J.; Touceda, A. New Pd(II) and Pt(II) complexes with N,S-chelated pyrazolonate ligands: Molecular and supramolecular structure and preliminary study of their in vitro antitumoral activity. J. Inorg. Biochem. 2008, 102, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Rosiere, C.E.; Grossman, M.I. An Analog of Histamine that Stimulates Gastric Acid Secretion without other Actions of Histamine. Science 1951, 113, 651–653. [Google Scholar] [CrossRef]
- Sngh, B.K.; Sachan, N.; Chawla, P. Synthesis and Pharmacological Screening of Novel 1,3-Disubstituted 5-Pyrazolones as Anticonvulsant Agents. Curr. Bioact. Compd. 2013, 9, 279–287. [Google Scholar] [CrossRef]
- Harmon, R.E.; Geller, B.L.; Gupta, S.I.; Herbert, H.M.; Chitharanjan, D. Antimalarial properties of a variety of substituted p-sulfamoylphenylazo compounds. J. Pharm. Sci. 1970, 59, 1031–1033. [Google Scholar] [CrossRef]
- Basaif, S.A.; Hassan, M.A.; Gobouri, A.A. AlCl3-Catalyzed diazocoupling of 1-(aryl/hetaryl)-3-phenyl-1H-pyrazol-2-in-5-ones in aqueous medium. Synthesis of hetaryl-azopyrazolones and their application as disperse dyes. Dyes Pigm. 2007, 72, 387–391. [Google Scholar] [CrossRef]
- Progress in Heterocyclic Chemistry; Gribble, G.W.; Joule, J.A. (Eds.) Elsevier: Oxford, UK, 2014; Volume 98, pp. 143–223. [Google Scholar]
- Comprehensive Heterocyclic Chemistry III; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K. (Eds.) Elsevier: Oxford, UK, 2008; Volume 98, pp. 143–223. [Google Scholar]
- Attanasi, O.A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Perrulli, F.R.; Santeusanio, S. Cultivating the Passion to Build Heterocycles from 1,2-Diaza-1,3-dienes: The Force of Imagination. Eur. J. Org. Chem. 2009, 3109–3127. [Google Scholar] [CrossRef]
- Li, Y.-F.; Chen, Z.-J.; Jiao, W.-Y.; Chen, Z.-J.; Chen, I. Syntheses of Spiro(2-oxopyrrolidinyl)-5,4′-pyrazolones via Organocatalyzed Michael/Ammonolysis Cascade Reaction of 4-Aminopyrazolones and α,β-Unsaturated Acyl Phosphates. Synlett 2021, 32, 923–929. [Google Scholar] [CrossRef]
- Wang, W.; Bao, X.; Wei, S.; Nawaz, S.; Qu, J.; Wang, B. Asymmetric sequential annulation/aldol process of 4-isothiocyanato pyrazolones and allenones: Access to novel spiro[pyrrole–pyrazolones] and spiro[thiopyranopyrrole–pyrazolones]. Chem. Commun. 2021, 57, 363–366. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, W.-J.; Jiang, G.-F. Synthesis of Chiral Pyrazolone and Spiropyrazolone Derivatives through Squaramide-Catalyzed Reaction of Pyrazolin-5-ones with o-Quinone Methides. Org. Lett. 2018, 20, 1158–1161. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, S.-B.; Zheng, C.; You, S.-L. Asymmetric Synthesis of Spiropyrazolones by Rhodium-Catalyzed C(sp2)−H Functionalization/Annulation Reactions. Angew. Chemie, Int. Ed. 2017, 56, 4540–4544. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, S.; Chauhan, P.; Hack, D.; Philipps, A.-R.; Puttreddy, R.; Rissanen, K.; Raabe, G.; Enders, D. Asymmetric, Three-Component, One-Pot Synthesis of Spiropyrazolones and 2,5-Chromenediones from Aldol Condensation/NHC-Catalyzed Annulation Reactions. Chem. Eur. J. 2016, 22, 5123–5127. [Google Scholar] [CrossRef]
- Hack, D.; Dürr, A.B.; Deckers, K.; Chauhan, P.; Seling, N.; Rübenach, L.; Mertens, L.; Raabe, G.; Shoenebeck, F.; Enders, D. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo-and Silver Catalysis. Angew. Chemie Int. Ed. 2016, 55, 1797–1800. [Google Scholar] [CrossRef] [PubMed]
- Molvi, K.I.; Haque, N.; Awen, B.Z.S.; Zameeruddian, M. Synthesis of Spiro Compounds as Medicinal Agents; New Opportunities for Drug. Design and Discovery. Part I: A Review. World J. Pharm. Pharm. Sci. 2014, 3, 536–563. [Google Scholar] [CrossRef]
- Rios, R. Enantioselective methodologies for the synthesis of spiro compounds. Chem. Soc. Rev. 2012, 41, 1060–1074. [Google Scholar] [CrossRef]
- Chu, W.-D.; Zhang, Y.; Wang, J.B. Recent advances in catalytic asymmetric synthesis of allenes. Catal. Sci. Technol. 2017, 7, 4570–4579. [Google Scholar] [CrossRef]
- Ye, J.T.; Ma, S.M. Palladium-Catalyzed Cyclization Reactions of Allenes in the Presence of Unsaturated Carbon–Carbon Bonds. Acc. Chem. Res. 2014, 47, 989–1000. [Google Scholar] [CrossRef]
- Ye, J.T.; Ma, S.M. Conquering three-carbon axial chirality of allenes. Org. Chem. Front. 2014, 1, 1210–1224. [Google Scholar] [CrossRef]
- Neff, R.K.; Frantz, D.E. Recent Advances in the Catalytic Syntheses of Allenes: A Critical Assessment. ACS Catal. 2014, 4, 519–528. [Google Scholar] [CrossRef]
- Yu, S.H.; Ma, S.M. How easy are the syntheses of allenes? Chem. Commun. 2011, 47, 5384–5418. [Google Scholar] [CrossRef]
- Ma, S.M. Some Typical Advances in the Synthetic Applications of Allenes. Chem. Rev. 2005, 105, 2829–2871. [Google Scholar] [CrossRef]
- Hoffmann-Röder, A.; Krause, N. Synthesis and Properties of Allenic Natural Products and Pharmaceuticals. Angew. Chem. Int. Ed. 2004, 43, 1196–1216. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Yin, X.M.; Wang, X.H.; Yu, W.Z.; Fang, D.M.; Hu, L.R.; Wang, M.; Liao, J. Enantioselective Synthesis of Multisubstituted Allenes by Cooperative Cu/Pd-Catalyzed 1,4-Arylboration of 1,3-Enynes. Angew. Chem. Int. Ed. 2020, 59, 1176–1180. [Google Scholar] [CrossRef]
- Li, S.; Tang, Z.W.; Wang, Y.; Wang, D.; Wang, Z.L.; Yu, C.X.; Li, T.J.; Wei, D.H.; Yao, C.S. NHC-Catalyzed Aldol-Like Reactions of Allenoates with Isatins: Regiospecific Syntheses of γ-Functionalized Allenoates. Org. Lett. 2019, 21, 1306–1310. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, J.; Yang, J.; Lin, L.L.; Feng, X.M.; Liu, X.H. Asymmetric three-component reaction for the synthesis of tetrasubstituted allenoates via allenoate-copper intermediates. Chem 2018, 4, 1658–1672. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, J.L.; Dong, S.X.; Lin, L.L.; Lin, X.B.; Liu, X.H.; Feng, X.M. Nickel(II)-Catalyzed Asymmetric Propargyl [2,3] Wittig Rearrangement of Oxindole Derivatives: A Chiral Amplification Effect. Angew. Chem. Int. Ed. 2018, 57, 8734–8738. [Google Scholar] [CrossRef]
- Jiang, Y.; Diagne, A.B.; Thomson, R.J.; Schaus, S.E. Enantioselective Synthesis of Allenes by Catalytic Traceless Petasis Reactions. J. Am. Chem. Soc. 2017, 139, 1998–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tap, A.; Blond, A.; Wakchaure, V.N.; List, B. Chiral Allenes via Alkynylogous Mukaiyama Aldol Reaction. Angew. Chem. Int. Ed. 2016, 55, 8962–8965. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, X.H.; Chen, Y.S.; Yang, J.; Li, J.; Lin, L.L.; Feng, X.M. Diastereoselective and Enantioselective Alleno-aldol Reaction of Allenoates with Isatins to Synthesis of Carbinol Allenoates Catalyzed by Gold. ACS Catal. 2016, 6, 2482–2486. [Google Scholar] [CrossRef]
- Li, Z.J.; Boyarskikh, V.; Hansen, J.H.; Autschbach, J.; Musaev, D.G.; Davies, H.M.L. Scope and Mechanistic Analysis of the Enantioselective Synthesis of Allenes by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Propargylic Alcohols. J. Am. Chem. Soc. 2012, 134, 15497–15504. [Google Scholar] [CrossRef] [Green Version]
- Moniz, G.A.; Wood, J.L. Catalyst-Based Control of [2,3]- and [3,3]-Rearrangement in α-Diazoketone-Derived Propargyloxy Enols. J. Am. Chem. Soc. 2001, 123, 5095–5097. [Google Scholar] [CrossRef]
- Isobe, M.; Ploysuk, C. The [2,3]-Wittig Rearrangement. In Molecular Rearrangements in Organic Synthesis; Rojas, C.M., Ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 539–567. [Google Scholar]
- Nakai, T.; Mikami, K. [2,3]-Wittig sigmatropic rearrangements in organic synthesis. Chem. Rev. 1986, 86, 885–902. [Google Scholar] [CrossRef]
- Perali, R.S.; Boddu, U.R.; Sankar, D.C. [1,2]- vs [2,3]-Wittig Rearrangement in Carbohydrate Derived Alkenyl Systems. Org. Lett. 2021, 23, 3850–3853. [Google Scholar] [CrossRef]
- Xu, X.; Dong, S.; Feng, L.; Wang, S.; Liu, X.; Feng, X. Kinetic Resolution of Propargylic Ethers via [2,3]-Wittig Rearrangement to Synthesize Chiral α-Hydroxyallenes. Org. Lett. 2020, 22, 2692–2696. [Google Scholar] [CrossRef]
- Rodríguez, R.I.; Ramírez, E.; Fernández-Salas, J.A.; Sánchez-Obregón, R.; Yuste, F.; Alemán, J. Asymmetric [2,3]-Wittig Rearrangement: Synthesis of Homoallylic, Allenylic, and Enynyl α-Benzyl Alcohols. Org. Lett. 2018, 20, 8047–8051. [Google Scholar] [CrossRef] [PubMed]
- Lopes, S.M.M.; Cardoso, A.L.; Lemos, A.; Pinho e Melo, T.M.V.D. Recent Advances in the Chemistry of Conjugated Nitrosoalkenes and Azoalkenes. Chem. Rev. 2018, 118, 11324–11352. [Google Scholar] [CrossRef] [PubMed]
- Ciccolini, C.; Gatti, F.G.; Gatti, G.; Giorgi, G.; Mari, G.; Mantellini, F.; Favi, G. Synthesis of Polycyclic Fused Indoline Scaffolds through a Substrate-Guided Reactivity Switch. J. Org. Chem. 2020, 85, 11409–11425. [Google Scholar] [CrossRef]
- Mari, G.; De Crescentini, L.; Favi, G.; Santeusanio, S.; Mantellini, F. Metal and Oxidant Free Construction of Substituted-and/or Polycyclic Indoles: A Useful Alternative to Bischler and Related Syntheses. Eur. J. Org. Chem. 2020, 5411–5424. [Google Scholar] [CrossRef]
- Mari, G.; Favi, G.; Santeusanio, S.; Mantellini, F.; De Crescentini, L. A practical and effective method for the N–N bond cleavage of N-amino-heterocycles. Org. Chem. Front. 2019, 6, 3408–3414. [Google Scholar] [CrossRef]
- Mari, G.; Ciccolini, C.; De Crescentini, L.; Favi, G.; Santeusanio, S.; Mancinelli, M.; Mantellini, F. Metal and Oxidant-Free Brønsted Acid-Mediated Cascade Reaction to Substituted Benzofurans. J. Org. Chem. 2019, 84, 10814–10824. [Google Scholar] [CrossRef]
- Mari, G.; Verboni, M.; De Crescentini, L.; Favi, G.; Santeusanio, S.; Mantellini, F. Assembly of fully substituted 2, 5-dihydrothiophenes via a novel sequential multicomponent reaction. Org. Chem. Front. 2018, 5, 2108–2114. [Google Scholar] [CrossRef]
- Mari, G.; De Crescentini, L.; Mantellini, F.; Santeusanio, S.; Favi, G. 5-Methylene N-acyl dihydropyridazinium ions as novel Mannich-type acceptors in 1, 4 additions of nucleophiles. Org. Chem. Front. 2018, 5, 1308–1311. [Google Scholar] [CrossRef]
- Lemos, A. Cycloaddition Reactions of Conjugated Azoalkenes. In Targets in Heterocyclic Systems—Chemistry and Properties; Attanasi, O.A., Spinelli, D., Eds.; Società Chimica Italiana: Rome, Italy, 2010; Volume 14, pp. 1–18. [Google Scholar]
- De Crescentini, L.; Perrulli, F.R.; Favi, G.; Santeusanio, S.; Giorgi, G.; Attanasi, O.A.; Mantellini, F. Reactions of 1, 2-diaza-1, 3-butadienes with propargyl alcohol as an approach to novel bi-heterocyclic systems. Org. Biomol. Chem. 2016, 14, 8674–8678. [Google Scholar] [CrossRef]
- Ayers, B.J.; Chan, P.W.H. Harnessing the Versatile Reactivity of Propargyl Alcohols and their Derivatives for Sustainable Complex Molecule Synthesis. Synlett 2015, 26, 1305–1339. [Google Scholar] [CrossRef]
- Egi, M.; Akai, S. Transition Metal-Catalyzed Intramolecular Cyclization of Propargyl Alcohols and Their Derivatives for the Synthesis of Highly Substituted Five-Membered Oxygen Heterocycles. Heterocycles 2015, 91, 931–958. [Google Scholar] [CrossRef] [Green Version]
- Kanzian, T.; Nicolini, S.; De Crescentini, L.; Attanasi, O.A.; Ofial, A.R.; Mayr, H. Electrophilic Reactivities of 1, 2-Diaza-1, 3-dienes. Chem. Eur. J. 2010, 16, 12008–12016. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, J.; Zhang, Y.; Yang, J. The [1,2]-and [1,4]-Wittig rearrangement. Tetrahedron 2020, 76, 130857. [Google Scholar] [CrossRef]
- Kimm, M.; Ošeka, M.; Kaabel, S.; Metsala, A.; Järving, I.; Kanger, T. [2,3]-Wittig Rearrangement as a Formal Asymmetric Alkylation of α-Branched Ketones. Org. Lett. 2019, 21, 4976–4980. [Google Scholar] [CrossRef]
- Peňaška, T.; Mejer Mojzes, M.; Filo, J.; Jurdáková, H.; Mečiarová, M.; Šebesta, R. Organocatalysts Effect on the Stereoselectivity of [2,3]-Wittig Rearrangement. Eur. J. Org. Chem. 2019, 2019, 605–610. [Google Scholar] [CrossRef]
- Kitabayashi, Y.; Fukuyama, T.; Yokoshima, S. Synthesis of the [7-5-5] tricyclic core of Daphniphyllum alkaloids. Org. Biomol. Chem. 2018, 16, 3556–3559. [Google Scholar] [CrossRef]
- Nath, S.R.; Joshi, K.A. Mechanistic investigation in the [1, 4] and [1, 2] Wittig rearrangement reactions: A DFT study. Phys. Chem. Chem. Phys. 2018, 20, 21457–21473. [Google Scholar] [CrossRef] [PubMed]
- Tsubuki, M.; Kamata, T.; Okita, H.; Arai, M.; Shigihara, A.; Honda, T. Wittig rearrangement of allyl and propargyl furfuryl ethers leading to 2-furylmethanol derivatives. Chem. Commun. 1999, 2263–2264. [Google Scholar] [CrossRef]
- Marshall, J.-A.; Robinson, E.D.; Zapata, A. [2,3] Wittig rearrangement of nonracemic propargyl ethers leading to allenes of high stereochemical integrity. J. Org. Chem. 1989, 54, 5854–5855. [Google Scholar] [CrossRef]
- Mikami, K.; Azuma, K.-I.; Nakai, T. [2,3]-Wittig sigmatropic rearrangement of crotyl propargyl ether system. An emerging tool for control of acyclic stereochemistry. Tetrahedron 1984, 40, 2303–2308. [Google Scholar] [CrossRef]
- Everett, R.K.; Wolfe, J.P. Aza-Wittig Rearrangements of N-Benzyl and N-Allyl Glycine Methyl Esters. Discovery of a Surprising Cascade Aza-Wittig Rearrangement/Hydroboration Reaction. J. Org. Chem. 2015, 80, 9041–9056. [Google Scholar] [CrossRef]
- Anderson, J.C.; Davies, E.A. Diastereoselective synthesis of substituted prolines via 5-endo-trig cyclisations of aza-[2,3]-Wittig sigmatropic rearrangement products. Tetrahedron 2010, 66, 6300–6308. [Google Scholar] [CrossRef]
- Vogel, K. The aza-Wittig rearrangement. Synthesis 1997, 5, 497–505. [Google Scholar] [CrossRef]
- Ošeka, M.; Kimm, M.; Kaabel, S.; Järving, I.; Rissanen, K.; Kanger, T. Asymmetric Organocatalytic Wittig [2,3]-Rearrangement of Oxindoles. Org. Lett. 2016, 18, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- McGowan, G.; Thomas, E.J. Synthesis of macrocyclic precursors of phomactins using [2,3]-Wittig rearrangements. Org. Biomol. Chem. 2009, 7, 2576–2590. [Google Scholar] [CrossRef]
- Barbazanges, M.; Meyer, C.; Cossy, J. Stereoselective synthesis of 1, 2-aminoalcohols by [2, 3]-Wittig rearrangements. Org. Lett. 2007, 9, 3245–3248. [Google Scholar] [CrossRef]
- Barluenga, J.; Fañanás, F.J.; Sanz, R.; Marcos, C.; Trabada, M. On the Reactivity of o-Lithioaryl Ethers: Tandem Anion Translocation and Wittig Rearrangement. Org. Lett. 2002, 4, 1587–1590. [Google Scholar] [CrossRef]
- Liang, J.; Hoard, D.W.; Van Khau, V.; Martinelli, M.J.; Moher, E.D.; Moore, R.E.; Tius, M.A. Synthesis of unit A of cryptophycin via a [2, 3]-Wittig rearrangement. J. Org. Chem. 1999, 64, 1459–1463. [Google Scholar] [CrossRef] [PubMed]
- Ahman, J.; Somfai, P. Aza-[2, 3]-Wittig rearrangements of vinylaziridines. J. Am. Chem. Soc. 1994, 116, 9781–9782. [Google Scholar] [CrossRef]
- Anderson, J.C.; Roberts, C.A. The Tri-n-butyltin Group as a Novel Stereocontrol Element and Synthetic Handle in the Aza-[2,3]-Wittig Sigmatropic Rearrangement. Tetrahedron Lett. 1998, 39, 159–162. [Google Scholar] [CrossRef]
- Marshall, J.A.; Wang, X. Synthesis of enantioenriched. alpha-hydroxy-alpha-allenylacetic acids by [2, 3] Wittig rearrangement of. alpha-(propargyloxy) acetates. J. Org. Chem. 1991, 56, 4913–4918. [Google Scholar] [CrossRef]
- Lumbroso, A.; Cooke, M.L.; Breit, B. Catalytic asymmetric synthesis of allylic alcohols and derivatives and their applications in organic synthesis. Angew. Chem. Int. Ed. 2013, 52, 1890–1932. [Google Scholar] [CrossRef]
- Sundararaju, B.; Achard, M.; Bruneau, C. Transition metal catalyzed nucleophilic allylic substitution: Activation of allylic alcohols via π-allylic species. Chem. Soc. Rev. 2012, 41, 4467–4483. [Google Scholar] [CrossRef] [PubMed]
- Bandini, M. Allylic alcohols: Sustainable sources for catalytic enantioselective alkylation reactions. Angew. Chem. Int. Ed. 2011, 50, 994–995. [Google Scholar] [CrossRef]
- Tamaru, Y. Activation of allyl alcohols as allyl cations, allyl anions, and amphiphilic allylic species by palladium. Eur. J. Org. Chem. 2005, 2647–2656. [Google Scholar] [CrossRef]
- Attanasi, O.A.; Filippone, P.; Mei, A.; Santeusanio, S. Effect of Metal Ions in Organic Synthesis; Part XXIII. Easy and High-Yield Direct Synthesis of 3-Aminocarbonyl-1-ureidopyrroles by the Copper(II) Chloride-Catalyzed Reaction of Aminocarbonylazoalkenes with 3-Oxoalkanamides. Synthesis 1984, 671–672. [Google Scholar] [CrossRef]
- Attanasi, O.A.; Filippone, P.; Mei, A.; Santeusanio, S. Effect of metal ions in organic synthesis. XXIV: Facile one-flask synthesis of 2-alkoxycarbonylamino-3-aminocarbonylpyrroles by reaction of alkoxycarbonylazoalkenes with 3-oxoalkanamides under copper(II) chloride catalysis. Synthesis 1984, 873–874. [Google Scholar] [CrossRef]
- Preti, L.; Attanasi, O.A.; Caselli, E.; Favi, G.; Ori, C.; Davoli, P.; Felluga, F.; Prati, F. One-Pot Synthesis of Imidazole-4-Carboxylates by Microwave-Assisted 1,5-Electrocyclization of Azavinyl Azomethine Ylides. Eur. J. Org. Chem. 2010, 4312–4320. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 8, e1327. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.A. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entry | Solvent | Base | Equivalents | T | 4a; 5d Yield (%) b |
---|---|---|---|---|---|
1 | CH2Cl2 | DBU | 0.1 | rt | no reaction |
2 | CH2Cl2 | DBU | 1 | rt | complicated mixture c |
3 | MeCN | DBU | 0.1 | rt | no reaction |
4 | MeCN | DBU | 0.1 | 60 °C | complicated mixture c |
5 | MeCN | DBU | 1 | rt | complicated mixture c |
6 | THF | DBU | 0.1 | rt | no reaction |
7 | THF | DBU | 1 | rt | complicated mixture c |
8 | 2a as sr d | DBU | 1 | rt | complicated mixture c |
9 | MeCN | DIPEA | 2 | rt | no reaction |
10 | MeCN | DIPEA | 4 | rt | no reaction |
11 | THF | DIPEA | 4 | rt | no reaction |
12 | CH2Cl2 | DIPEA | 4 | rt | no reaction |
13 | 2a as sr d | DIPEA | 4 | rt | no reaction |
14 | 2a as sr d | DIPEA | 4 | 60 °C | no reaction |
15 | MeCN | NaH | 0.1 | rt | complicated mixture c |
16 | THF | NaH | 0.1 | rt | complicated mixture c |
17 | THF | NaH | 0.1 | −20 °C | complicated mixture c |
18 | THF | NaH | 0.1 | −78 °C | complicated mixture c |
19 | CH2Cl2 | NaH | 0.1 | rt | complicated mixture c |
20 | 2a as sr d | NaH | 0.1 | rt | complicated mixture c |
21 | MeCN | MeONa | 0.1 | rt | complicated mixture c |
22 | THF | MeONa | 0.1 | rt | complicated mixture c |
23 | THF | MeONa | 0.1 | −20 °C | complicated mixture c |
24 | CH2Cl2 | MeONa | 0.1 | rt | complicated mixture c |
25 | 2a as sr d | MeONa | 0.1 | rt | complicated mixture c |
26 | THF | t-BuONa | 0.1 | rt | complicated mixture c |
27 | THF | t-BuONa | 0.1 | −20 °C | complicated mixture c |
28 | MeCN | K2CO3 | 4 | rt | complicated mixture c |
29 | THF | K2CO3 | 4 | rt | complicated mixture c |
30 | CH2Cl2 | K2CO3 | 4 | rt | complicated mixture c |
31 | 2a as sr d | K2CO3 | 4 | rt | complicated mixture c |
32 | 2a as sr d | K2CO3 | 4 | 60 °C | 4a: 11%; 5d: 29% |
33 | 2a as sr d | Cs2CO3 | 4 | 60 °C | 4a: 9%; 5d: 19% |
34 | 2a as sr d | Na2CO3 | 4 | 60 °C | 4a: 6%; 5d: 11% |
Entry | 1 | R1 | R2 | R3 | 4 | Yield (%) b | 5 | Yield (%) c | Time (h) d |
---|---|---|---|---|---|---|---|---|---|
1 | 1d | Et | Me | H | 4a | 11 | 5d | 29 | 11.5 |
2 | 1e | Me | Me | Cl | 4b | 10 | 5e | 17 | 10.0 |
3 | 1f | Me | Me | OMe | 4c | 14 | 5f | 21 | 9.0 |
4 | 1g | Me | Et | H | 4d | 18 | 5g | 18 | 8.0 |
Entry | 1 | R1 | R2 | R3 | 2 | R4 | 3 a | Yield (%) b | Time (h) | 6 | Yield (%) | Time (h) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1d | Et | Me | Ph | 2b | H | 6ac | 25 e | 8.0 | |||
2 | 1e | Me | Me | 4-Cl-Ph | 2b | H | 6bc | 33 e | 10.0 | |||
3 | 1f | Me | Me | 4-OMe-Ph | 2b | H | 6cc | 33 e | 6.0 | |||
4 | 1g | Me | Et | Ph | 2b | H | 6dc | 28 e | 16.0 | |||
5 | 1h | Et | Me | COOBut | 2b | H | 3d | 37 | 0.1 | 6ed | 70 f | 4.0 |
6 | 1h | Et | Me | COOBut | 2c | Me | 3e | 22 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crescentini, L.D.; Favi, G.; Mari, G.; Ciancaleoni, G.; Costamagna, M.; Santeusanio, S.; Mantellini, F. Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones. Molecules 2021, 26, 6557. https://doi.org/10.3390/molecules26216557
Crescentini LD, Favi G, Mari G, Ciancaleoni G, Costamagna M, Santeusanio S, Mantellini F. Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones. Molecules. 2021; 26(21):6557. https://doi.org/10.3390/molecules26216557
Chicago/Turabian StyleCrescentini, Lucia De, Gianfranco Favi, Giacomo Mari, Gianluca Ciancaleoni, Marcello Costamagna, Stefania Santeusanio, and Fabio Mantellini. 2021. "Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones" Molecules 26, no. 21: 6557. https://doi.org/10.3390/molecules26216557
APA StyleCrescentini, L. D., Favi, G., Mari, G., Ciancaleoni, G., Costamagna, M., Santeusanio, S., & Mantellini, F. (2021). Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones. Molecules, 26(21), 6557. https://doi.org/10.3390/molecules26216557